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Abstract: Land use and land cover are continuously changing in today’s world. Both domains,
therefore, have to rely on updates of external information sources from which the relevant land
use/land cover (classification) is extracted. Satellite images are frequent candidates due to their
temporal and spatial resolution. On the contrary, the extraction of relevant land use/land cover
information is demanding in terms of knowledge base and time. The presented approach offers
a proof-of-concept machine-learning pipeline that takes care of the entire complex process in the
following manner. The relevant Sentinel-2 images are obtained through the pipeline. Later, cloud
masking is performed, including the linear interpolation of merged-feature time frames. Subsequently,
four-dimensional arrays are created with all potential training data to become a basis for estimators
from the scikit-learn library; the LightGBM estimator is then used. Finally, the classified content
is applied to the open land use and open land cover databases. The verification of the provided
experiment was conducted against detailed cadastral data, to which Shannon’s entropy was applied
since the number of cadaster information classes was naturally consistent. The experiment showed a
good overall accuracy (OA) of 85.9%. It yielded a classified land use/land cover map of the study
area consisting of 7188 km2 in the southern part of the South Moravian Region in the Czech Republic.
The developed proof-of-concept machine-learning pipeline is replicable to any other area of interest
so far as the requirements for input data are met.

Keywords: machine learning; land use; land cover; satellite imagery; Sentinel 2; image classification;
cloud masking; LightGBM estimator

1. Introduction

Land use and land cover are commonly used as synonyms and are often merged into
a single dataset. The abbreviation LULC (land use/land cover) is used for this concept.
Nevertheless, land use and land cover refer to different phenomena. In part, we can view
land use as an extension of land cover, considering that it describes human activities, most
of which being firmly bound to a certain surface type (land cover type).

Fisher, Comber, and Wadsworth [1] argued that the advent of remote sensing (RS) in
the 1970s caused a shift in the perception of land use and land cover. Previously, there
was a tendency to collect land use data as they were (and still are) primarily useful for
practical applications (such as infrastructure building and territorial and urban planning).
The ease of acquisition and the use of satellite imagery outweighed its disadvantage—the
lack of implicit contextual information. It was thus impossible to derive many (high-level)
land use classes, and that which we nowadays map and refer to as “land cover” might
accommodate much land use information. It should be noted that in recent years, several
studies have yielded interesting results in deriving pure land use information, even from
satellite imagery [2–5].

ISPRS Int. J. Geo-Inf. 2021, 10, 102. https://doi.org/10.3390/ijgi10020102 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0001-7331-9686
https://doi.org/10.3390/ijgi10020102
https://doi.org/10.3390/ijgi10020102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10020102
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/10/2/102?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2021, 10, 102 2 of 23

Another source of confusion relates to institutional objectives [1]. The semantic
mixture of LULC is most apparently reflected in today’s major classification systems [6–8].
These have utilized both terms based on initial data and a concurrent discussion with users.
They often need to associate local systems to perform on the national or international levels.
This has resulted in multi-tier classifications whose elements attempt to match many of the
previous systems, and the reason for blending LULC classes is their even representation
within a vast geographic space. If we strictly take land use as the main building block, its
categorization often eliminates more sophisticated land cover differentiation in natural
space. That leads to its excessive homogenization across vast natural areas [1]. This
conversely applies in the urban environment [9]. In reality, it is thus a common practice for
global LULC datasets to be driven by land cover in areas with extensive use and by land
use in areas with intensive use [10]. Nowadays, there are many land monitoring programs
in the world that design LULC data in this way. The example elaborated in [1] was the
USGS (United States Geological Survey) classification system, but the European CORINE
Land Cover (CLC) [11], Urban Atlas (UA) [12], and HILUCS (Hierarchical INSPIRE Land
Use Classification System) [13] classifications were prepared in a similar fashion.

Several open LULC databases have been produced within the last decade. Among
others, the OSM (Open Street Map) Landuse Landcover database [14] was derived from the
widely used Open Street Map. The map currently covers Europe, while other continents
are being processed. GAP/LANDFIRE National Terrestrial Ecosystems 2011, which is
available for the United States of America [15], comprises an example of data available
for areas other than Europe. Globally available data sources such as Global Land Cover
SHARE (GLC-SHARE) provided by the FAO (Food and Agriculture Organization of the
United Nations) are characterized by a relatively lower spatial resolution (e.g., 1 km per
pixel) [16]

This paper describes the development of an Earth observation-based machine learning
pipeline to update two related LULC products: the open land use (OLU) database and
the open land cover (OLC) database. The presented approach can be understood as a
proof-of-concept that derives LULC-relevant information from Sentinel-2 imagery through
machine learning methods. The main goal of the presented paper is to provide a machine
learning-based pipeline that:

(1) Collects Sentinel-2 imagery.
(2) Filters cloudiness through multitemporal vectors.
(3) Examines the possibility of the pipeline to perform LULC classification over

the imagery.
(4) Semi-automatically updates OLU/OLC databases accordingly.

The presented approach is intended to be replicable with respect to any other area
of interest in the world if the requirements for input data are met. Inputs from satellite
imagery to LULC databases can be provided in near real time. The presented approach
methodologically originated from and was based on the work achieved by Lubej [17,18].

2. Related Research

The Landsat satellite missions have been a basis for LULC information for almost
the last 50 years. More recently, Sentinel-2 data have provided a higher spatial resolution
(see Section 3.1.1. Open Land Use and Open Land Coverfor details). Sentinel-2 data are
understood as the most detailed open-access satellite data suitable for LULC derivations
with global coverage. Sentinel-2 data are being used for many different purposes, such
as forest monitoring, agriculture, natural hazards monitoring, urban development, local
climatology, and hydrological regime observation, i.e., [19–25].

Bruzzone et al. [26] stated LULC mapping to be one of the essential applications for
Sentinel-2 data. The literature review made by Phiri et al. [27] showed that the usage of
Sentinel-2 data can produce high accuracies (more than 80%) with appropriate machine-
learning classifiers such as random forest (RF) and support vector machine (SVM). On
an implementation level, Cavur et al. [28] used an SVM for Sentinel-2 data processing to
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LULC mapping. Zheng et al. [4] applied RF to the classification of Sentinel-2 imagery,
Weigand et al. [29] combined this method with LUCAS (Land Use and Coverage Area
frame Survey) in-situ data. Nguyen et al. [30] also practically verified the applicability of
Sentinel-2 data for LULC mapping in tropical regions. Sentinel-2 data can also be processed
for LULC mapping using deep learning methods [31].

