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Abstract: The construction and operation of air transport systems (ATS) needs huge investment, so its
performance is of wide concern. The influences of social and economic factors in different regions
must be considered when evaluating ATS performance. In this paper, a model combining data
envelopment analysis, stochastic frontier analysis, and bootstrap technique is adopted to evaluate
the ‘real’ performance of the air transport system in China. The evaluation results show the ATS
performance in different regions. Social and economic factors are proved to pose influences on
provincial ATS efficiency. Scale efficiency is the main factor that restricts the efficiency of China’s
ATS. Technological change has determined the trend of ATS total factor productivity. The research
results may implicate that improvements can be gained by modifying airspace limitations and
regulatory conditions that impose significant constraints on ATS. The importance of ATS technological
development strategy and the legitimacy of air transport modernization policy are also supported.

Keywords: air transport system; performance evaluation; data envelopment analysis; bootstrap
Malmquist

1. Introduction

The economic impact of aviation on global economies is critical—supporting 63 million
jobs and underpinning $2.7 trillion in economic activity [1]. Despite the importance of
aviation to the economy, governments have been cautious in expanding and upgrading the
air transport system (ATS). In recent years, many air transport construction projects have
been repeatedly debated upon or delayed, because the government and public are not sure
about the performance of the huge investments into the air transport industry. At the same
time, governments are not building critical aviation infrastructure fast enough to keep pace
with demand [1]. For instance, the expansion of London Heathrow airport has been held up
for a long time by persistent opposition. In 2018, the Mexican government announced the
cancellation of the plan to build a new hub airport at Mexico City. The lack of major airport
expansion in 2018 underscores the importance of maximizing the efficiency of existing
infrastructure [2]. For many airlines, day-to-day business is a struggle, with fuel and other
input prices climbing and margins are being squeezed. Thus, their critical fleet plans need
to be made more prudently [1]. In such a context, knowledge about ATS performance is
important for planners and regulators, as well as major players in civil aviation, to improve
the quality of their future decisions.

In 2013 to 2017, China’s ATS accomplished an average of 44 million passenger trips and
6.32 million tons of freight and mail transportation annually, making it the world’s second
largest air transport market. At the same time, the fixed asset investment into China’s
ATS was $27 billion per year and exceeded $35.3 billion in 2017 [3]. The rapid growth
of air transport is accompanied with huge resource input. To improve the development
quality of air transport industry, it is helpful to evaluate the investment performance and
productivity in the industry. The evaluation results can help improve the ATS performance
and promote its sustainable development. The term “air transport system” (ATS) in this
paper refers to air passenger and cargo transport, air transport support activities (airports,
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air traffic management and other air transport support activities), and general aviation
services. The provision of air transport capacity in a region is jointly determined by all
these aspects. There has been a lot of literature on airport or airline performances. However,
when making development strategies and investment decisions, it will be beneficial to
understand not only the efficiency of airports and airlines, but also the efficiency and
productivity of the whole system. For example, when central and local governments
make long-term civil aviation development plans, they need to know ATS performances
across different regions. Due to the huge resource input in civil aviation development,
there is competition among regions for the investment. It is necessary to understand the
investment efficiency in various regions, to give full play to the enormous investment
into ATS. In addition to governments, major participants of ATS, such as local airport
companies and airlines, can also improve their decision-making by taking advantage of
the knowledge about performance.

Another background is that before 2002, the investment and construction of China’s
ATS was mainly funded by the central government and the development was relatively
slow. After the reform of the civil aviation system in 2002, the ATS in China’s provinces
began to be jointly invested, built and operated by the central and local governments.
Local governments began to actively build local airports and local airline companies.
Moreover, governments encourage the expansion of investment and financing channels for
the aviation industry, making the ATS experience a rapid development period. Meanwhile,
the air transport investment gaps and output gaps among China’s different provinces
began to widen. This also provides a practical foundation for benchmarking the investment
efficiency and productivity of China’s regional ATS. It should be noted here that the
macroeconomic environment in which the ATS operates varies from region to region. Thus,
these environmental factors must be considered in the evaluation in order to obtain the real
efficiency and productivity. The efficiency and productivity results are expected to deepen
the understanding of the performance of China’s ATS, and to identify the macroeconomic
factors that affect the performance of the ATS.

In this paper, regional ATS will be taken as the evaluation object, and data envelopment
analysis (DEA) based methods will be used to conduct the benchmarking analysis. DEA is
a widely used nonparametric evaluation method that can evaluate relative efficiency of
multiple decision making units (DMUs). The DEA model has several significant advantages
in performance evaluation. For example, it is convenient to deal with multi-input and
multi-output situations, and it is unnecessary to specify the form of production function or
the distribution form of production efficiency in advance. In many cases, production is a
continuous, multi-period process during which production techniques and efficiencies may
change. When dealing with such panel data spanning multiple periods, the DEA-based
Malmquist index method can be adopted to analyze the productivity changes and their
main causes.

