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Abstract: Publication of trajectory data that contain rich information of vehicles in the dimensions of
time and space (location) enables online monitoring and supervision of vehicles in motion and offline
traffic analysis for various management tasks. However, it also provides security holes for privacy
breaches as exposing individual’s privacy information to public may results in attacks threatening
individual’s safety. Therefore, increased attention has been made recently on the privacy protection
of trajectory data publishing. However, existing methods, such as generalization via anonymization
and suppression via randomization, achieve protection by modifying the original trajectory to form a
publishable trajectory, which results in significant data distortion and hence a low data utility. In
this work, we propose a trajectory privacy-preserving method called dynamic anonymization with
bounded distortion. In our method, individual trajectories in the original trajectory set are mixed in
a localized manner to form synthetic trajectory data set with a bounded distortion for publishing,
which can protect the privacy of location information associated with individuals in the trajectory
data set and ensure a guaranteed utility of the published data both individually and collectively.
Through experiments conducted on real trajectory data of Guangzhou City Taxi statistics, we evaluate
the performance of our proposed method and compare it with the existing mainstream methods in
terms of privacy preservation against attacks and trajectory data utilization. The results show that
our proposed method achieves better performance on data utilization than the existing methods
using globally static anonymization, without trading off the data security against attacks.

Keywords: trajectory data; data publishing; privacy-preserving; bounded distortion; attack prevent-
ing

1. Introduction

The development of information technology and mobile Internet, as well as people’s
demand for convenient life, has spawned a large number of location-based service (LBS)
applications, enabling the majority of mobile client users to enjoy the high-quality position-
ing and recommendation services, while also producing a large number of trajectory data
of mobile objects including vehicles.

Trajectory data contain abundant information of mobile objects in the time and space
dimensions. When combining with relevant knowledge to these data for aggressive
inference and analysis, massive privacy information may easily be extracted, which even
poses a threat to personal safety [1].

Therefore, in order to prevent the leakage of trajectory privacy, trajectory privacy
preservation emerges as an important topic that has attracted increasing attention recently.
Trajectory privacy preservation technique is based on social relations and location infor-
mation. It uses the user’s mobile and scene relations to deal with the location association
relation in the trajectory, so as to form the trajectory information of the specific preserving
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target. Its main purpose is to both ensure high-quality services of trajectory data sharing
and protect individual’s trajectory privacy [2].

Recently, many kinds of trajectory privacy-preserving technologies have been pro-
posed. Most of the existing technologies need to create false location information, which can
protect trajectory privacy to a certain extent. However, the large number of false trajectories
results in the trajectory information distorted seriously, making guarantee of the quality
of service in data utility hard to achieve. It also makes statistical analysis on the modified
data biased and possible service delay due to loss of network traffic information [3]. In
order to overcome these problems, in this paper we propose a novel method of dynamic
anonymization based on bounded distortion trajectories mixing. This method does not
need to generate a large number of false locations and trajectories to achieve a static global
anonymity as in the existing methods. Rather, it performs dynamic anonymization based
on mixing real trajectory segments with least added noise hop-by-hop progressively in a
localized manner to form synthetic trajectories for publishing.

Our method of trajectory mixing is to set temporal and spatial windows and select
suitable real trajectories in each window to permute and generate synthetic trajectory
within a desired bound of orientation divergence. For example, for three trajectories A, B
and C in four windows A = A1—A2—A3—A4, B = B1—B2—B3—B4, and C = C1—C2—
C3—C4, our trajectory mixing produces three synthetic trajectories: A′ = B1—C2—C3—B4,
B′ = A1—A2—C3—A4, and C′ = B1—A2—A3—A4, where in each window, the orientation
divergence between each real trajectory and its synthetic is within a given bound θ. Because
each synthetic trajectory is composed of segments of real individual trajectories, it does
not correspond to any individual real trajectory, therefore all real trajectories are effectively
protected. At the same time, since each synthetic trajectory contains a sequence of segments
of real trajectories within a orientation divergence, the published data will have similar
statistical properties as the original and hence possess a good utility.

The main contributions of the paper are:
(1) We propose a novel dynamic anonymization method based on localized trajectory

mixing to address the problem of privacy-preserving trajectory data publishing.
(2) We propose a novel framework for trajectory representation that facilitates efficient

identification of intersections among trajectories, and an algorithm for computing trajectory
intersection and individual mixing.

(3) Our method improves the data utility while preserving data privacy over the
existing methods using the globally static anonymization technique.

(4) We conduct extensive experiments on real urban vehicle trajectory data to demon-
strate the effectiveness of our method for privacy-preserving trajectory data publishing, and
show that our proposed method achieves better data utility than the existing mainstream
methods, without trading off the data security against attacks.

This paper is organized as follows. Section 2 discusses related work. Section 3 defines
the basic concepts and attack model. Section 4 gives a comprehensive introduction to
the idea, framework, algorithm and applications of our proposed method. Section 5
proposes an evaluation model of trajectory privacy methods, including the evaluation
index of privacy protection and data utility. Section 6 presents experimental results based
on the evaluation model, and comparison of our proposed methods with other protection
methods. Section 7 concludes the paper with comments and future work.

2. Related Work

Many existing techniques are based on independent and identically distributed (i.i.d.)
position sampling, sampling positions from random walks on grids, road networks or
between points of interest, but the specific algorithms and operations are different.

Shokri et al. [4,5] proposed a uniform independent identical distribution method,
which generates each false location independently from the uniform probability distribu-
tion and makes it have an identical distribution. Therefore, the false trajectory is a series of
unrelated false positions.
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The methods proposed by Chow et al. and Krumm et al. [6,7] can be summarized as
follows: giving the probability distribution p of crowd movement, randomly walk on a
series of positions with the probability distribution p, and finally generate a false trajectory
with the selected positions.

