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Abstract: Emerging deep learning (DL) approaches with edge computing have enabled the automa-
tion of rich information extraction, such as complex events from camera feeds. Due to the low speed
and accuracy of object detection, some objects are missed and not detected. As objects constitute
simple events, missing objects result in missing simple events, thus the number of detected complex
events. As the main objective of this paper, an integrated cloud and edge computing architecture was
designed and developed to reduce missing simple events. To achieve this goal, we deployed multiple
smart cameras (i.e., cameras which connect to the Internet and are integrated with computerised
systems such as the DL unit) in order to detect complex events from multiple views. Having more
simple events from multiple cameras can reduce missing simple events and increase the number of
detected complex events. To evaluate the accuracy of complex event detection, the F-score of risk
behaviour regarding COVID-19 spread events in video streams was used. The experimental results
demonstrate that this architecture delivered 1.73 times higher accuracy in event detection than that
delivered by an edge-based architecture that uses one camera. The average event detection latency
for the integrated cloud and edge architecture was 1.85 times higher than that of only one camera.
However, this finding was insignificant with regard to the current case study. Moreover, the accuracy
of the architecture for complex event matching with more spatial and temporal relationships showed
significant improvement in comparison to the edge computing scenario. Finally, complex event
detection accuracy considerably depended on object detection accuracy. Regression-based models,
such as you only look once (YOLO), were able to provide better accuracy than region-based models.

Keywords: internet of things; COVID-19; video streaming; complex event detection; smart camera;
edge processing

1. Introduction

The final report of the National Science Foundation (NSF) workshop in 2013 predicted
that there would be one camera per person in the future [1]. Cameras have always been
used as low-cost equipment for gathering information about objects and events in the
environment. However, monitoring and analysing events and objects in camera feeds can
be challenging and, in many cases, simple events (i.e., events that do not include any event)
or objects are not useful for meeting the project objectives. For example, a car driving past
on another car’s right is a simple event that does not generate meaningful results. However,
the complex event of a car driving past from the right and overtaking at 150 km/h speed
would be considered an offensive driving action. With the recent advent of video and
image processing tools, complex event detection in video frames has been widely studied
and applied to many domains, from anomaly [2] detection to phenomenon and behaviour
tracking [3]. Complex event detection is the process of detecting complex objects based
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on spatial and temporal relationships in video streams [4]. Simple events are defined as
the occurrence of objects in video streams [5], whilst complex events are a combination
of several simple events [6]. Complex event detection has been deployed in several
applications, such as transportation [7], traffic [8], agriculture [9], health monitoring [10],
and abnormal behaviour detection [11]. Given its many uses, complex event detection is an
important process for obtaining useful spatiotemporal information from the environment.

Some issues should be addressed in relation to using camera frames for complex event
detection. One of these issues is the protection of the privacy of people whose faces and
identities are revealed in camera feeds. Most of the research on object detection in camera
feeds propose cryptography solutions for camera frames and significantly decreasing the
object detection speed [12]. An alternative solution would be to use an architecture based
on edge computing technology to provide privacy [13]. Another issue with complex event
detection is that the automatic event pattern detection in frame units is challenging, as many
objects and their relationships fail to go undetected. The majority of research into complex
event detection has attempted to improve the querying of video content to increase the
ease of information retrieval for users [14–19]. There were also other studies that focused
on event pattern detection and event matching, which is the process of matching observed
events frames with complex event patterns [20–22]. However, most of the research did not
consider missing frames and objects for complex event detection in a real camera streaming
scenario. The problem of missing objects occurs when objects exist but are not detected by
the object detector. The missing frame phenomenon results from a low frame streaming
rate with the edge computing because of processing latency. Missing detected objects and
tracking for real automated camera frame processing pose problems for event matching.
These issues sometimes occur when objects are on top of each other, or when they are not
in a position in which they can be recognised by the object detector. For example, using the
scenario in which we detect when a person coughs and touches a door handle, Camera1
can detect the action of a person coughing but cannot detect the door handle. However,
Camera2 cannot detect the coughing action but can detect the door touching one. The
deficiencies faced by both cameras can thus result in missing detected objects and tracking.
Other potential reasons for missing objects in frames are low object detection accuracy and
discontinuity of object tracking in consecutive frames because of the low speed of object
detection and frame processing latency. In order to address such issues, in addition to the
necessity of improvement to the complex event detection method, selecting a convolutional
neural network (CNN) object detection model that is fast and precise is also essential.