Atmospheric correction is essential for accurate automated LULC classification be-
cause it can influence and change the final classification result [32]. A good understanding
of LULC and their dynamics is one of the most efficient means to understand and manage
land transformations [33,34]. Cloud masking is a crucial part of atmospheric correction,
as clouds are not trivially distinguishable from other bright surfaces such as snow and
water. Similarly, it is hard to detect thin clouds, such as cirrus, which alter spectral be-
haviors of underlying surfaces [35]. Several methods have been developed for cloud
masking, adopting both spectral and object-based models [35–37]. Hollstein et al. [37],
for instance, assessed cloud detection algorithms in the Python environment from the
view of implementation complexity, speed, and portability. They concluded that classical
Bayesian classifier and random forests are good candidates for advanced cloud masking in
an established workflow.

Among other products, Fmask [38] and Sen2Cor processors have gained widespread
popularity. Fmask is nowadays used primarily for Landsat imagery; however, its recent
updates [39,40] showed promising detection results for Sentinel-2 data as well, with an
overall accuracy (OA) of up to 94%. Due to omission errors of lower-altitude clouds, the
authors have not implemented these updates for Sentinel-2 at the time of writing this
paper [41]. Sen2Cor, a native Sentinel-2 processor, introduced atmospheric and radiometric
corrections (such as cirrus correction), which results in an image on the Level-2A (L2A)
processing level. It produces a scene classification layer (SCL) at a 20-meter resolution with
cloud probabilities and several terrestrial-surface classes [42]. Baetens et al. [43] validated
their own active learning cloud masking method against Fmask, Sen2Cor, and MAJA [44]
processors. Sen2Cor performed 6% less accurately on average compared to the other two
(with an OA of around 84%).

Another issue for the subsequent processing of corrected data is the classification
itself. A wide range of classifiers including both parametric classifiers (logistic regression)
and non-parametric machine learning classifiers (k-nearest neighbors, RF, SVM, extreme
gradient boosting, and deep learning) can be used for LULC classification [45,46]. A com-
parison of the effects of these classification algorithms is beyond the scope of this paper.
The LightGBM estimator [47] was used for the classification in the scope of this paper. The
LightGBM estimator is an algorithm based on the machine learning method of gradient
boosting decision tree [47]. This algorithm was chosen because it is suitable for the process-
ing of larger training datasets and because the obtained results can be compared with the
work of Lubej [17,18] and eo-learn [48,49].

This paper builds on and enhances the contemporary approaches described above.
Moreover, the presented machine learning-based pipeline development represents a proof-
of-concept for an explicit data store consisting of OLU and OLC databases.

3. Materials and Methods
3.1. Materials
3.1.1. Open Land Use and Open Land Cover

OLU [50] is an online spatial database and a geographic information system (GIS) that
aims to provide fine-scale, harmonized LULC pan-European data from freely available
resources [51]. OLU was created and is maintained by Plan4All, a non-profit umbrella
organization (https://www.plan4all.eu/). Since 2020, OLU also covers Africa [52]. As of
the end of 2019, OLU’s principal result was a compiled, seamless LULC map (OLU base
map) [53]. The data are downloadable in the ESRI shapefile format or accessible from Open
Geospatial Consortium standard application user interfaces (APIs)—Web Map Service [54]
and Web Feature Service [55]. Interoperability is the main motivation to offer other options

https://www.plan4all.eu/
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of data retrieval, enabling the retrieval of automation and the simplification of usage in
other GIS.

The backbone of the OLU base map consists of two European LULC datasets—Corine
Land Cover and Urban Atlas:

• UA is a pan-European LULC dataset developed under the initiative of European
Commission as a part of the ESA (European Space Agency) Copernicus program.
The data cover only functional urban areas [56] of the EU (European Union), the
EFTA (European Free Trade Association) countries, West Balkans, and Turkey. The
most recent Urban Atlas dataset came from 2018. It distinguishes urban areas with a
minimal mapping unit (MMU) of 0.25 ha and 17 urban classes and distinguishes rural
areas with an MMU of 1 ha and 10 rural classes [57].

• CLC is an EU LULC dataset provided by the European Environment Agency. It is
produced from RS data: the most recent 2018 version was especially supplemented
with Sentinel-2 satellite imagery. CLC 2018 covers EEA39 (European Environment
Agency) countries and distinguishes 44 mixed land use and land cover classes with an
MMU of 0.25 ha of polygon features and 100 m of linear features. CLC also features
observing LULC changes with an MMU of 5 ha [58].

Though these datasets are probably the most valuable LULC sources for OLU, four
main issues have identified, and these are believed to be the objectives that OLU is trying
to deal with:

• The MMU of CLC is 0.25 ha (500 × 500m), and the MMU of UA in rural areas is 1 ha
(100 ×100 m).

• The MMU of UA goes down to 0.1 ha (approximately 31 ×31 m) in urban areas, but
the dataset covers only functional urban areas and is not seamless.

• The update period for both datasets is 6 years.
• Even a combination of both datasets is insufficient to cover certain areas in Europe.

The OLU/OLC development team has been collecting country-level datasets with
LULC information in order to offer a higher precision and more frequent updates. The
Registry of Territorial Identification, Addresses, and Real Estates [59] is an example of such
a dataset for the area of the Czech Republic. The collection of local datasets is currently one
of the major working processes. The remaining information gap is bridged by RS methods
including automatic image classification in cases of insufficient or missing sources.

The latest work aimed at deriving an OLC database. Such a derivation imports
features from the OLU/OLC databases and should add land cover features from satellite
machinery. The pipeline described in this paper supports the OLC with relevant land cover
input data.