Kato et al. [8] proposed a method to predict the random walk on the user‘s mobile
trajectory, and then to predict the probability distribution p(u) of the user’s subsequent
mobile trajectory. The probability distribution p(u) was used to walk randomly on a series
of positions. Finally, a false trajectory was generated from the selected positions.

The algorithms of these methods using a lot of false trajectories to cover up the real
trajectory are similar, and the problems are also similar. The data fabricated by probability
can easily be inferred to be invalid, and will cause the user’s data to be totally useless in
statistics.

Pingley et al. [9] presented a query-perturbation-based scheme that protects query
privacy in continuous LBS even when user-identities are revealed, and Wang et al. [10]
introduced a location privacy problem: Location-aware Location Privacy Protection (L2P2)
problem to find the smallest cloaking area, these methods are too simple on privacy
preservation. The main reason is that they use the trajectory of another user as the cover of
data or even the trajectory of a non-user. This way of changing the trajectory attribution is
very easy to be cracked by attackers and exposes the information of “innocent” persons
directly. Although the methods are simple and effective in terms of reducing consumption
and loss, they also have some shortcomings.

Most existing privacy-preserving trajectory data publishing technologies use gener-
alization or disruption methods to deal with the published trajectory to conform to the
k-anonymity model.

Machanavajjhala et al. [11,12] proposed an enhanced k-anonymity model, l-diversity
model. The l-diversity principle requires that each k-anonymity group in a data table
contain at least l different sensitive attribute values. The attacker infers that the probability
of a recorded privacy message would be less than 1/l.

Abul et al. [13,14] proposed (k, δ)-anonymity model based on the uncertainty of
moving trajectory data. On the basis of the model, the problem of trajectory anonymity
was treated by clustering. However, by analyzing the protection degree of (k, δ)-anonymity
model, the model can only realize the k-anonymity of the trajectory just under the condition
of δ = 0.

Shin et al. [15,16] proposed an algorithm which divides a trajectory into a set of
segments to ensure privacy. In these algorithm, the trajectory data are divided into several
sections, which are anonymized to protect privacy of the trajectory and ensure the data
utility above the desired level of quality of service.

The following are several more complex, mature and effective privacy-preserving
methods, and all have their own advantages and disadvantages.

Darakhshan et al. [17] introduced the DP-WHERE method, which calls the Detailed
Records (CDRs) database to generate different private composite databases, whose distri-
bution is close to the real CDRs. However, CDRs are not equivalent to a complete location
trajectory, because the location is known only when invoked.

Gursoy et al. [18] proposed a differentially private and utility preserving publication
method for trajectory data. The method presents DP-Star, a methodical framework for
publishing trajectory data with differential privacy guarantee as well as high utility preser-
vation. From comparisons, the DP-Star significantly outperforms existing approaches in
terms of trajectory utility and accuracy.

Zhao et al. [19,20] proposed a trajectory privacy-preserving method based on clus-
tering using differential privacy. In these method, radius-constrained Laplacian noise is
added to the trajectory location data in the cluster to avoid too much noise affecting the
clustering effect, and they considered that the attacker can associate the user trajectory
with other information to form secret reasoning attack, and proposed a secret reasoning
attack model.
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Proserpio et al. [21] introduced the wPINQ method, which achieves different privacy
by calibrating the weights of some data records. They further proposed a method which
generates synthetic data sets using Markov chain-Monte Carlo method, focusing on the
graph of noise measurement given the number of triangles.

Bindschaedler et al. [3] proposed a metric for simultaneously capturing geographic
and semantic features of real location trajectory. Based on these statistical metrics, a
privacy-preserving generation model is designed to synthesize location trajectories. These
trajectories may be the trajectories of some mobile individuals whose lifestyles are consis-
tent and meaningful.

In recent years, many new trajectory privacy-preserving methods have been proposed.
Dai et al. [22] proposed a trajectory privacy-preserving method based on region

partitioning, which mainly confuses attackers by sending pseudo-query points, and hides
multiple query points in the same sub-region by using the region partitioning method
covering the real trajectory of users, so that attackers can not reconstruct the real trajectory
of users, thus protecting the privacy of users.

Sun et al. [23] proposed a privacy-preserving algorithm based on multi-characteristics
of trajectory. The algorithm takes into account the uncertainty of trajectory data, and
integrates the differences of direction, speed, time and space as the basis of trajectories in
the same cluster set in the process of trajectory clustering and the utility of trajectory data
after protection.

Zhang et al. [24] proposed a trajectory privacy-preserving method based on multi-
anonymity. This method deploys n anonymity devices between users and location service
providers. Each query is given a pseudonym. Combining with Shamir gate scheme, the
user’s query content is divided into n parts. The n parts of information are randomly dis-
tributed to n anonymity devices, and then sent to the provider after anonymity processing.

Zhu et al. [25] established a LBS trajectory privacy-preserving model for anonymous
groups based on differential privacy. The model uses the idea of noise anonymous group
to overcome the disadvantage of over-reliance on privacy budget of existing algorithms. At
the same time, it ensures the quality of service of users through the idea of user trajectory
partition and location.

Li et al. [26,27] proposed a privacy-preserving publishing method for trajectory data
based on data partitioning. With the passage of time, the algorithm can effectively process
the trajectories in each data partition without recalculating the published trajectories, thus
effectively reducing the computational cost. It has efficient trajectory scanning, clustering
and privacy-preserving functions.

From the perspective of technology implementation, the above trajectory privacy-
preserving technology can be summarized into three kinds: trajectory anonymity-based
technology, falsed trajectory-based technology and differential privacy-based technology.
The main advantages, disadvantages and representative technologies of the three typical
kinds are shown in Table 1.