One potential solution for this problem is gathering data from different cameras point-
ing to the same place. The Internet of Things (IoT) provides real-time measurements and
automatically transmits information from various sources to other things. Recently, IoT and
video processing technologies were integrated in order to provide smart video monitoring
and system analysis [23]. This led to low-cost and high-accuracy smart monitoring systems
for smart home systems [24], security border systems [25], and intelligent traffic informa-
tion systems [26]. The integration of deep learning (DL) and IoT for automation in detecting
and monitoring objects from video streams has been used for person re-identification using
multiple cameras [27], disaster management [28], and the detection of individuals in smart
surveillance systems [29]. This enables smart cameras to automatically detect objects from
various camera streams and then publish them onto an Internet of smart camera (IoSC) net-
work. For this paper, an architecture was designed and developed that aimed to decrease
the occurrence of missing simple events and to increase complex event detection accuracy
through the use of deep learning, the Internet of Things, edge computing, and cloud
computing technologies. To address the privacy issue, the architecture should include edge
computing. In order to evaluate this architecture, we considered some complex actions
deemed risky in relation to COVID-19 spread in rooms within a building.

The main contributions of this paper are as follows:

- To design and develop an integrated edge and cloud computing architecture for
complex event detection using the interoperable Internet of smart cameras. This
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flexible architecture enables us to detect objects from single cameras and integrate
them into a complex event in the cloud computing part.

- To implement the integrated cloud and edge computing architecture of the IoSC to
detect risk behaviours carried out by people that might lead to possible COVID-19
spread. Risk behaviours are considered complex events and are detected using the
architecture model and reported to the cloud network in real-time.

- To demonstrate how much the object detection model influences the number of
missing events, we compared region- and regression-based object detection models
for simple events.

The remainder of this paper is organised as follows: Section 2 reviews work related to
complex event detection related work, whilst Section 3 explains the architecture details;
Section 4 gives an overview of the implemented architecture, and Section 5 discusses the
results of the implemented system; the final section then sums up the findings for this
paper and provides suggestions for future research.

2. Background

One of the most interesting examples of event detection in academia involves human
actions and the behaviours of people. The application of DL in video surveillance for be-
haviour recognition and action detection has attracted the attention of scholars. Behaviour
recognition is often defined as the classification of a specific human behavioural patterns
in video streams. Most of the studies in this field have attempted to extract motions by
using optical flow analysis [30]. Optical flow analysis is used for tracking objects through
consecutive frames. The other research category for behaviour recognition focuses on
building innovative CNN for feature extraction and classification from frames. Building
a 3D CNN for action recognition is an example of these efforts [31–33]. CNN is based on
spatiotemporal training for object motion detection. However, the results of these models
were only able to achieve results with a high level of accuracy by using standard video
streaming. Another approach researchers used was considering behaviours as objects and
trying to detect the objects in real-time in the video frames [34]. Ko and Sim proposed a
DL framework to discriminate and detect abnormal behaviours in order to address the
issue raised by previous work on discriminating human behaviours in a crowd scene [35].
However, these studies only considered human behaviours as potential events and did not
detect relationships between events in time or space.

Complex event detection is more challenging than behaviour detection as the events
are more spatially and temporally complex [4]. Some of the research used DL in video
streams for complex event detection by relating simple events. Most of the research focused
on the classification of videos based on particular classes using DL. Gan et al. developed
a DL model to extract keyframes for predefined complex events [36]. Xiong et al. used
DL to detect people–object interactions as events [37]. Several papers such as [38] and [39]
performed classification using DL and multimodal information. These studies utilised the
integration of multimedia DL models in order to provide a better estimation of events in
the real world. Other studies, such as [40–42], used a concept detector to detect events
in video streams. However, these studies are only relevant to complex events occurring
within a short period.

The most current existing complex event detection software and frameworks on the
market, such as Oracle complex event processing (CEP), WSO2 CEP, ApacheFlink CEP,
and StreamInsight, are mainly designed to detect only complex events and temporal
relationships of events whilst neglecting spatial relationships. For example, Medioni
et al. detected events by detecting, tracking, and extracting moving object trajectories,
speed estimation, and the inference of object behaviours from frames. This study had
spatial and temporal resolution constraints as it was based on pixel-wise detection. Dubba
et al. designed the relational event model induction (REMIND), which uses a supervised
inductive relational learning technique to detect events in a large video dataset [43]. Studies
such as NoScope [44] and Focus [45] attempted to optimise spatiotemporal querying in
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video streams but did not provide expressive querying for retrieving spatiotemporal
patterns. Hence, Yadav and Curry proposed a video complex event framework that
detected spatiotemporal patterns in video streams [20]. Additionally, they proposed a
query language that processed complex events from spatial and temporal relationships
between objects. However, none of the above research focused on missing spatiotemporal
relationships in a real scenario in which object detection misses objects in video streams.
Furthermore, they all proposed single-source complex event detectors for offline video
streams when all frames are available. For this paper, we designed and developed an
integrated edge and cloud computing architecture to process complex events from multiple
cameras in order to solve the problem of missing object detection. Other research, such
as EdgeCEP [46], used cloud and edge computing for complex event detection but did
not provide any solution for video complex event detection when the events were from
different sources.