3.1.2. Sentinel-2 Data

Along with NASA (National Aeronautics and Space Administration) Landsat satellites,
European Space Agency’s (ESA) Sentinel satellites are the most significant providers of
recent free earth observation data. Multispectral Sentinel-2 satellites, operating globally,
are a part of the Copernicus program, whose main target is to monitor natural and human
environments, as well as to provide added value to European citizens [57]. Sentinel-2 has
been fully operating since 2015 as a single Sentinel-2A satellite. Since 2017, it has been
complemented with the Sentinel-2B satellite, which decreased the revisit time from 10 to
5 days in most places [60]. Sentinel-2 carries multispectral instrument (MSI) sensing in
13 bands from near-VIS to SWIR regions, in geometrical resolutions of 10 m at 4 bands,
20 m at 6 bands, and 60 m at 3 bands; see Table 1 [61]. The radiometric resolution of
all bands is 12 bits, which enables the distinguishing of 4096 light intensity values. The
swath width of the sensor is 290 km. There are three processing levels of Sentinel-2 images,
two of which are available for download: Level-1C (L1C) provides top-of-atmosphere
reflectance. L2A possesses additional radiometric corrections and provides bottom-of-
atmosphere reflectance; however, it only covers Europe and has been available since 2018.
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Both levels are orthorectified [60]. There are minor differences in band placements within
the spectrum between Sentinel-2A and Sentinel-2B. Sentinel-2 images can be obtained from
various sources, the official is Copernicus Open Access Hub https://scihub.copernicus.eu/
(accessed on 2 December 2020). While they are downloaded as zip files, their native format
is a SAFE file, which has a formalized folder tree with single-image products [61]. Being
pan-European, freely available, and disposing of some higher resolutions in comparison
with the other free conventional satellites (such as Landsat 8) [62], Sentinel-2 has a good
data potential for enhancing OLU/OLC with classified LULC data. In this paper, multi-
temporal Sentinel-2 imagery was used as a key data source for the processing pipeline in
Section 3.2.1.

Table 1. Sentinel-2 multispectral instrument (MSI) band parameters.

Band
Band Name/Spectral

Region
Central Wavelength (nm) Geometric

Resolution (m)Sentinel-2A Sentinel-2B

1 Coastal aerosol (NVIS) 443.9 442.3 60
2 Blue (VIS) 496.6 492.1 10
3 Green (VIS) 560.0 559.0 10
4 Red (VIS) 664.5 665.0 10
5 Vegetation red edge (NIR) 703.9 703.8 20
6 Vegetation red edge (NIR) 740.2 739.1 20
7 Vegetation red edge (NIR) 782.5 779.7 20
8 NIR 835.1 833.0 10
8a Narrow NIR 864.8 864.0 20
9 Water vapor (SWIR) 945.0 943.2 60
10 Cirrus (SWIR) 1373.5 1376.9 60
11 SWIR 1613.7 2185.7 20
12 SWIR 2202.4 2185.7 20

3.2. Methods
3.2.1. Development of the Processing Pipeline for the Supplementation of OLU/OLC with
RS Data

Land use and land cover information in OLU/OLC in some parts are unavailable, too
coarse, or entirely missing. Earth observation data and the methods of spectral-oriented
image classification have been proved reliable sources of acquiring relevant land cover
and partly also land use information [63,64]. The backbone of the presented methodology
was inspired by Lubej [17,18]. Only the imagery classification was implemented based on
the underlying methodology. Lubej’s methodology [17,18] also comprised a collection of
Sentinel-2 imagery and cloudiness filtering; however, he utilized the paid Sentinel Hub
infrastructure. The following features were, therefore, newly developed in an open way:
the collection of Sentinel-2 imagery, cloudiness filtering, and semi-automatic updates of
OLU/OLC databases.

The designed processing pipeline utilized the eo-learn library [48,49] with custom
functionalities to extract LULC data from multi-temporal Sentinel-2 imagery. Machine
learning estimators (also referred to as classifiers) from the scikit-learn library [65,66] were
used. A number of design elements were adapted from the implementation methods
for land cover mapping of the library’s developers [17,18] and from the official eo-learn
documentation [48,49]. While the overall setup of the pipeline could greatly affect the
classification results, some image-processing tasks were predetermined (or omitted), con-
sidering this is a proof-of concept design. The Jupyter Hub platform on the server of
the OLU/OLC development team was used to write the code and visualize the analytic
results. The following subsections describe the eo-learn library first, followed by the design
principles of the processing pipeline.

https://scihub.copernicus.eu/
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3.2.2. Eo-Learn: Overview and Rationale of Choice

Eo-learn is an open-source library developed in the Python programming language. It
is an object-oriented environment almost exclusively targeted to process RS data. It exploits
the features of several other non-native Python libraries, especially NumPy, Matplotlib,
Pandas, and Geopandas. Some important functions are provided by the semi-commercial
Sentinel Hub package [67]. There are several properties of eo-lean that give a strong
rationale to utilize it for amending LULC information in OLU/OLC with RS data:

• Using eo-learn would comply with the open licensing requirements of OLU/OLC,
because OLU/OLC have been so far developed using open-source software to be
financially sustainable.

• It should be possible to manipulate and modify the code of the processing operations
to integrate it into OLU/OLC. Considering the previous point, most open-source
solutions, including eo-learn, support such an approach.

• eo-learn has been primarily developed for Sentinel-2 data; however, it can handle any
imagery if it is adequately pre-processed.

Eo-learn offers functional connectivity to the Sentinel Hub platform [68], providing
processed satellite imagery. This greatly simplifies its acquisition and usage. This feature is
subscription-based, which means several functionalities were recreated so that the pipeline
can be operated for free. The description of eo-learn core features is presented in the
Supplementary Material.

3.2.3. Manipulating with the Area of Interest

EOPatches (see the Supplementary Materials) possess data for rectangular bounding
boxes, so a bounding box of an area of interest (AOI) is either a single EOPatch or can
be split to smaller bounding boxes (EOPatches). The AOI is converted to a desired CRS
(WGS 84 UTM 33N was predetermined for the proof-of-concept presented in this paper)
and provides its shape (as a shapely polygon format [69]) and dimensions as inputs to the
Patcher class. Patcher uses the BBOxSplitter function from the Sentinel Hub library [68],
which splits the AOI bounding box according to its approximate dimensions. The function
automatically extracts only such bounding boxes that are contained or intersected by the
AOI’s geometry. Furthermore, Patcher allows one to choose a patch factor, a multiplier of
the default dimension-based split, thus enabling one to change the granularity of splitting
the AOI. Split bounding boxes are parsed to a GeoPandas GeoDataFrame [70] that contains
their geometries, IDs, and information for visualization purposes.

3.2.4. Training Data Pre-Processing

The training (or testing) data should best enter the pipeline in raster form, with LULC
information as the pixel value. If they are in a vector format, it is possible to use the
eo-learn’s VectorToRaster EOTask. The data should be in the WGS 84 UTM CRS, in which
Sentinel-2 imagery is projected. Because training data can have multiple forms, generalized
processing is not implemented.