Table 1. Three kinds of trajectory privacy-preserving technology

Types Advantages Disadvantages Representative Technologies

Trajectory anonymity-based Computation cost is
medium, Implementation

is simple

Resolution of trajectory
data is distorted, Can
be attacked by data

feature inference

[24,27]

ine Falsed trajectory-based Computation cost is
small, Location information

is accurate

Utility of trajectory
data is reduced,

Application depends
on location model

[4,8]

ine Differential privacy-based Comlete privacy
protection, High

service availability

Computation cost is
high, Optimization

methods need to
be designed for

applications

[18,19]
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It should be noted that in the above methods, as the accumulation of false trajectories,
trajectory offset, random location distribution added to the trajectory data, the difference of
the trajectory data from its original grows continuously, making it hard for these methods
to have a bounded data utility that is required by many real applications.

3. The Attack Model
3.1. Notations

We define the basic terminologies used in this paper below, and the mathematical
symbols in Table 2.

Table 2. Important notations in this work.

Notations Description

tr trajectory
(x, y) two spatial dimensions

pk position of tr at time tk
Dist(tr1[tk], tr2[tk]) distance between tr1and tr2 at the time tk

δ threshold of trajectories similarity
ID Identify of tr

[tstart, tend] time interval of trajectory
tr[tstart, tend] trajectory segment in [tstart, tend]

D(tr) trajectory database
Ds(tr) the sampling database of D(tr)
Dp(tr) the protected database of D(tr) for publishing

h a function transform Ds(tr) to Dp(tr)
f individual identity transformation function
g location information transformation function

Definition 1. Trajectory (tr). A trajectory is a path in the three-dimensional space (two spatial
dimensions and one temporal dimension), represented by tr = {p1, p2, . . . , pm}. A point (position)
of tr pk = (xk, yk, tk) , where xk, yk are longitude and latitude, tk is time, t1 < t2 < · · · < tm, and
m is the number of sampling points.

A trajectory is identified by a unique number called Identify (ID).
We use D(tr) to denote the database of trajectories: D(tr) = {(QI, tri)}, |D| = n,

1 ≤ i ≤ n. n is the number the trajectory individuals, Ds(tr) ⊆ D(tr) is the trajectory
sampling database, and Dp(tr) is the protected D(tr) for publishing.

3.2. Two-Level Transformation

Let h : Ds(tr) → Dp(tr) be a function that transforms the trajectory database Ds(tr)
to the trajectory publishing database Dp(tr) to achieve privacy-preserving trajectory pub-
lishing.

h can be decomposed into two levels of of transformation: individual identity trans-
formation f and location information transformation g, and h = f · g.

For protecting the individual identity, we transform the identity information of the
trajectory individuals, f : u → v, f is the mapping function between individual u and v,
which is not published. After individual identity protection, the 4-tuples of each trajectory
point are transformed from (u, x, y, t) to (v, x, y, t).

For protecting the spatial and temporal information, (x, y) is transformed to (x
′
, y
′
)

using g : (x, y)→ (x
′
, y
′
).

The distance between trajectories is measured by Euclidean distance. Euclidean
distance between two trajectories tr1 and tr2 at time t ([28,29]) is:

Dist(tr1[tk], tr2[tk]) =
√
(tr1[tk].x− tr2[tk].x)2 + (tr1[tk].y− tr2[tk].y)2) (1)
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In the time range of [tstart, tend], the distance of tr1and tr2 is:

Dist(tr1, tr2) =
tend

∑
t=tstart

Dist(tr1[t], tr2[t]) (2)

Definition 2. Intersecting of m trajectories. Within the time range [tstart, tend], m trajectories tr1
to trm are intersecting if the distance between the m at any time tk in [tstart, tend] is less than δ, i.e.,
Dist(tr1[tk], trm[tk]) ≤ δ, where δ is the threshold of the Intersection of m Trajectories.

3.3. Attack Model

According to the application scenario of trajectory data publishing, we analyze the
attack model in trajectory data publishing.

By analyzing the Dp(tr), the attacker can restore or partially restore the trajectory
database Ds(tr), this attack is called trajectory privacy attack. Trajectory privacy attack
function h

′
= h−1 : Dp(tr)→ Ds(tr), which is the inverse process of trajectory protection.

The goal is to restore (v, x
′
, y
′
, t) to (u, x, y, t), where u is the true ID of tr, v is the falsified

ID of tr.
Accordingly, the trajectory privacy attacks can be divided into two levels, location

information inference and individual identity inference, h
′
= g

′ · f
′
.

g
′

: (x
′
, y
′
)→ (x, y). With the help of road network information, background informa-

tion or other noise reduction methods, the attacker can infer the location information by
g
′
.

f
′

: (x, y, t)→ u. On the basis of (v, x, y, t), the attacker can infer u from the informa-
tion contained in (x, y, t), and establish the the association between the individual identity
u and v.

There are different ways of implementing location inference function g
′

in different
protection algorithms.

The implementation of individual identity inference function f
′

follows the general
framework of inferring first the individual’s address, and then the individual’s identity
through the address combining the background information, so as to establish the relation-
ship between the individual’s identity and the individual’s trajectory.

Trajectory Inference (TrajInfer) is to determine the relationship between individual
trajectory (QI, tr) and individual ID, where tr = {p1, p2, . . . , pm}. If trajectory inference is
successful, trajectory privacy will be breached.

Position inference attack is to infer individual sensitive position information (such as
home) based on trajectory data.