3. Complex Event Detection Methodology

This paper’s main aim is to explain the integrated edge and cloud computing archi-
tecture components and relationships in detail. Figure 1 shows the architecture, which
was divided into sensing, edge computing, and cloud computing. The edge computing
part detects and tracks objects, detects simple and complex events, and publishes them
using the cloud computing part. The camera feeds are first read one after another; then,
the edge computing part of the architecture uses object DL detection algorithms to detect
the objects that are included in the complex event model. This step results in a vector
of detected object bounding box coordinates, class names, and confidence scores. The
next step is to analyse consecutive frames, and track, identify, and label every detected
object. Every object has a global ID in all of the frames of the detected object vector. The
object detection vector and the object tracking vector are sent to an event matching process
using edge computing. Spatial relationships are then extracted using information from
the detected object vector. In addition, the tracked object vector is deployed to identify
temporal relationships between objects in consecutive frames. To match the extracted
spatiotemporal relationships of objects with existing event patterns, a query is sent to the
edge event database to find similar complex events. Finally, the detected event is formatted
and sent to the cloud as detected objects. Edge computing is the only component of the
architecture that can access video frames. This component detects objects and only returns
object bounding boxes, class, and tracking ID to the cloud components. Therefore, objects
and photos of people are not distributed and/or saved anywhere. Thus, this guarantees
the privacy of people and objects in video streams.

In particular, the cloud computing part is responsible for detecting complex events that
have not yet been detected because of missing objects in the frames. This means that if the
edge computing part fails to detect complex events from one camera, the cloud computing
part makes up for this by detecting some of the missing complex events from different
cameras. Therefore, other camera detection results, including time and the detection vector,
are needed to find the spatial and temporal relationships and to finally detect the complex
events. Firstly, detected object vectors and tracked object vectors are sent to both the cloud
event matching processing service and the cloud database. The service is connected to
the cloud event database, which is similar to the edge event database and includes event
spatiotemporal patterns. After obtaining the detection and tracking vector from the edge
computing, the cloud matching service sends queries to the cloud database to search for
previously used detection and tracking vectors. The results for matched events are then
sent to the cloud database.

The following subsections provide more details about object detection and tracking,
event matching with edge computing, and event matching in the cloud, which are the most
important units of this architecture.
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3.1. Object Detection and Tracking

Simple events are generated in every frame, and object detection is used as the first
step in extracting events from video frames. The designed architecture uses DL algorithms
to automate object detection from video streams. Deep neural networks (DNNs) offer an
in-depth architecture model for learning complex objects using CNN-based models [3].
Regional-based CNN and you only look once (YOLO) (regression-based model) are exam-
ples of such models. YOLO divides the image into small grids and predicts the objects in
every grid before assigning a confidence score to each object. YOLO is able to detect objects
faster than regional-based CNN (R-CNN) models [47]. However, it provides less accuracy,
especially with regard to small objects [48]. For R-CNN models, the regions of proposals
are extracted, CNN features for each region are computed after wrapping the regions,
and then the regions are classified [47]. The process of preparing and building an object
detection model is similar. Firstly, images are labelled based on the model-required format
in the two datasets used for training and testing. Then, using transfer learning, general
layers are borrowed from a pre-trained model and only the last layers are changed. This
overcomes the limitations of semi-supervised solutions as well as scarcity problems for the
dataset [49]. The output of this process is an object detection model. Extra information
about the precision or recall of the model based on the test dataset is also included. The
output model is deployed as a predictor for real-time detection.

Object tracking is the process of finding similar objects in video frames and identifying
them. It is an essential part of complex event detection and identifies objects in consecutive
frames to enable the detection of temporal relationships between events in the frames.
There are different methods for tracking objects in video frames. Advancements in object
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detection have made tracking by detection one of the most popular tracking approaches.
Deep simple online and real-time tracking (DeepSORT) is one of the algorithms used in
vehicle tracking [50], pedestrian tracking [51], ball tracking [52], etc. The algorithm only
considers the previous and current frames in order to assign an ID to the detected object. It
does not need to process the entire video every single time. The objective is to minimise
the following cost function [53]:

Cij = λd(1)(i, j) + (1− λ)d(2)(i, j) (1)

where d(1) is the spatial distance between the predicted bounding box from Kalman filtering
(KF) and the previously known bounding box for the object. The visual distance d(2)

represents the smallest cosine distance between the bounding boxes of the matched objects
in consecutive frames. i and j represent two objects in different frames. λ determines the
influence of distances in the tracking process.

3.2. Event Matching with Edge

Event matching is the process of matching the registered event model in the event
database with the spatiotemporal pattern in the video. The entire process of event matching
for this part of the architecture is carried out with edge computing. As all of the frames
are coming from a single source, the coordinate system and camera angle are the same
during the complex event detection process. The process consists of object matching, spatial
matching, and temporal matching [20]. Pseudocode 1 in Appendix A shows the steps for
our proposed event matching algorithm.

Sample spatial and temporal queries are shown in Table 1, which illustrates direction-
based, topology-based, and geometric representations of objects as spatial relationships.
The sequence (SEQ) temporal relationship determines the order of events. If two spatial
relationships occur within a frame, then these are equal (EQ) temporal relationships.
Conjunction (CONJ) and disjunction (DISJ) refer to AND and OR logical operators. Video
event query language (VEQL) [19] was used for querying objects in the architecture. For the
first example, the door-touching spatial relationship considers the intersection of the hand
with the door handle in a time threshold of 10 frames with the least average confidence
of 0.5 for object detection. The second temporal relationship considers the sequence of
coughing spatial relationships before the door-touching spatial relationship in a time
threshold of 3600 frames with the least average confidence of 0.5 for object detection.