3.2.5. Custom Acquisition of Sentinel-2 Imagery

Some functions to retrieve the data, such as the CustomS2AL2AWCSInput EOTask,
use the Sentinel Hub platform. The platform retrieves Sentinel-2 images from a pre-
processed mosaic of the Web Coverage Service (WCS) standard [71]. Such functions are
therefore capable of acquiring data in the form of arbitrary bands, restricted by the selected
bounding boxes and resampled to single resolution. The usage of Sentinel Hub platform is
subscription-based. A custom pipeline for acquiring and processing Sentinel-2 images was
therefore created by utilizing other Python libraries besides eo-learn.
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The S2L2AIMages class was created for retrieving Sentinel-2 imagery on the L2A
processing level. It accepts a GeoDataFrame of bounding boxes from the Patcher class
to abstract their total bounding box. It then utilizes the Sentinelsat library [72], which
creates a Python API, exploiting the Copernicus Open Access Hub [73]. The S2L2AImages
class wraps Sentinelsat’s functionalities to first show the available image metadata in a
Pandas DataFrame [74] and allows for the selection of a subset to be downloaded (by image
ingestion date). The selected Sentinel-2 images are then bulk-downloaded as zip files, and
a DataFrame of downloaded images is returned for further work.

3.2.6. Processing Sentinel-2 Imagery for EOPatches

The acquired imagery is multi-temporal in an inconvenient format (for EOPatches)
that is not resampled and not scaled to an AOI. All these issues can be resolved by using
the Sentinel Hub platform-based functions; nonetheless, a custom solution was developed.
The CustomInput class was created as a custom EOTask, which forms EOPatches, processes
Sentinel-2 L2A imagery, and stores it in the EOPatches. The inputs of this class are a path
to downloaded images and their DataFrame, produced by the S2L2AImages class. Using
the DataFrame, images are processed one by one for each EOPatch in the following way.

A Sentinel-2 L2A zip file is accessed with the open class-object from the GDAL
library [75]. Thanks to the GDAL’s virtual file system handlers [76], there is no need to
unzip the image, and the open class-object can read any file within an archive. Because
Sentinel-2 imagery is automatically detected, the Sentinel-2 metadata (XML) file [61] is
read by default, resulting in opening the image as a Sentinel-2 GDAL dataset [77]. Its
sub-datasets represent groups of bands according to their geometric resolution (10, 20, or
60 m). They are forwarded for opening by the Rasterio library [78] as in-memory files [79],
so that the intermediate processing results are stored temporarily and removed after the
processing chain is completed.

It was decided to process only 10 and 20 m bands (10 out of 13 bands); 20 m bands
are first resampled to the 10 m pixel size, using the custom upscale method. The nearest
neighbor interpolation was selected as a resampling algorithm because it does not create
new pixel values. All bands are then clipped by the bounding box of a respective EOPatch.
At the end, the bands are converted to a NumPy array and re-ordered by band number.

When all images are processed, they are stacked time-wise and band-wise to a four-
dimensional array with the NumPy shape of time × width × height × band (Figure 1).
This way, they are stored under the key BANDS as the DATA FeatureType to an EOPatch.
Their ingestion dates are stored in the same order to the TIMESTAMP FeatureType. The
band name and its in-array order number are added as (Python dictionary) key/value
pairs to the META_INFO FeatureType so a user can keep track of how bands are ordered
in the nested single-image arrays.

3.2.7. Cloud and No-Data Masking

To use as many images as possible from the downloaded time range, cloud masking
must be implemented. SCL (scene classification layer) is a ready-to-use raster in the
Sentinel-2 SAFE folder, and it was used as a preliminary cloud masking solution for the
processing pipeline.

The adopted AddMask class abstracts SCL from a zip archive similarly to the case of
bands. It resamples the bands to 10 m and clips them by a respective bounding box. SCL
is then reclassified to a Boolean array of true (clear) and false (cloudy) pixels in a similar
manner to that of the work of Baetens et al. [43]; however, the saturated or defective (pixels)
class was counted as valid. SCL also contains a class with no data, representing places
where the Sentinel-2 scene has not been captured [42]. Such pixels are also treated as false
data. Masks are stored in EOPatches under an arbitrary key as the MASK FeatureType, a
four-dimensional NumPy array. There is a single mask for each image (Figure 2 [80]), so
the band dimension is always of size one.
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Figure 2. Sample scene classification layer (SCL)-based mask applied on a Sentinel-2 image. Data
source: Sentinel-2 image from 14.3.2019.

An additional mechanism was implemented due to accuracy concerns of the Sen2Cor
SCL cloud-masking capabilities, as some misclassified clouds in largely cloud-covered
images might corrupt classification results. Because the initial download of the images is
restricted by the cloud coverage of the whole scene, no attention was paid to the validation
of individual EOPatches. The MaskValidation class, inspired by Lubej [17], assesses the
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SCL mask and returns a Boolean value that indicates whether the invalid (false) pixels
have exceeded a user defined threshold. Booleans are forwarded as decision values to the
native EOTask SimpleFilterTask, which individually removes undesired images from each
EOPatch. Because of this mechanism, the temporal distribution of images may now be
unbalanced among EOPatches.

3.2.8. Sentinel-2 Multi-Image Features

Adapting a method devised by Lubej [17], a new class was created for adding multi-
image features, such as ratio-images or normalized indices. The Index DataBase is a
comprehensive database of formulas for computing some of these multi-image features,
including those for Sentinel-2 [81].

The custom EOTask DerivateProduct accepts a user-defined multi-image feature name,
bands to be used for the computation and a string formula. It then utilizes key/value pairs
in the META_INFO FeatureType (see Section 3.2.6 ) to target the correct band-arrays within
an EOPatch.

3.2.9. Data Post-Processing and Sampling For The Classification Stage

Once bands and multi-image features are stored in EOPatches, they need to be pre-
pared for the classification, which is a strong domain of eo-learn. Scikit-learn estimators
contain the fit function, which trains the classification model. As a training material,
it requires feature vectors of time-independent and band-independent (two-dimensional)
pixels, where each such vector belongs to an information class the model should be fit
onto [66]. This is a way of continuous reduction of the spectral feature space on the imple-
mentation level. The data in EOPatches must first be reformatted before they are reduced in
dimensions. The following process, applying for each EOPatch individually, was derived
from the approach of Lubej [17,18].