Attackers may find a user’s trajectory information in the following ways [3,30,31] :
(1) Popular positions
The attacker tries to identify the most popular positions by computing the positions

that have been visited most frequently between the home and work place. This attack
performs the following ranking function:

Top(Count((x, y)))

where Count(·) calculates the number of position (x, y) in all trajectories.
(2) The mega clusters
The attacker tries to identify the two largest clusters containing data points of the

trajectory tr. This attack performs the following function:

Top(Clustering((x, y, t)|(x, y, t) ∈ tr))

Clearly, taking the data analysis and mining scenario for users’ living habits as an
example, we usually assumed that most of the user’s location points will be distributed at
home and in the workplace, as home and workplace are the most popular positions for all
the users, they are returned as centres of the top 2 largest clusters.
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(3) Popular positions within a time interval
The attacker tries to identify the popular positions that most users visited during a

particular time interval (tstart, tend). This attacker performs the following calculation:

Top(Clustering((x, y, t)|tstart ≤ tk ≤ tend))

4. The Proposed Algorithm

To achieve the two-level transformation with location information tansformation
and individual identity transformation for privacy protection, we propose the algorithm
Trajectory Privacy Preservation by Dynamic Anonymization with Bounded Distortion
(TPP-DABD) below.

4.1. Algorithm Outline

Our TPP-DABD algorithm contains the following four key steps:

1. Compute a time window and partition the region for anonymization.
2. Form trajectory pairs (denoted by P) with intersecting angle no greater than θ.
3. Introduce fewest dummy segments to pair the remaining trajectory segments within

orientation divergence degree θ, resulting P̃ pairs.
4. Swap segments in each pair of P ∪ P̃.

The algorithm can execute both online and offline as needed. For online execution, it
repeats the above four steps as all trajectories progress, where the time window in each
execution is computed dynamically according to the application needs and orientation of
the trajectories. For offline execution, because the complete information of all trajectories
are known, it will have all time windows computed in Step 1 and then do Steps 2~3 for
each time window.

For Steps 2 and 3, for the purpose of algorithm efficiency, we use a greedy approach to
compute a satisfactory number rather than an optimum number which is computationally
too expensive to achieve.

4.2. Algorithm Description

To implement the above algorithm outline, our main idea is to segment the trajectory
into windows and make the mixing of QI within a bounded distortion firstly based on the
trajectory segments inside each window and then by introducing least dummy segments,
so as to prevent the attacker from identifying the individual tracks..

The four steps of our algorithm are implemented by taking into account of the inter-
section patterns of trajectory segments as follows:

• Step 1: Compute a time window [tstart, tend) and partition the region for anonymiza-
tion. In order to determine the intersection quickly, we apply the method of gridding
to approximately partition the region (network of trajectories) as follows. The princi-
ple of this step is to divide the whole region into two sets of grids, grid1 and grid2,
where each set contains d× d squares, grid1 and grid2 are overlapped, the center of
grid1 is a vertex of grid2. The distance between two points falling into the same grid is
approximately considered to be d. Through this step, we grid the region, then we can
use a simplifing way to judge whether the trajectory segments intersect by calculating
whether their trajectory points are in the same grid.

• Step 2: Form trajectory pairs (denoted by P) with intersecting angle no greater than θ.
In order to improve the utility of each trajectory data after the swapping, we firstly
identify a maximum number of trajectory segment pairs whose intersecting angles
are below the threshold θ, and then place the two segments in each pair respectively
into Le f tP and RightP. As shown in Figure 1, the principle of this step is to find the
intersecting and divergent trajectory segments within the time window, and constrain
the divergence degree of each pair of trajectory segments to a certain threshold θ.
In this case, if the divergence degree between tra and trb is greater than θ, the entry
(tra, trb) in the exchange matrix is set to infinity, so that the probability of exchange
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between tra and trb is 0. Through this step, we can prevent the direction of a trajectory
from large angle divergence, so as to improve the utility of trajectory data after mixing.

• Step 3: Introduce fewest dummy segments to pair the remaining trajectory segments
within orientation divergence degree θ. For all the left alone (unpaired) segments, we
apply k-means clustering to find the smallest k centroids that place all the segments
into clusters of radius θ, and result P̃ pairs. The main purpose of this step is to make a
pair of the remaining trajectory segments. The principle of this step is to introduce
virtual segments, which are combined with residual trajectory segments to form a pair
of trajectories with directional divergence (intersecting angle) within θ. As shown in
Figure 2, in order to construct the virtual segment, the intersection point of the virtual
segment and the trajectory segment should be determined first, and then the input
and output point of the virtual segment should be constructed with the intersection
as the center. In order to reduce the number of virtual segments as much as possible,
adjacent virtual segments can be merged into one segment by smooth connection.

• Step 4: Swap each pair of segments in P ∪ P̃. We take the intersection as the boundary
according to a given probability to replace the front and back QI, and realize the
trajectory segment swapping. The replacement also needs to consider the difference
and balance. The trajectory segments are exchanged randomly according to a certain
probability, which is realized through the exchange matrix. The principle of this
step is to replace the ID of the trajectory segment after the trajectory intersection
point according to a certain probability. Through this step, the exchange of trajectory
identifier can be completed.

The detailed algorithm including the four steps is described in Algorithm 1.

Algorithm 1: Trajectory privacy preservation by dynamic anonymization with
bounded distortion
1 Input: D(tr) : [(u, x, y, t)]
2 Output: return the D

′
(tr) : [(v, x

′
, y
′
, t
′
)]

3 //establish randomization time window [tstart, tend), the width of time window
is a random number from random().

4 for (t = tmin; t < tmax; t+ = random()) {
5 tstart = t; tend = min(t + random(), tmax) ;
6 //to form trajectory segments pairs(P) with orientation divergence degree not

greater than θ.
7 P=Algorithm-2(D(tr),tstart,tend) ;
8 //introduce fewest dummy segments to pair the remaining segments within

orientation divergence degree θ.
9 P̃=Algorithm-3(D(tr),tstart,tend, P);

10 //swap each pair of segments in P ∪ P̃
11 D

′
(tr)=Algorithm-4(D(tr),P,P̃) ;

12 }

Step 2 is implemented by Algorithm 2 (paring trajectory segments), which returns the
trajectory segments pairs (P) with orientation divergence degree not greater than θ.