Table 1. Sample spatial/temporal relationships and queries.

Item Spatial Temporal

Relation Direction-Based Spatial Relation (FORS)
= (left,right,front,back) SEQ→ E1.t1 < E2.t2 where t1 < t2

Relation Topology-Based Spatial Relation =
9Intersection Matrix EQ→ E1.t1 = E2.t2

Relation Geometric Representation for Spatial
Object (O) = e.g., Overlay Area of Bbox CONJ→ E1 and E2DISJ→ E1 or E2

VEQL Query Examples

SELECT intersection (Object1, Object2)
FROM Camera1

WHERE Object1.label = ‘hand’ AND
Object2.label = ‘door handle’ AND

WITHIN TIMEFRAME_WINDOW(10)
WITH_CONFIDENCE > 0.5

SELECT SEQ (sr1, sr2) FROM Camera1
WHERE sr1.label = ‘coughing’

AND sr2.label = ‘door touching’
WITHIN TIMEFRAME_WINDOW(3600)

WITH_CONFIDENCE > 0.5

For Pseudocode 1, the capureTime function obtains the time that the frame is captured.
The object detector function returns all of the detection object vectors in the frame and will
skip that frame if no object is found. Otherwise, it runs events from the event patterns array.
The eventPatterns array is obtained from the edge event database. The object event matcher
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then executes the array in order to return the object events to the frame found in the event
vector. If any of the detected objects matched with the object nodes from the event, it will
then operate the spatial event matcher. Every spatial relationship involves two objects.
Hence, the find function is run to find detected objects in the frame that are involved with
the spatial relationship sr. Having run the spatial relation function between the two found
objects (i.e., obj1 and obj2), it then checks if the relationship is true. If so, the spatial_rel in
the frame is stored as detected spatial relationships. Similarly, the temporalRelation checks
whether the temporal relationship is valid. Finally, root relationships between temporal
events are matched in the last layer. If any of the rootRelationship values are false, it will
skip the frame and check the next frame. The output of the algorithm is the reported
complex event and the involved temporal relationship vectors.

3.3. Event Matching Using Cloud Computing

Event matching in the cloud almost always follows the event matching instructions
from edge computing. The spatiotemporal queries are similar to event matching with the
edge. However, as object vectors come from different cameras with different viewpoints,
more steps should be taken. Object detection and tracking are requirements for running
event matching. If the cloud computing services are responsible for the operations, the
raw frames have to be sent to the cloud for object detection and tracking. This reduces
the entire system performance and increases the network’s traffic load. To avoid this, we
have to find a solution that detects the spatiotemporal relationships based on the detected
object vector.

The bounding boxes for detected objects come from different local image coordinate
systems. A consistent coordinate system is required for all of the reported bounding boxes
in order to find the spatial relationships between objects. For this paper, we use projective
transformation to transform the image coordinate system into a geographic coordinate
system [53–56]. Coordinate transformation allows the IoSC to project detected objects from
different cameras onto a common coordinate system. If the projected objects are from
the same class, the IoSC checks the intersection of these projected objects. If two objects
intersect, the IoSC matches them and identifies them as the same object. If more than two
objects are found, the IoSC selects the two objects with the most intersection and proximity
for consideration. We used homomorphic (2D projective) transformation in our research.
For trackable objects such as persons, the IoSC projects all objects to ground plane. As we
need to project all points onto a common plane, the middle of the lower edge of bounding
boxes of objects is projected to the ground. Then, the projected object coordinates are
transformed to the other camera coordinate system in order to identify the tracked object
from Camera2. To match other objects and find identical objects taken by two cameras, they
are projected onto a wall plane (i.e., a plane which is perpendicular to the ground plane
and within the line of sight of the camera). Therefore, having at least four control points for
each camera transforms all of the bounding box coordinates onto the common coordinate
system. This enables the cloud computing service to track objects from different cameras
located within a unique coordinate system, thus making the extraction of spatiotemporal
relationships possible.