Holding bands and multi-image features apart in EOPatches is ineffective at this point.
The native MergeFeatureTask (see also Figure 3) is thus utilized to concatenate all DATA
FeatureTypes timewise, along the band dimension. This creates a new four-dimensional
array with all potential training data.
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The native EOTask LinearInterpolation must then be introduced to interpolate the
merged-feature time frames within a selected period and by selected step in days. It first
burns respective SCL masks to all image features, converting false pixels to no-data values.
New feature time frames are then selected according to the step days, and the closest real
feature time frames are interpolated to these points in time. The TIMESTAMP FeatureType
of EOPatches is overwritten by new timestamps. This operation presents a great change of
the information value because the results are arrays with artificial (interpolated) spectral
values. It is nevertheless consistent for all image data in an EOPatch. For instance, if 5 step
days are chosen, the resulting temporal series behaves as if each Sentinel-2 5-day-revisit
was used (Figure 4).
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One reason for interpolation is a potential temporal imbalance of real feature time
frames among EOPatches, caused by the additional filtering mechanism (see Section 3.2.7).
More importantly, the interpolation is related to the further feature space reduction and
feeding such data to a Scikit-learn estimator (see Section 3.2.10). The native PointSam-
plingTask is used to sample a user-defined number of pixels from interpolated data. This
can be imagined as a pan-pixel feature space reduction – the result is a three-dimensional
array where each pixel “possesses” temporal stack of features (bands and multi-image
features combined).

Finally, the EstimatorParser class reduces the temporal and band dimensions from
sampled features and thus returns the required feature vector. It accepts EOPatch IDs to
choose only selected patches. All sampled features are merged into a single array, which is
then reshaped to a two-dimensional matrix. The rows are the pixels, and the columns are
the features stacked temporally. If the interpolation was not introduced, there would be a
possibility that for one class and the estimator would train from unequally arranged time
frames within several feature vectors. The temporal information would thus corrupt the
classification accuracy.

LULC data in the MASK_TIMELESS FeatureType are merged as well. Since they are
already a three dimensional array (there is no temporal information), they are reshaped to
match the sequence of feature vectors, constituting training class labels. Testing data are
obtained similarly, but it is nonetheless meaningful to choose different EOPatches.

3.2.10. Estimator Choice, Model Training, and Prediction

At this point, Sentinel-2 data are prepared for the scikit-learn estimators. It was
therefore decided not to implement any wrapper functionalities for interfaces of the scikit-
learn library, as they are considered self-contained and have the functionalities for the
classification accuracy assessment as well. Moreover, the estimators require different
settings for their parameters, which is another complex topic. An example estimator is
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used in Section 3.3. Some estimators cannot handle no-data values, which can be present
in EOPatches. This concerns two cases in particular:

1. If multi-image features are included in the classification process, depending on the
formula, division by zero can occur. eo-learn handles this problem by substituting a
no-data value for the erroneous result.

2. If some pixels are masked throughout the whole time series by the SCL mask, they
remain unknown and there is nothing to interpolate them from.

The processing pipeline does not solve the problem of no-data values yet; however,
the scikit-learn multivariate imputation of missing values [82] can be used to impute the
EstimatorParser results. However, to mitigate the decrease in classification quality, the
custom NanRemover EOTask was introduced to remove no-data values from sampled pix-
els of both Sentinel-2 imagery and training data. Once the model is trained, its prediction
needs to be adjusted to the format of data in EOPatches. The eo-learn’s PredictPatch repeats
a similar process of the EstimatorParser with all data in each EOPatch. The estimator’s
predict function is applied to respective feature vectors. These LULC predictions are then
reshaped back to a three-dimensional array and stored into EOPatch. Later, they can be ex-
ported as GeoTIFF (EOTask ExportToTiff). Accuracy assessment has not been implemented
to the pipeline, but it was manually conducted in the example usage experiment.

3.3. Pipeline Demonstration

An area of the South Moravian Region in the Czech Republic was selected to examine
the pipeline as a proof-of-concept feasibility demonstration. Open reference cadastral data,
besides CLC and UA, at a scale of 1:2000 were obtained from the Registry of Territorial
Identification, Addresses, and Real Estates. The cadastral data contain land use information
originally in ten classes; however, only eight of them were used. The classes designated
Other Surfaces and Hop Field were neither desirable nor applicable within the study area.

The input cadastral map was rasterized with the pixel value of a land-cover infor-
mation class number and the cell size of 10 m (corresponding to the Sentinel-2 geometric
resolution). Because some cadastral parcels were still not in a digital form (thus missing)
in the study area, they were handled as no-data in the resulting raster. The 56 Sentinel-2
images were scaled to nine EOPatches, the SCL-based mask was retrieved and scaled alike.
The processing operations, described in Sections 3.2.6–3.2.9, were then carried out on the
data. The cloud coverage threshold for additional image filtering was set as low as 10% to
avoid large areas with no-data values, once the mask is burnt to the merged features at the
interpolation. When following Figure 5, the interpolation period was set from 30 March to
16 October 2019, representing a 200-day span. The interpolation step was set to 10 days
(virtually two Sentinel- revisits), resulting in 21 interpolated time frames.

In total, 100,000 multi-temporal pixels (feature vectors) were randomly sampled from
EOPatches, which were divided in a 5:4 ratio of training patches to test patches. The
information class balance in cadaster was chosen as the criterion of selecting EOPatches for
the train/test split of the data. Because the number of cadaster information classes was
naturally consistent within all EOPatches, Shannon’s entropy (H) was computed for the
sampled data [83]. See Table 2, which is an index of diversity among (LULC classes in
a single EOPatch) ranging from zero to the logarithm (with any base) of the number of
assessed classes, for the results. It was computed as depicted in Equation (1)

H =
q

∑
q−1

∗pi ∗ log pi (1)

where q is number of information classes, i is a class, and p is a ratio of class frequency and
the sum of class values of pixels sampled within an EOPatch.
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In the conducted proof-of-concept, the range of values of H was from 0 to log(8),
as there were eight information classes in this experiment. From a high H value, it can be
assumed the classes were diverse and thus balanced in an EOPatch. The EOPatches for
training and testing were chosen alternately with decreasing H, starting with the choice for
training. At the end, there were 500,000 unique samples for both training and testing.

Table 2. Shannon’s entropy as an inter-class balance criterion for each EOPatch used to select
training and test sets from the sampled data. Note: H stands for Shannon’s entropy, which is a
dimensionless number.

EOPatch ID H H Rank Selected for

0 1.110 8 Testing
1 0.895 9 Training
2 1.281 7 Training
3 1.476 4 Testing
4 1.575 3 Training
5 1.424 5 Training
6 1.584 2 Testing
7 1.679 1 Training
8 1.287 6 Testing

The feature space of sampled features was then reduced to feature vectors and assigned
with the respective LULC information class number for both training and test sets.