In Algorithm 2, the process of searching for intersecting trajectory segments with the
orientation divergence degree not greater than θ and putting them into pair which will be
exchanged by Algorithm 4, is shown in Figure 1.
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Algorithm 2: Pairing trajectory segments

1 Input: D(tr) : [(u, x, y, t)], tstart, tend
2 Output: return the pair(P) with orientation divergence degree not greater than θ
3 initialize grid1, grid2
4 //Scan each trajectory point p
5 for each point p(x, y, t) in D(tr)
6 if (t >= tstart && t < tend){
7 tstart = t; tend = min(t + random(), tmax) ;
8 //establish randomization time window [tstart, tend), the width of time

window is random number random()
9 for (t = tmin; t < tmax; t+ = random()) {

10 for each p in grid1
11 find its pairing point p′ in grid1, where p,p′ belong to the same segment and

their intersecting angle is less than θ
12 if no such p′ can be found
13 move p out of g1 and map it to grid2 based on (p.x,p.y).
14 add dummy points to grid2 to pair every p in grid2.
15 }
16 //Pair trajectory points with necessary dummies such that their orientation

divergence degree is not greater than θ.
17 }

θ θ

tr_a tr_b tr_a tr_b

Figure 1. The process of exchanging intersecting trajectories.

As shown in Figure 1, the pairs of two intersecting trajectories are formed as follows:
(1) Select the time window [tstart, tend), and initialize the grid of grid1 and grid2.
(2) In grid1 and grid2, the intersecting trajectory segments are calculated, and the

angle between the intersecting trajectories is calculated at the same time.
(3) Through calculation, the trajectory segments whose intersecting angle does not

exceed θ are found and form pairs, and the divergence degree of each pair of trajectory
segments is limited within a certain threshold θ.

(4) In this case, if the divergence degree between tra and trb is greater than θ, the value
of the exchange matrix (tra, trb) is set to infinity, so that the probability of exchange between
tra and trb is 0.
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Step 3 is implemented by Algorithm 3: pairing the remaining trajectory segments (P̃),
which introduces fewest dummy segments to pair the remaining trajectory segments pairs
(P̃) with orientation divergence degree not greater than θ.

Algorithm 3: Pairing the remaining trajectory segments (P̃)

1 Input: D(tr) : [(u, x, y, t)], tstart, tend, pair(P)
2 Output: return the pair(P̃) with orientation divergence degree not greater than θ
3 for each segment in D(tr)-P {
4 compute the intersecting point for the dummy segment using the k-means

algorithm
5 set the random input and output points of the dummy segment while ensuring

the intersecting angle is not greater than θ.
6 }
7 //using Greedy algorithm to construct the dummy segment.
8 for each segment A in D(tr)-P
9 if segment A is not in pair {

10 construct the dummy segment by linking the input, intersecting and output
points

11 search for the remaining segment B which can intersect the dummy segment
with an angle no greater than θ.

12 if there exit such segment B, make B and the dummy segment a pair, and
delete the existing dummy segment of segment B.

13 otherwise, extend the dummy segment to the input point of dummy segment
of B.

14 }
15 put all the dummy segments into D(tr).
16 return D(tr);
17 }

Algorithm 3 solves the problem of the remaining trajectory segments.
After the process of Algorithm 2, the remaining trajectory segments are divided into

the following two types, one contains the intersecting segments (the orientation divergence
is greater than θ), the other contains the non-intersecting segments. Both types can be
processed by introducing dummy segments, so that the divergence of dummy segment
and remaining segment is within θ.

These pairs will be exchanged by Algorithm 4, as shown in the Figure 2.
As shown in Figure 2, the process of constructing a virtual trajectory segment to form

a trajectory segment with directional divergence no greater than θ is as follows:
(1) According to the remaining trajectory segments, the intersection point between

each remaining trajectory segment and the virtual trajectory segment, the input and output
point of the virtual segment are constructed.

(2) In grid1 and grid2, the intersecting trajectory segments are calculated, and the
divergence of the intersecting trajectories is calculated at the same time.

(3) Through calculation, the trajectory segments whose divergence does not exceed θ
are found and form pairs, and the divergence degree of each pair of trajectory segments is
limited within a certain threshold θ.

(4) In this case, if the divergence degree between tra and trb is greater than θ, the value
of the exchange matrix (tra, trb) is set to infinity, so that the probability of exchange between
tra and trb is 0.

In the construction of virtual segment, the intersection of dummy segment and true
segment should be determined first, and then the input point and output point of dummy
segment should be constructed with the intersection as the center. In order to reduce
the number of dummy segments as much as possible, adjacent dummy segments can be
combined into one segment through smooth connection, as shown in Figure 3.
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>θ

<θ

<θ

<θ

<θ

（a）The segment intersecting

（b）The segment not intersecting

Figure 2. The process to pair the remaining trajectory segments.

input point

Intersection 
point

output point

input point

Intersection 
point

output point

Figure 3. The adjacent dummy segments combined into one segment.

Step 4 is implemented by Algorithm 4: swapping each pair of segments in P ∪ P̃.
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Algorithm 4: Swapping each pair of segments in P ∪ P̃

1 Input: D(tr) : [(u, x, y, t)], P, P̃
2 Output: return the D

′
(tr) : [(v, x

′
, y
′
, t
′
)]

3 //exchange the QI after the intersection according to a certain probability
4 //the probability is determined by the exchange matrix M.
5 for each (tra, trb) {
6 select v randomly and exchange v to v

′

7 with the probability at the entry (tra, trb) in M, complete the following:
8 for each point in tra and each point in trb {
9 exchange the IDs between them

10 }
11 update M for next exchange.
12 }

5. Metrics for Performance Evaluation

At present, in the research and practice of trajectory privacy-preserving data publish-
ing technology for trajectory data statistical analysis application scenarios, there are two
kinds of metrics are usually used to evaluate the performance of algorithms: plausible
deniability and statistical dissimilarity.