Figure 2 presents an overview of the event matching flow in the cloud. After reading
a frame from Camera1, the detected objects are sent to the cloud database and cloud
computing service. Firstly, relevant cameras (i.e., cameras that have overlying scenes)
are queried in order to obtain the eight transformation parameters. Then, the projective
transformation is run in order to convert all of the detect object vectors over to the Camera2
coordinate system. The object detected vector values are queried based on their detected
object class and the phenomenon time (i.e., the frame read time). The spatial and temporal
relationships are then extracted using the tracking vector for the current detected object and
queries from the cloud database. Finally, the event matching module detects the events and
reports them to the cloud database. A sample video in Supplementary Materials explains
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how two cameras with a common area of visibility can complete each other when a cloud
computing approach is used.
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4. Implementation

COVID-19 is a global disease that has affected over 185 countries and has impacted
jobs, social life, and the economy. Tracking risk behaviours displayed by people with
regard to virus spread can help to prevent increasing numbers of COVID-19 cases. Recent
research used radiofrequency technology to capture human motion and detect coughing in
a room [57]. This approach requires special devices and infrastructure setup. In our recent
study, we instead attempted to use low-cost camera devices to detect simple risk behaviours
such as coughing and high population density in rooms to estimate the impact of risk
behaviours on the spread of COVID-19 [58]. However, in many cases, these behaviours are
complex and can include several relevant actions carried out within a certain time period.
Therefore, a possible solution would be to model these behaviours using complex events.
In order to constitute these events from simple events, objects are automatically detected
and tracked using smart cameras and DL techniques. Complex events are then detected
using a complex event detection process. For this paper, we used COVID-19 risk action
detection as a use case in order to implement and evaluate the architecture.

4.1. Implemented Architecture

Figure 3 shows the detailed architecture we developed to evaluate our proposed
method. For edge computing, we used the Jetson Xavier NX board with a GPU processor
with 384 NVIDIA CUDA cores, 48 Tensor cores, and a 6-core NVIDIA Carmel ARMx64
CPU. A USB camera is connected to the board to record video streams. Jetson Xavier
reads frames, detects the objects in each, and then sends the information as a message
queuing telemetry transport (MQTT) message to the amazon web service (AWS) IoT Core.
There are three topics for the message. One is for triggering the SensorThings application
programming interface (STA) formatting lambda function, another for triggering the event
matcher lambda function, and the last one for updating the dynamoDB database. The
dynamoDB database includes an event patterns table in javascript object notation (JSON)
format and a detected event vector. JSON simplifies the representation of data [59], makes
hierarchical data suitable for storage [60], and is adopted for not only SQL (NoSQL)
databases and different programming languages [61]. After the event matcher is triggered,
it selects both registered event patterns from the dynamoDB as well as recorded detected
objects from the STA endpoints. Then, the Lambda function runs the cloud event matcher
to match events. When a new event is reported to the IoT core, the dynamoDB updating
rule is triggered to update the event vector table. At the same time, Jetson Xavier also
sends the detected object vectors to the IoTCore. As soon as the message is published to
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the IoTCore, the STA formatting Lambda function converts the MQTT messages into STA
format and sends them to STA endpoints.
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4.2. STA Model

The developed architecture involves multi-connected cameras. Therefore, a compre-
hensive data model is essential for modeling devices and data component relationships.
The STA is a web-based open standard that interconnects devices, data, and applications.
It is a geospatial-enabled Open Geospatial Consortium (OGC) standard that supports both
MQTT and HTTP standards [62]. STA was used to implement the IoSC so as to provide
interoperability between smart cameras. Figure 4 shows the STA data model. The black
boxes are the STA entities defined by OGC [63], and the blue boxes are the examples that
we used in our model. For our proposed data model, every camera act as a sensor. Related
cameras and the relevant projective transformation parameter values are attributed by
this entity’s metadata. The relevant cameras constitute a thing. Datastreams are detected
object data types based on the class of the object. For example, there is a datastream for the
person and another datastream for the door. Observations contain a vector of bounding
boxes, class names, tracking ID of the detected object, and the confidence score. Finally,
FeatureofInterest determines the area that the cameras record. Using this structure, we can
take advantage of relational queries to obtain camera transformations and detected object
observations. All camera locations and FeatureofInterests are stored in GeoJSON format.
GeoJSON encodes geographic data in JSON format [64]. It is a simple and lightweight
data format, which is adapted to work with many map libraries and services, such as
leaflets [65], OpenLayers, MapBox, and Cesium. It also supports different geographic
coordinate systems and features [66].
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Figure 4. Proposed data model based on SensorThings API.

Two types of database tables have been used for this architecture. The first one
includes predefined event patterns as well as spatial and temporal relationships between
objects in different frames in an event pattern database. In general, each record from
this table is a tree of events and related objects in different frames. The second type of
database table is the cloud database table. Cloud database tables are comprised of cameras,
detected object vector boxes, tracked object vectors, and matched events. Figure 5 is a
logical model of a simplified schematic cloud database showing different required tables
for cloud computing and storing events.

The proposed cloud database model has a metadata table containing camera informa-
tion for event matching. Every detected object in the detection vector table has a camera
ID connecting objects to a camera in the camera metadata table. The related camera IDs
determine if cameras point to the same area (or if the areas overlap). This is used for the
event matching of data from different cameras in the cloud. The array of control points is
used for the frame coordinate transformation between cameras, as object locations are not
the same for different cameras with different viewpoints. The detection vector includes
tracked and detected vectors. If an object has not been identified in the image, the TrackID
is set as NULL. This ID is the unique ID of detected objects. The confidence score is the gen-
erated probability of correct object detection by the object detection model. The matched
event table stores detected events with the reported time interval, IDs of involved objects,
and a Boolean attribute that specifies whether events are detected in the edge computing
or not.
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Figure 5. Logical model for the cloud database.