The LightGBM estimator [47] was selected for the classification to become at least
partly available to compare the results with the example in the work of Lubej [17,18] and
eo-learn [48,49]. The LightGBM estimator is an effective algorithm based on the machine
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learning method of gradient boosting decision tree (GBDT) that should be used for larger
training datasets (which the cadaster data certainly were). Discussing and setting up
various parameters for the best classification results have been left for future research;
therefore, the same parameters as in [17,49] were used.

An analysis should have been made prior to setting the LightGBM estimator. However,
more than a hundred set up parameters were identified. The amount of required work
would have considerably exceeded the possibilities of this limited feasibility study. Setting
up all the required parameters accordingly remains a possibility in terms of future work.
The labelled feature vectors were trained and predicted, the prediction was tested on
the generated test data from the remaining patches, and the best result was chosen. The
confusion matrix, a commonly used classification accuracy assessment tool [84], was
obtained to review the results.

4. Results
4.1. Processing Pipeline, Experimental Outputs and Integration to OLU/OLC

The processing pipeline for LULC classification using Sentinel-2 imagery is divided
into two custom Python modules (see Supplementary Materials) and a Jupyter Notebook
with the implementation applied to the example usage experiment (also in the Supplemen-
tary Materials). Each file is described with explanatory comments, and the classes and their
methods contain docstrings to understand their meaning.

4.2. Experimental Outputs

The usage experiment showed a good OA of 85.9% and yielded a classified LULC
map of the study area in the southern part of the South Moravian Region (Appendix A).

The confusion matrix in Table 3 suggests that there were both very well and very
poorly predicted LULC classes (considering provider accuracy, i.e., the ratio between well
predicted pixels and testing pixels). The most accurately predicted were forests (91.5%),
arable land (87.9%), and water (87.2%). On the other hand, the classification performed
very poorly on permanent grasslands (45.2%), which are very diverse surfaces. They were
most often misclassified as arable land and forests. A similarly low accuracy was seen
in the prediction of gardens, which also appear in various forms. Built-up areas were
predicted fairly well (accuracy of 75%); they were most often misclassified as arable land,
having similar spectral behavior after harvest, and gardens, which are in close proximity.
Surprising results were achieved in predicting vineyards, with an accuracy of 67.5%, which
can be attributed to common spectral behavior of most vineyard samples. A more detailed
explanation on the classification process is provided in the discussion section.

Table 3. Confusion matrix of the LULC (land use/land cover) classification experiment in the southern part of the South
Moravian region. The achieved overall accuracy (OA) was 85.9%.

P Arable Land Vine-Yard Garden Orchard Permanent
Grassland Forest Water Built-Up

Areas
Sum of
Pixels

Arable land 312,481 4853 1522 725 1170 1865 1236 1705 325,557
Vineyard 10,235 15,518 162 306 110 286 102 95 26,814
Garden 5727 581 2387 328 217 298 22 1459 11,019
Orchard 5427 902 79 3485 500 268 27 48 10,736

Permanent grassland 7892 355 90 77 2436 1642 469 120 13,081
Forest 6824 409 206 66 671 60,947 967 226 70,316
Water 3084 39 139 483 177 1140 20,328 278 25,668

Built-up areas and roads 3644 319 562 40 111 189 165 11,779 16,809

Sum of pixels 355,314 22,976 5147 5510 5392 66,635 23,316 15,710 500,000
Omission error 12.1% 31.1% 42.7% 36.8% 54.8% 8.5% 12.8% 25.0%

Commission error 4.0% 42.1% 78.3% 67.5% 81.4% 13.3% 20.8% 29.9%
Provider accuracy 87.9% 67.5% 46.4% 63.2% 45.2% 91.5% 87.2% 75.0%
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In Figure 6, the prediction and the original cadaster training data can be compared.
The prediction favored built-up areas and forests and extended them slightly over the
surrounding classes. Some paths and roads were interrupted as the 10 m resolution was not
sufficient to facilitate identification of continuous pixels of linear features. The prediction
was also affected by a common salt-and-pepper effect, which is a data noise caused by
individual pixels being misclassified within a large body of a different class. This can be
resolved by various noise removal techniques [84]; however, this was not conducted in
this experiment in order to compare the raw data. Some places (shown in grey) in the
original cadastral data did not contain land cover information. Considering that Sentinel-
2 data cover the whole study area, such places were naturally predicted. It can thus be
concluded that even within the comprehensive Czech cadastral data, some new information
was supplied.
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A single-map comparison is provided in Figure 7, where the original cadaster data
and the LightGBM prediction were erased and the result was reclassified to a binary
raster of class change/no change. If substitution of original no-data with new values
is not considered, the most misclassified LULC class was that of permanent grasslands,
which corresponded to the overall results of the classification. Class mismatch was found
to increase in more fragmented places, especially in the built-up areas, which are often
spatially intertwined with poorly classified gardens.
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4.3. Integration of Pipeline to OLU/OLC

The integration of the processing pipeline and its results to OLU/OLC has to be put in
a context with the new OLU/OLC data models (not publicly available as of December 2020).
The model is designed to handle contributing data apart from the processed data to ensure
smooth update and to avoid compatibility issues. The results from the processing pipelines
are primarily in a raster format (GeoTiff in the usage experiment). It is suggested that once
that LULC dataset is predicted over an area, EOPatches could be utilized as the basis for
map tiles. Stored outside of the processed OLU/OLC map, they can still be updated by
repeated predictions. Nonetheless, the tiles have to be vectorized and forwarded to the
OLU/OLC compilation process (as an LULC layer). If classification post-processing is
thoroughly examined, the vectorized geometries can constitute OLU/OLC objects. The
integration of the developed proof-of-concept pipeline to OLU/OLC is being prepared as a
follow-up paper, with emphasis on data modelling aspects.

5. Discussion

Table 4 provides an overview on the results presented in this paper alongside compar-
ison with related work.
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Table 4. Summary of the discussion points to the main goals of the presented paper (1–4) with respect to related work.

Discussion Points To Defined Goals Related Work

(1) Collects Sentinel-2 Imagery
A collection of Sentinel-2 imagery is publicly available at Sentinel Hub (https://www.sentinel-hub.com/). This paper presents
an open and free-of-charge solution contrasting with the paid Sentinel Hub. Moreover, the presented research is modular. The
Sentinel-2 imagery collection module (see Supplementary Materials) can be deployed to any open Sentinel-2 based solution.
The following features needed to be newly developed or re-created:

(a) Semi-automatic satellite data download.
(b) Batch input of Sentinel-2 imagery and raw file handling.
(c) Image preprocessing: selection of desired bands and resampling to 20 m (or arbitrary) resolution.
(d) Cloud masking using SCL.
(e) Setting up a workflow for regular updates of a specific dataset.