The metric of plausible deniability is used to evaluate the degree of trajectory privacy
preservation. In this paper, plausible deniability refers to the degree to which an attacker
can infer at least one synthesis trajectory with the same credibility as the original real
trajectory when he infers the trajectory after mixing.

The metric of statistical dissimilarity is used to evaluate the utility of trajectory data. In
this paper, statistical dissimilarity refers to the statistical difference between the trajectory
data set generated by the trajectory privacy-preserving method and the original trajectory
data set.

The metrics used in this paper shown in Table 3.

Table 3. Metrics used in this paper.

Metrics Meaning

IER Inference Error Rate
E(IER) Mathemaatical Expectation of IER
SFRR Statistical Feature Retention Rate
ERoTI Error Rate of Trajectory Inference

E(ERoTI) Mathemaatical Expectation of ERoTI

5.1. Degree of Privacy Preservation

In this paper, the Inference Error Rate (IER) is used as a metric to evaluate the degree
of trajectory privacy preservation. The IER refers to the ratio of the number of wrong
trajectory inferences to the total number of inferences, which can be expressed as follows:

IER =
The Number o f Errors in Trajectory In f erence

The Number o f Trajectory In f erence
(3)

The closer the IER is to 1, the better the trajectory privacy is protected.
According to the algorithm of TPP-DABD, the mathematical expectation of the IER

depends on the number of exchanges (n) on the synthesized trajectory. Given k trajectories
in the mixing group:

E(IER) = 1− 1
kn (4)
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As shown in Figure 4, when the number of trajectory exchanges is 0, the original
trajectory corresponds to the QI one by one. If the attacker can find the ID of the individual
corresponding to the QI through the trajectory inference attack, the original trajectory
information of the individual can be correctly identified, that is E(IER) = 0.

tr1

tr2

tr1

tr3

tr2

tr1

tr3

tr4

trm

① The original trajectory

④ m trajectories after n times exchanges

tr2

tr1 (d) k trajectories  exchanging

tr3

② 3 trajectories after the first exchange

③ 3 trajectories after the second exchange

tr5

Figure 4. m trajectories after n times exchanges.

When the number of trajectory exchanges is 1, two trajectories are involved in the
mixing on one intersection node. If the attacker can identify the ID through the trajectory
inference attack, there is still 1

2 probability that the original trajectory information of the
individual can be correctly identified, that is E(IER) = 1− 1

2 = 1
2 .

When the number of trajectory exchanges is n, there are k trajectories on n nodes
involved in the mixing. If the attacker can find out the ID through the trajectory inference
attack, there is still a 1

kn probability that the original trajectory information of the individual
can be correctly identified, that is E(IER) = 1− 1

kn .
When the user’s trajectory data is processed by the method of TPP-DABD, the mixed

trajectory can no longer completely correspond to the trajectory information of each user
in the original trajectory data.

However, the new trajectory data set based on TPP-DABD is consistent with the
original trajectory data set in the location information distribution, and also conforms to
the actual distribution of the location information of various users in the road network,
which makes the trajectory data set formed after the synthesis still usable. Moreover, with
the increase of the number of individual mixing at any time period, difficulty also increases
for attackers to restore the synthesized trajectory to the original trajectory.

The mathematical expectations of IER with different n are listed in Table 4. When
n >= 7, the expected IER will be more than 99%, which means a high degree of privacy
preservation.
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Table 4. The mathematical expectation of the IER.

ine n E(IER)

ine 0 0.00
1 50.00%
2 75.00%
3 87.50%
4 93.75%
5 96.88%
6 98.44%
7 99.22%
8 99.61%
9 99.80%

10 99.90%
ine

5.2. Utility of Trajectory Data

In some application scenarios, the evaluation method of data utility compares the
difference between published data and original data. In this method, data utility and data
privacy preservation are a pair of contradictions. A high utility of data in trajectory privacy
preservation will limit the protection of trajectory privacy to a low level, especially in the
long-term trajectory privacy-preserving data publishing.

In many application scenarios, the utility of trajectory data depends more on the
statistical characteristics of real trajectory. The original statistical features can be retained
after the trajectory data are protected. Unlike the method evaluating the difference between
original and published data, a high retention of statistical features does not necessarily
mean a low level of privacy protection, therefore it is a more reliable metric for data utility.

In this paper, we measure data utility based on statistical analysis, aiming to apply the
data in scenarios like interest point extraction, location semantic annotation, map inference,
business location finding, etc.

We use the Statistical Feature Retention Rate (SFRR) to evaluate the utility of trajectory
data. The SFRR is defined as follows:

SFRR =
FoST ∩ FoOT

FoOT
(5)

in which FoST are features of the synthetic trajectory, FoOT are features of the original
trajectory. The range of SFRR is [0, 1]. The closer it approaches 1, the higher the utility of
trajectory data is.

Specifically, the following statistical metrics can be used [3,31] :
(1) The distribution of visits or the number of visitors per location.
(2) Distribution of visitors in the top 10 interest locations.
(3) The top n interest positions in the region.
(4) The user’s time allocation.
In the utility evaluation, the same metric can be computed on the synthetic and

original trajectory data respectively, and compared to analyze the retention of statistical
features.

After the trajectory data are processed by the TPP-DABD algorithm, the coordinates
and time of each position in the trajectory data set are not changed. Therefore, in terms of
the statistical analysis on visiting distribution and user’s time allocation, the features of
synthetic and original trajectory are consistent, which means the SFRR is 1.

In Section 6, we will analyze and prove the above evaluation through experiments.