4.3. Data and Object Detection Model

A total of 4784 images from various sources were used for training the object de-
tection DL model. These images were used to train the DL model for arm_coughing,
hand_coughing, person, hand, door, and door handle. For training the DL model for
arm_coughing and hand_coughing, we retrieved public images from Google and manually
labelled them. Person-labelled data were obtained from the CoCo dataset [67]. The hand
dataset [68] was prepared by the Visual Geometry Group of the University of Oxford.
The door and door handle dataset comes from MCIndoor20000 [69] and Open Images
Dataset V4 [70]. In order to train the detection model, two of the most popular CNN object
detection techniques, Mask-RCNN [71] (region-based) and Yolov3 [47] (representative
regression-based method), were deployed. For both models, the CoCo pre-trained model
was used for transfer learning.

Figure 6 shows the graph regarding complex events of risk behaviours for the spa-
tial/temporal and object relationships. This event occurs when a person coughs into
his/her arms or hands and then moves and touches a door handle. As coughing into
the arm versus hands produces different risk values, we can consider them as different
complex events, although the general event structure is similar. The lowest level of the
graph shows objects which are detected by a CNN object detection model. The second
level boxes show the spatial relationships between the objects. Intersected bounding boxes
were identified in order to extract the related objects in the frame. As we required a door
handle for a door and not a handle for a drawer, door and door handle bounding boxes
had to intersected to ensure verification of the correct door handle object. Temporal rela-
tionships (sequence relationships that consider the order of events) were then depicted in
the third level. For root relationships, the relationship between temporal relationships was
considered before the complex event was finally detected. VEQL proposed by [20] was
used for querying events.
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Figure 6. Spatial, temporal, and object relationships graph for risky behaviours.

The output of every detected complex event is a GeoJSON record that is stored in a
DynamoDB table. The GeoJSON file includes the trajectory (in line-string format) of the
complex event in the geographic space as well as properties containing the phenomenon
time, results time, duration, JSON format of relevant objects, JSON format of related spatial
and temporal relationships, and an array of related camera names.

5. Experimental Results

To evaluate the developed architecture, the object detection models, event matching
accuracy, and performance of the complex event detection were assessed.

5.1. Object Detection Accuracy

As the accuracy of object detection models affects the complex event detection accuracy
and performance, two popular object detection models, Yolov3 and Mask-RCNN, were
deployed for this method. To evaluate the results of object detection, two videos with 612
and 518 frames, respectively, were selected. Detections in all of the tests with a confidence
score of more than 85% were considered. Figures 7 and 8 provide an overview of the tested
video results.
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Figure 7. Object detection results of YOu Look at Once (YOLO) architecture.
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When taking classes into consideration, we found that for less complicated objects,
such as “door”, YOLO generated better results. In comparison, Mask-RCNN generated
more true positives for every class. Table 2 provides an overview of the performance and
precision of the object detection models using Jetson Xavier and a laptop with Core i7 CPU
and GeForce RTX 2070 GPU.

The Mask-RCNN model provided greater mean average precision (mAP) and average
recall than YOLO. However, this difference is insignificant. In comparison, Yolov3 offered
faster detection speeds. The number of missing objects for the Yolov3 model was fewer
than that of Mask-RCNN. In general, although its precision is lower than the Mask-RCNN
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for complex objects, Yolov3 is a better option for complex event detection. Dividing and
detecting complex objects using a Yolov3 model for simple objects in addition to considering
the spatial relationships for building complex objects is probably the best approach. As a
result, the deployed object detection CNN model used for the two evaluations was Yolov3.
In general, the calculated mAP values were fewer than those of popular models, such as
CoCo, because the training dataset size was smaller.

Table 2. YOLO and Mask-RCNN comparison results.

Model Speed (Jetson Xavier) Speed (Laptop) Missing Objects mAP Average Recall

YOLOv3 4 (fps) 25 (fps) 23% 59% 34%

Mask-RCNN 0.6 (fps) 6 (fps) 37% 62% 47%

5.2. Online Event Matching Accuracy

The accuracy of event matching for the integrated edge and cloud computing architec-
ture compared to an architecture that handles all of the processes with edge computing
using images from a single camera will determine the architecture event matching accuracy.
The event matching accuracy was calculated based on the F-Score value (Equation (3)). As
it is a metric which involves both precision and recall, it provides more comprehensive
information about complex event detection.