The methodology of Lubej [17,18] avoided the functionality of the developed
module by direct connection to the (paid) Web Coverage Service (WCS) interface of the
Sentinel Hub.
Similar parts (from the paid Sentinel Hub) were also used by Lubej [17,18], especially
in the preparation of ground data (rasterization, sampling to patches, and selecting
train/test samples), imagery interpolation, and sampling.

(2) Filters Cloudiness through Multitemporal Vectors
In this case, too, a paid module named ‘Sen2Cloudless’ is provided as a functionality of the Sentinel Hub. The presented
approach offers a newly developed open and free-of-charge alternative.

In contrast to the work of Lubej [17,18], masking was newly developed with the
functionality equivalent to the subscription-based features of the Sentinel Hub
platform. The used cloudiness filtering originated from the Sen2Cor product [42].
A more advanced cloudiness filtering is available under the designation ‘Fmask’ [38].
Nevertheless, this filter has not been implemented in the Python language at the time
when this study was being prepared due to certain issues in ‘Fmask’ implementation.

(3) Examines the Possibility of the Pipeline to Perform LULC Classification over the Imagery
Throughout the study, the main emphasis was to populate the data gaps within the open land use/open land cover (OLU/OLC)
datasets. Such gaps appeared commonly, typically due to missing information in input data: cadastral maps, Urban Atlas (UA),
and Corinne Land Cover (CLC).
A feasibility study on classification performance over the imagery was conducted on an area larger than 7000 km2.
The presented OA (85.9%) arose as a consequence of the high percentage (71.1%) of arable land class in the conducted
experiment. It seems that the ‘learning effect’ favored the most represented class, arable land.
The lowest OA values were achieved in gardens (46.4%) and permanent grasslands (45.2%). Gardens were a priori expected to
become the class with the worst results due to its heterogeneity. Some pixels containing gardens were mainly misclassified as
arable land (in a half of the cases) and less commonly as built-up areas, vineyards, orchards, and forests. Permanent grasslands
were mainly misclassified as arable land (in about 60% of the cases). This result seemed to originate from the time span of the
satellite images series.
Verifications were performed on pseudo-continuous (vector) ‘ground truth’ data, represented by the cadastral maps at a scale of
1:2000, reclassified to spatial resolution equal to 10 m.
Accuracy assessment followed the methodology of ‘random stratified sampling design.’ Shannon’s entropy helped to expose
hidden errors that could be caused by favoring underrepresented classes. Using Shannon’s entropy was a novel approach in
comparison to the state-of-the-art.
In the future, the accuracy of heterogeneous classes, such as gardens and orchards, could be assessed using a cluster sampling
design to mitigate outsourcing their pixels to different classes. The grey level co-occurrence matrix (GLCM) should be used to
improve the classification matrix (see Section 5.1 for details).

Schultz et al. [86] populated an LULC dataset through another approach. They
attempted to fill in the gaps by remote sensing (RS) of classified land cover data from
OpenStreetMap tags. However, the achieved results do not seem convincing [86].
The related research takes discrete information from field measurements, which
usually comprise tens or hundreds of discrete points, into account [87]. Using a large
test sample could lead to an over-powered testing, as suggested by Foody [87].
The accuracy assessment methodology of ‘random stratified sampling design’ was
recommended in [88,89]. Foody [87] noted that using Shannon’s entropy exposes the
false negatives.

(4) Semi-Automatically Updates OLU/OLC Databases Accordingly
The presented approach was found to be feasible. The full potential of the developed pipeline appears when combining the
pipeline with the open data model of the OLU/OLC datasets (currently being prepared as a follow-up paper).
The discussion regarding this point is provided in Section 5.1 due to its complexity and extent.

The need for semi-automatic updates of LULC is emphasized in similar research,
as presented by Weigand et al. [27], with an OA of 80–93.1%, and Malinowski et al.
[90], with an OA of 89%. Both were considerably larger studies, thus proving that such
a workflow can have a large-scale LU/LC derivation potential.

https://www.sentinel-hub.com/
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Selected points are described in more detail in Sections 5.1 and 5.2 as an extension of
Table 4.

5.1. Processing Pipeline Prospects and Its Significance for OLU/OLC

The processing pipeline is an open proof-of-concept solution for refining OLU/OLC.
Its principle lies in processing Sentinel-2 imagery for spectral-based supervised classifi-
cation while the training data can be selected freely. The pipeline prepares the data for
scikit-learn machine learning estimators. Some design aspects were adapted from the
LULC mapping methodology of the eo-learn library’s developers [17,49], who performed
the land cover classification of Slovenia on the basis of the Slovenian Land Parcel Identifi-
cation System (LPIS) and achieved a good OA of 91.2%. The proposed processing pipeline
was inspired by their approach; nevertheless, it came up with custom solutions (see Table 4
for details).

The main contributing resources of OLU/OLC at the time of writing this paper were
CLC and UA. These datasets were guaranteed within the whole spatial extent of OLU/OLC,
i.e., in areas where finer LULC information is unavailable or it is entirely missing. The
processing pipeline laid grounds to relieve OLU/OLC from dependency on these datasets.
It particularly attempted to increase the spatial resolution, diminish the dataset creation
periodicity, and provide LULC information in regions where CLC and UA data are absent.

It is to be noted that the processing pipeline has not yet achieved the ability to classify
land use in the true sense of word. Land use information is often retrieved using image
classification techniques that accommodate contextual information, particularly object-
based methods [5,90]. These should be further examined with regard to the processing
pipeline, preferably in synergy with spectral information for the best performance [45].
Ma et al. [3] nonetheless concluded that object-based methods have been practiced over
small territories (with a mean area of only 300 ha), and their application over larger areas is
a subject for future research. Many studies dealing with land use information retrieval also
follow commercial, very fine resolution imagery that cannot be freely utilized in OLU/OLC.
It is clear that the pixel-wise approach along with the 10–20 m resolution of Sentinel-2
imagery, used in the pipeline, is too coarse for retrieving subtle semantic variations of land
uses (like the approach of Palma [8]). Adopting advanced techniques is a proposed future
improvement of the pipeline.

One of the biggest advantages of the pipeline is that it can naturally handle multi-
temporal imagery. Temporal information is a carrier structure for the feature vectors as
utilized in this paper. The validation of multi-temporal classification can also be problematic
as training or test data (ground truth data) remain static while the real earth-features can
change through time.