6. Experiments and Evaluations

In this section, we will use these metrics to compare our algorithm with some classical
algorithms, through experimental results and analyze the advantages and disadvantages
of these algorithms.
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6.1. Datasets and Experimental Methods

The trajectory data set used in our experiments was based on the GPS data from taxis
in Guangzhou City, China, including the trajectory data of about 2000 taxis for one day,
and 340,000 trajectory location points. The total data size was 3 GB, and the trajectories
were concentrated in the range of 112 to 114 degrees of east longitude and 22 to 23 degrees
of north latitude.

The main process of the experiments was as follows: Firstly, the same original trajec-
tory data set was selected, and different algorithms were run on the trajectory data set to
form the published trajectory data set. Then, the validity of different algorithms in privacy
protection was compared according to Inference Error Rate (IER), and the validity of differ-
ent algorithms in data utility was compared according to Statistical Feature Retention Rate
(SFRR).

The following classical trajectory privacy-preserving algorithms was compared with
our algorithm:

(1) Uniform i.i.d. Sampling Method (UIIDSM) [4] . According to uniform probability
distribution, each false position is generated independently and identically.

(2) Aggregated i.i.d. Sampling Method (AIIDSM) [4] . According to aggregated mobile
Poisson distribution, each false location is generated independently and identically.

(3) Aggregated Random Moving Method (ARMM) [6,30]. False trajectories are gener-
ated by random moving on the set of positions after Poisson distribution.

(4) Random Movement Method of User Probability (RMMUP) [8]. On the basis of
probability distribution p(u) of user occurrence, a group of locations are formed, and
random movement is carried out to generate false trajectories.

(5) Synthesize Trajectory Method based on Position Semantics (STMPS) [3]. False
trajectories are generated based on position semantics.

(6) Trajectory data publishing based on data partitioning (DPCP) [27]. Trajectory data
publishing under (k, δ) security constraints based on data partitioning.

6.2. Analysis of Privacy Preservation Degree

The goal of trajectory privacy preservation is to protect an individual’s tracks, that is,
to prevent his identity and relevant trajectory from being recognized.

To correctly infer an individual’s track, the attacker needs to identify his trajectory as
well as his identity. If the probabilities of these two types of identification are respectively
π1) and π2), the mathematical expectation of the Error Rate of Trajectory Inference (ERoTI)
is:

E(ERoTI) = 1− π1π2 (6)

(1) Probability of correctly identifying individual trajectories (π1)
According to our individual mixing algorithm, suppose there are n times of mixing,

the number of trajectories involved in the m-th mixing is km, and the attacker has found
the individual identity for some trajectory, then the probability that the trajectory can be
correctly identified by the attacker is:

π1 =
1

k1k2 · · · kn
(7)

As shown in Figure 4, in the first window n = 0, the trajectory and the QI can be easily
found, then the trace can be correctly identified, that is, π1 = 1. In the second window
n = 1, there are three trajectories involved in the mixing. If the individual identity is found
by attacker, it is a probability of 1

3 for the correct track to be identified, that is, π1 = 1
3 . In

the third window, n = 2, there are three trajectories involved in the first mixing, and four
trajectories involved in the second mixing. At this time, after finding out the identity of the
individual, it is a probability of 1

12 for the track to be identified, that is, π1 = 8.3%.
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When the number of trajectory exchanges is n, there are k trajectories involved in
each time of mixing, then π1 = 1

kn . As shown in Table 5, with the increase of k and n, π1
converges to 0.

Table 5. The probability of correctly identifying individual trajectories (π1).

ine π1 n = 2 n = 3 n = 4 n = 5

ine k = 1 50.00% 33.33% 25.00% 20.00%
k = 2 25.00% 11.11% 6.25% 4.00%
k = 3 12.50% 3.70% 1.56% 0.80%
k = 4 6.25% 1.23% 0.39% 0.16%
k = 5 3.13% 0.41% 0.10% 0.03%
k = 6 1.56% 0.14% 0.02% 0.01%
k = 7 0.78% 0.05% 0.01% 0.001%
k = 8 0.39% 0.02% 0.002% 0.0003%
k = 9 0.20% 0.01% 0.0004% 0.0001%
ine

(2) Probability of correctly identifying individual identity (π2)
According to the attacking model, the probability of correctly identifying individual

identity, π2, mainly depends on the aggregation distribution of location points. The attacker
can correctly identify the individual’s identity in the original trajectory, but not necessarily
in the synthesized trajectory.

Suppose the original trajectory tr = {p1, p2, ..., pm}, and the synthesized trajectory is
tr
′
. If mixing starts from the point of m in tr

′
, then tr

′
= {π1, π2, ..., πm, π

′
m+1, π

′
m+2, ..., π

′
n}.

It is easy to see that:

Clustering(tr) 6= Clustering(tr
′
), Count(tr) 6= Count(tr

′
) (8)

Therefore, when using the attack methods such as Clustering(tr) or Count(tr) on the
synthesized trajectory, the final results are inconsistent with those on the original trajectory,
that is, the individual identity cannot be correctly identified in the synthesized trajectory.

6.3. Evaluation of Privacy Preservation Degree

In the experiments of our TPP-DABD algorithm, the number of individual trajectory
exchanges is set to 5 to 12, with an average value of 7.5. The number of trajectories involved
in each exchange is 2 to 6, with an average value of 2.6. Therefore, we calculate the Error
Rate of Trajectory Inference to be ERoTI = (1− 1

2.67.5 )× 100% = 99.92%.
The error rate of trajectory inference of each trajectory privacy-preserving algorithm

is shown in Table 6.

Table 6. The ERoTI of trajectory privacy-preserving algorithms.

ine Trajectory Privacy-Preserving Algorithms ERoT I

ine UIIDSM 0.2958
AIIDSM 0.3066
ARMM 0.3802

RMMUP 0.7486
DPCP 0.8347

STMPS 0.9972
TPP− DABD 0.9992

ine

By Table 6, the error rate of our TPP-DABD method is similar to that of STMPS, and is
higher than the other methods.