F− score =
2× precision× recall

precision + recall
. (2)

Therefore, F-Scores were calculated for three complex events in two videos. Two
different scenarios for complex event detection were recorded by two cameras. The average
values from the two cameras for each scenario were considered for both the edge computing
and offline scenarios. Video 1 is the first video with 3812 frames, including 17 complex
events, and Video 2 is the second video with 4218 frames, including 23 complex events.
Figure 9 provides the precision and recall values for all three events in the two videos. In
this Figure, Event 1 represents coughing into hands and then touching the door handle (six
occurrences in Video 1, seven occurrences in Video 2); Event 2 is coughing into arms and
then touching the door handle (four occurrences in Video 1, seven occurrences in Video 2);
finally, in Event 3, a person coughs into his/her hands and then arms, and then touches
the door handle (seven occurrences in Video 1 and nine occurrences in Video 2). All of the
values in Figure 9 are the average values of precision and recall for two videos. Values of
recalls increased significantly when using multi-camera architecture, although its precision
increase is insignificant. This is due to the proposed architecture reducing the number of
false-negative events, which, in doing so, significantly improved the recall values.
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Figure 10 presents the F-score results for this architecture and for the single-camera
approach for Camera1 and Camera2. In this Figure, the average F-Score values from two
videos are the used events. A more detailed figure is available in in Appendix B.
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Figure 10. Event matching F-score results for the integrated architecture with multi-cameras, Cam-
era1, and Camera2 for three events.

This overview of F-scores demonstrated that the accuracy of complex event detec-
tion with the integrated architecture was about 1.73 times higher than that of the edge
computing scenario. This was even more significant in the case of more complex events
(e.g., Event 3). This occurred because the integrated architecture generates more true
positives (TPs) and fewer false negatives (FNs) in object detection. Finally, as expected,
object detection accuracy affected the final complex event accuracy. For instance, Event 1
(coughing into hands) resulted in higher complex event accuracy than Event 2 (coughing
into arms), because the average precision of coughing into hands is greater than the object
class for coughing into arms. Events which include more simple events tend to result in
more errors being made, as errors for each simple event affects the final complex event
accuracy. Consequently, the F-Score for Event 3 is lower than for Event 1 and Event 2 for
all complex event detection scenarios because Event 3 involved more simple events and
spatial–temporal relationships.

5.3. Online Event Detection Speed

In order to evaluate the speed of the developed architecture, the time latency of event
matching was considered for offline event detection using a laptop and for online event
detection with Jetson Xavier using single-camera processing as well as the integrated
architecture. We used Equation (2) to calculate relative latency. In the equation, te is the
time that the cloud database was notified, tf is the frame reading time, and tw is the time
that was defined as the threshold (e.g., coughing and then touching the door handle should
take less than two minutes in order for it to be considered a risk behaviour) for the event in
the event pattern database.

l =
te − t f − tw

tw
. (3)

In Figure 11, the average time latency of the three events with different tw for the three
scenarios was presented. The processing speed for object detection for an offline scenario
was 25 fps, while it was around 4 fps for the edge computing scenario. The tw for Events
1 and 2 was 30 s, while it was one minute for Event 3. The illustrated values represent
the average latency of all of the cameras and videos. Therefore, for the offline and edge
computing architecture, the values were the average of the average of the latency of the
two cameras in the two scenarios. The integrated architecture latency values are the results
of averaging the latency of Scenarios 1 and 2.
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The latency values for Event 3 are the highest out of all of the scenarios because the
complex event has more spatial and temporal relationships. The difference in latency for
the integrated architecture is 0.85 times higher than that of the edge computing scenario,
but this is not significant. For more complex events (i.e., complex events that include more
spatial and temporal relationships), the developed architecture demonstrated significant
latency growth in comparison to fewer complex events. Whilst this growth was not
noticeable in the edge computing scenario, as the speed of offline processing was much
higher than the other two scenarios, the latency difference between different events was
relatively high in comparison to that of the edge computing architecture.

6. Discussion

Complex event processing (CEP) systems and complex event detection have been
widely studied and applied in areas such as fraud detection [72], banking and insurance
industries [73], flight diversion prediction [74], IoT [75], and vehicle information process-
ing [76]. These systems can filter and aggregate events to provide semantic materials
and constitute high-level meaningful events. Most of the existing CEP engines, such as
knowledge-infused CEP [77], context-aware nested CEP [78], model4CEP [79], and in-
telligent machine to machine [80], do not present any solution for reducing or handling
uncertainty in complex event detection.

One of the most interesting applications of CEP engines is their ability to detect
complex events in video streams. Although there are several engines that can handle the
uncertainties involved in complex events, there is still a gap in handling uncertainties in
video CEP engines, such as VidCEP [20], Eventnet [81], and video event knowledge graph
(VEKG) CEP [82]. Complex event detection in video streams involves various objects with
different confidence levels, spatial relationships, and temporal relationships. Errors in each
part affects the final event detection quality. Sources of uncertainty for CEP engines are
either missing data or outliers [83]. Missing data are a major problem for CEP engines and
increase the uncertainty of the final results.
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The proposed integrated architecture leverages multiple camera streams and cloud
computing to resolve the problem of missing data. Gathering information from different
observation points allowed our system to resolve the problem of missing objects and simple
events in camera streams. Based on the experimental results in Section 4, the accuracy of
complex event detection increased in comparison to a traditional complex event detection
system. As a result, it can be argued that the solution improved the accuracy of the complex
event detector.