To preserve the 10 m geometric resolution of the final classification result, only 10 and
20 m Sentinel-2 bands were used in the pipeline. This corresponded with the approach
of Lubej [18], who achieved high overall classification accuracies even with fewer bands
used in the process. The decision to upscale 20 m bands to a 10 m resolution was made,
although it reduced spectral information reliability to some extent. Zheng et al. [4] similarly
used nearest neighbor interpolation to assess the effects of upscaling and downscaling
of Sentinel-2 data and proved that classification accuracies diminished when upscaling
10 and 20 m bands. Surprisingly, the straightforward nearest neighbor downscaling was
the most beneficial for LULC classification purposes. For future development of the
pipeline, downscaling should thus be exercised for better classification accuracies because
the geometric resolution of 20 × 20 m still outperforms the MMU of CLC in general and
the MMU of UA in rural areas.

Thanks to the Sentinelsat API [72], the pipeline has a continuous access to the Coper-
nicus Open Access Hub [73] and, thus, to the full time series of Sentinel imagery. Their
automated processing outsources several tasks, such as downloading and unzipping im-
ages, file format handling, image resampling, subsetting, and masking from the operator,
who can then devote more time to the classification process itself.
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The character of the pipeline allows for LULC prediction over a vast area of interest
while avoiding high computational demands thanks to the concept of EOPatches. This
is a key to the rapid extension of OLU/OLC LULC information to areas out of the extent
of CLC or UA. For mass LULC classification, it is critical for the pipeline to be able to
automatically mosaic and reproject imagery in the future. The incorporation of multi-
image features in the pipeline is still a basic solution, so not all such features can be
obtained (e.g., pan-sharpening or image principal component analysis). On the other
hand, even simple vegetation and other spectral indices have been reliably used for change
detection (i.e., [24]), which is another potential development direction for OLU/OLC,
emphasized especially by the umbrella organization Plan4All. In its current version, eo-
learn further contains EOTasks for grey level co-occurrence matrix (GLCM) computation
and the extraction of various textural variables, which could be further added among
training features in the pipeline. According to the review of Khatami, Mountrakis, and
Stehman [9] (2016), textural information has been the most effective accuracy-improving
feature for spectral-based classification (improving OA by 12.1% on average).

5.2. Conducted Experiment Discussion

The example usage experiment should have primarily demonstrated the usage of
the processing pipeline without primary attention paid to the classification parameters
setup. The LightGBM estimator, using the 200-day time series of Sentinel-2 images and
the LULC information from the Czech cadaster, offered an OA of 85.9%. Some LULC
classes, such as permanent grasslands and gardens, were nonetheless poorly classified.
A comparison should be made with the work of Lubej [17,18] and eo-learn [48,49], from
which the pipeline adapted some of its design aspects. In their eo-learn showcase example,
they classified land cover on the basis of the Slovenian LPIS. They had three more classes
(snow, tundra, and shrubland), but the classification was otherwise similar to that in the
experiment presented in this paper. With an equally set up estimator, they achieved a
much better OA (91.2%). They nonetheless had access to the pre-processed data of the
Sentinel Hub platform with machine learning-based cloud masking algorithm and had the
“developer knowledge” of the eo-learn library.

The proposed pipeline usage faced several challenges when being deployed to OLU/
OLC. Eight information classes are not sufficient to populate the fine HILUCS classification
accordingly. The number and identification of information classes stems from the used
underlying datasets, primarily the structure of the Czech cadaster. To use the pipeline in
other regions, the model will have to be re-trained on a more typical landscape of those
regions, and a custom training dataset will probably have to be used. As suggested by
Nguyen et al. [30], the extension of merged-feature time frames for cloud-filtering could
be required for tropical regions due to the complexity of biophysical environment (clouds
and haze). In terms of future research, it is nonetheless interesting to examine how LULC
predictions will behave if trained by other international, national, or regional datasets. This
can help assess the trade-off for putting less effort into training data collection.

6. Conclusions

The main result of the research described in this paper is an open proof-of-concept
machine learning-based processing pipeline for automatic Sentinel-2 imagery collection,
cloudiness filtering, LULC classifications, and updates of OLU/OLC. The pipeline was
developed in the Python environment, especially using the eo-learn library and some other
Python libraries. It can process multitemporal Sentinel-2 imagery to a form that can be
forwarded to various scikit-learn estimators.
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In comparison with the current OLU/OLC background datasets, its latest design,
as followed within the conducted experiment, provides more spatially precise results that
can be retrieved in near real time. That opens a possibility for OLU/OLC to amend its own
LULC data and reduce dependence on primarily assumed input datasets (e.g., CORINE
Land Cover, and Urban Atlas). Though experimentally tested with a fair result (OA of
85.9%), the classification results are not yet ideal, and more research needs to be done to
provide reliable land-use-like data with a higher accuracy and a number of information
classes. During the process, the software engineering tasks turned out to be a significant
means of understanding OLU/OLC as a system and choosing the design decisions for the
processing pipeline.

Despite the progress achieved in the conducted experiments, more work is needed to
amend intrinsic OLU/OLC LULC information, especially by improving the classification
process itself. Similarly, the possibilities of verifying LULC information in OLU/OLC must
be further investigated. Special attention should also be paid to clarifying the licensing
model of OLU/OLC and to analyzing the negative implications of fusing various LULC
and other, often semantically different, data.

Supplementary Materials: The following are available online at https://www.mdpi.com/2220-9
964/10/2/102/s1: Figure S1: A sample EOPatch object with some of its FeatureTypes (e.g., data
and mask) and the required value after the colon (i.e., Python dictionaries with multi-dimensional
NumPy arrays) [91,92]. Figure S2: A sample EOTask that calculates a multi-image feature, such
as normalized difference indices. Its components are explained in Python comments. Figure S3:
A sample EOWorkflow and EOExecutor as used to pipeline EOTasks. Components are explained
in Python comments. Figure S4: The aoi.py module source code. Figure S5: The pipeline.py
source code. Figure S6: Jupyter Notebook with the implementation applied to the example
usage experiment.
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Appendix A. Prediction of Land Use and Land Cover in Southern Part of Sout
Moravian Region, Czech Republic, 2019

Prediction with LightGBM estimator using multi-temporal Sentinel-2 imagery (from
30.3.2019 to 16.10. 2019 and training data of the Czech cadaster (from November 2019)-
Achieved overall accuracy 85.9 %.
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