ISPRS Int. J. Geo-Inf. 2021, 10, 78 17 of 20

6.4. Evaluation of Data Utility

We evaluated the utility of trajectory data mainly by the difference between the
original and published trajectories in spatial and temporal distribution.

Many existing methods add false trajectory, trajectory offset, random location dis-
tribution and so on to protect trajectory data privacy. Nevertheless, in our method, all
trajectory data came from the real trajectories, and retained the statistical characteristics of
the original trajectory data to the greatest extent. There was almost no deviation on the
statistical analysis between the results of our method and those using original data.

Taking “the top n locations in the region” as an example, we compared our method
with the classical trajectory privacy-preserving algorithms by the metric of Statistical
Feature Retention Rate (SFRR).

The SFRR of each algorithm is shown in Table 7.

Table 7. The SFRR of trajectory privacy-preserving algorithm.

ine Algorithms Top 10 Top15 Top 20 Top25 Top30

ine TPP− DABD 100% 100% 100% 100% 100%
UIIDSM 5% 8% 10% 13% 18%
AIIDSM 11% 16% 27% 41% 60%
ARMM 17% 24% 31% 49% 64%

RMMUP 13% 21% 29% 37% 57%
DPCP 72% 79% 84% 89% 93%

STMPS 40% 46% 62% 67% 90%
ine

Through the above analysis and comparisons, it can be concluded that our TPP-DABD
algorithm had a stronger ability to retain the statistical characteristics of trajectory data. It
was especially suitable for scenarios where trajectory data were statistically analyzed.

6.5. Evaluation of Time Complexity

Our experimental environment includes 1 server configured with 2 CPUs(Intel Xeon, E5-
2620, 6 cores), memory of 128 GB, SSD of 2 TB, and CentOS6.7 (64bit). The algorithms are
implemented by node.js.

We selects different sets of trajectory points and compares the operation times of the
algorithms. The sizes of trajectory points are 50,000, 100,000, 200,000, 400,000, 800,000
respectively. The operation times of the above seven algorithms are shown in Figure 5,
x-axis is operation time and y-axis is the number of trajectory location points.

From the above experiment results, we can see that the performance of these algo-
rithms could be divided into three grades:

(1) The first grade was DPCP, UIIDSM, which had the lowest time cost. Because the
algorithm only needed to consider a single trajectory point, the algorithm was simple.

(2) The second grade was AIIDSM, ARMM, RMMUP, and TPP-DABD. Their time
costs were moderate, and they needed to calculate distributions of trajectory points (either
overall or local).

(3) The third grade was STMPS. Due to the high complexity of semantic calculation,
the algorithm took the longest time.
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Figure 5. The operation times of the seven algorithms.

6.6. Performance Analysis of TPP-DABD

From the above analysis on the privacy preservation degree, data utility and the
algorithm performance, we can see that the TPP-DABD was feasible for privacy-preserving
trajectory data publishing.

(1) Effectiveness of TPP-DABD:
The TPP-DABD is mainly based on the secondary mixing of QI, so that the individual

identity and QI are no longer in the one-to-one mapping relationship. The true mapping
cannot be restored from the overall area, so that the trajectory cannot be associated with
the individual.

The key of the TPP-DABD is to decompose the original trajectory into different QI
segments. The more segments it is decomposed into, the better privacy it will achieve. In
the experimental results of this paper, each trajectory was divided into 7.5 segments on
average, and the inferential error rate was 99.92%. The TPP-DABD had a higher degree of
privacy protection than those classical algorithms.

At the same time, TPP-DABD does not change the original geographical coordinates in
the published trajectory points. The geographic statistics information based on the original
trajectory can maintain 100% consistency with the sampling trajectory points, and the data
utility is very high.

(2) Efficiency of TPP-DABD
Unlike the other privacy-preserving algorithms, the high data utility and privacy

protection degree in our TPP-DABD were achieved without trading off too much time cost.
The time complexity of the TPP-DABD was still acceptable for practical applications.

More importantly, TPP-DABD supports data processing by time slices. When the
amount of data increases, the operation time of the algorithm increases linearly. At the
same time, TPP-DABD supports parallel processing. In practical applications, the total
operation time can be reduced by expanding the hardware resources.

7. Conclusions

This paper proposes a novel algorithm of Trajectory Privacy Preservation by Dynamic
Anonymization with Bounded Distortion (TPP-DABD). Taking into account of the require-
ments of application scenarios of trajectory data, we define the evaluation metrics for
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measuring the algorithm performance, and evaluate the performance of the algorithm
based on real Guangzhou City Taxi trajectory data.

The major contribution of this paper is the proposed novel dynamic anonymization
method based on localized trajectory mixing. The main advantage of the technique is
that all published trajectory data are formed by mixing the real trajectories in a localized
manner under minimum noise injection rather than globally as most existing methods do.
This effectively guarantees a bounded distortion and enables to better retain the statistical
characteristics of the data, resulting in a better data utility without sacrificing privacy.

Our experimental performance evaluation and comparisons with the existing methods
show that our TPP-DABD algorithm performs comparably with the trajectory privacy-
preserving method based on location semantics, and better than the existing methods based
on static (global) anonymization such as i.i.d. sampling and random movement. In addition
to the data utility of individual trajectories, our method also minimizes the distortion of
the statistical features of trajectory data, to provide a high utility of the published data
collectively for statistical analysis.

We notice that the quality of performance of TPP-DABD depends also on data dis-
tribution and the attacker’s background knowledge. In the future, we will apply the
differential privacy technique for trajectory privacy protection to against attacks with
arbitrary background knowledge on the statistical query results.
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