7. Conclusions

One of the most significant problems for complex event detection is the problem of
missing objects and simple events in real-time camera streams. The missing object problem
often occurs because of camera angles, low precision of object detection models, or low
processing speeds and missing frames. This research addressed the second and third issues
using high-speed YOLO computation with edge computing before utilising an integrated
edge and cloud computing architecture that provided different viewpoints of the same
scene using multiple cameras in order to increase the confidence level of object detection.
This paper presents an IoSC based on an integrated edge and cloud computing architecture
for complex event detection. For this, video stream results (i.e., detected objects and simple
events) were obtained from several cameras directed at a common scene with different
viewing angles. The designed architecture collected different parts of a complex event
from multiple cameras and matched the event using the cloud services. By doing so,
this architecture reduced the possibility of missing objects and simple events. Finally, we
applied the OGC STA as an open-source international standard in order to improve the
interoperability between smart cameras.

The experimental results of online event matching reveal the accuracy of both the
object detection model and the speed effect final complex event. The object detection results
demonstrate that the YOLO model delivered better accuracy for complex event processing
as it missed fewer frames. In order to evaluate the designed architecture, F-scores of online
event detection were used. They demonstrate that the accuracy of the developed integrated
edge and cloud computing architecture was significantly greater than that of the edge
computing architecture. The latency of the integrated architecture was 0.85 times more
than that of the edge-based architecture. This developed architecture was more sensitive
to the number of spatial and temporal relationships in relation to latency. Therefore, the
differences between the developed architecture latency for edge computing and offline
scenarios were more significant than for more complex events. Finally, an integrated cloud
and edge computing architecture for IoSC was implemented to detect risk behaviours
related to COVID-19 spread. The results demonstrate that the developed architecture had
an average accuracy of 68%. This was higher than that of the single-camera edge computing
scenario. In conclusion, multiple cameras delivered better results than single cameras in
relation to complex event detection accuracy. The latency of the integrated architecture
was greater than that of the edge-based computing architecture, but this difference did not
significantly impact our case study of COVID-19 risk behaviour detection.

We intend to concentrate on increasing and verifying the accuracy of detecting simple
and complex events from different sensor types for future research. For example, the
detection of voices and images of objects from cameras and microphones enables us to
more precisely detect complex events from different sources [58,84]. In addition, the next
stage of our research will focus on complex event detection from cameras directed towards
different places [85]. Moreover, a potential area of interest for further exploration would be
developing a framework for building complex events from simple events derived from
separate detection areas
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Appendix A

The Developed Event Matching Pseudocode

Definition 1 (Event Vector). An event stored in the event database is considered a vector with
the following elements:

O = The array of detected object classes;
Sr = Spatial relationship vector which includes the spatial relationship expression and involved
object classes;
Tr = Temporal relationship vector which includes the temporal relationship expression and involved
spatial relationships;
Rt = An array (the root vector) of vectors including relationships between Tr. For example, an Rt
looks like this:
Rt = [R1(Tr1,Tr2,relationship_expression1), . . . , Rn(Trn−1,Trn,relationship_expressionn)]

Definition 2 (Detection Object Vector). The detected object in every frame which includes the
following elements:

Bbox = The rectangle of object bounding boxes is an array: [xmin, ymin, width, height];
Class = The class name of the detected object;
Confidence = The probability confidence value of the detected object.
Trackid = The ID assigned to every object when the tracking module is run.

Pseudocode 1—Event Matching Process
begin

c = captureFrame()
spatial_rel=[]
temporal_rel=[]
while c

t = captureTime()
det_obj = objectDetector(c)
if det_obj.siz>0 do

for each event from eventPatterns do
object_event = []
for each obj_pattern from event.object do

if det_obj in obj_pattern do
object_event.add(det_obj)

end
end
if object_event.size() > 1 do

for each sr from event.Sr do
object1 = find(sr.object1.class,object_event)
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object2 = find(sr.object2.class,object_event)
r = spatialRelation(object1,object2)
if r is True do

s = (sr,obj1,obj2,t)
spatial_rel.add(s)

end
end
for each temporal_rel from event.Tr do

sr1 = find(temporal_rel.s1,spatial_rel)
sr2 = find(temporal_rel.s2,spatial_rel)

event_detected = temporalRelation(sr1.t,sr2.t)
if event_detected is True do

T = (sr,obj1,obj2,t)
temporal_rel.add(T)

end
end
for each root_vector from event.Rt do

R1 = find(root_vector.T1,temporal_rel)
R2 = find(root_vector.T2,temporal_rel)
R = root_relationship(R1,R2)
if R is False do

skipFrame()
end

end
return event

end
end

end
end

end

Appendix B

The detailed values for the matching accuracy of the integrated architecture and edge
computing results for Camera1 and Camera2 using two videos from three events.ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 20 of 23 
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Figure A1. Event matching results. (a) The integrated designed architecture event detection results. (b) The single-camera
edge-based architecture results for Camera1. (c) The single-camera edge-based architecture results for Camera2. Event 1 is
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