DEA related methods, including the Malmquist index, have been widely used in
performance studies in the field of air transportation. Yoshida and Fujimoto [4] and Barros
and Dieke [5] used the DEA method to evaluate the efficiency of Japanese airports and
Italian airports, respectively, and provided benchmarks for improving the operations of
poorly performing airports. In order to study the productivity changes in multi-year
period, some other studies further used the DEA-based Malmquist index to analyze
the productivity changes in airports [6,7]. Their studies show that government policies,
technological progress and other factors have a greater impact on airport efficiency than
the improvement of management levels.

In addition to efficiency evaluation, in order to identify the sources of airport inef-
ficiencies, a two-stage DEA is applied in some studies. In such a model, a second-stage
regression analysis (usually a Tobit regression or a truncated regression analysis) is added
after DEA to find the influencing factors of airport efficiency. Factors affecting airport
efficiency such as airport size [8,9], ownership [8,10], military use [9,11], location [12,13],
non-aeronautical revenues share and low-cost carriers (LCC) share in operations [13], pop-
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ulation density, weekly operating hours, and passenger traffic seasonality [9] have been
identified by previous literature.

Furthermore, rather than analyzing the airport production process as a single “black
box” process, some literature attempted to divide the airport production process into
more detailed stages to analyze airport efficiency. For example, Yu [14] decomposed
airport operations into production and service process, and further decomposed service
process into air side and land side aspects. Liu [15] advocated that airport operations
should be divided into two parallel processes, namely, aeronautical service sub-process
and commercial service sub-process in airport efficiency evaluation. In these studies,
a network DEA model is applied in their studies to evaluate both overall efficiency and
sub-processes efficiencies.

There are also some literatures that take the efficiency of airlines as the evaluation
object. Cui and Li [16] divided the production process of an airline company into three
sub-processes: operation, service, and sale. Their study used the network DEA method
to evaluate the environmental efficiency of 29 global airlines, and subsequently used a
Tobit regression analysis to identify the important influencing factors of airline efficiency.
Duygun, Prior [17] defined a network DEA comprising two sub-technologies that share
part of the inputs to disentangle the airline production process and evaluate European
airlines efficiency.

There are two gaps in existing literature. Firstly, previous researches mostly focus on
the performance studies of airports or airlines, but there is a lack of studies taking ATS
as the evaluated unit. However, airports or airlines are only one of the participants in a
region’s ATS. The generation of air transport capacity requires the cooperation of all ATS
participants such as airports, airlines, air traffic management and other supporters. For ATS,
taking the whole system as the object of evaluation can not only reflect the efficiency of all
major participants in the system, but also reflect the level of their cooperation in providing
regional air transportation capacity. However, few studies have focused on the efficiency
of the ATS.

Secondly, when evaluating performance, the operating environment of each DMU is of-
ten different, and these differences often significantly affect the performance of THE DMUs.
If the differences in operating environment are not taken into account, the performance
evaluation results obtained are inaccurate [18]. The operating environment characters
that exert influences on DMU performance evaluation are referred as “environmental
factors/variables” [18,19]. Such environmental factors also play a role in the performance
of the air transport industry. Some empirical studies have pointed out that a variety of
macroeconomic factors are related to, or can affect, the performance of air transportation
in different regions. Chaouk, Pagliari [20] point out that a few macro-environmental fac-
tors, including living standards of citizen, innovation, technological readiness, financial
market development, macro-economic environment, and goods market efficiency may
influence air traffic numbers and performance. However, few literatures in the field of air
transport have taken these macroeconomic factors into account when evaluating efficiency,
whether they were evaluating the performance of airports or airlines. As mentioned above,
some studies used regression analysis to identify the influencing factors of efficiency after
efficiency evaluation. What they have identified, however, are endogenous factors that
represented the DMU’s own characteristics, such as airport size, operating hours, degree of
privatization, and seasonality of passenger volume. However, few studies have considered
the exogenous environmental factors. An exception is that, Yu [14] and Ülkü [9] pointed out
that population factor, as an exogenous environmental factor, could affect airport efficiency,
and incorporated this factor into their DEA model. However, many other exogenous
macroeconomic environmental factors remained unconsidered in the existing DEA civil
aviation efficiency evaluation research.

In view of the above two research gaps, this paper constructs an index system of input,
output and environmental variables for performance evaluation of the ATS, and adopts
a three-stage DEA model [18] that can test and eliminate the influence of environmental
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factors, to evaluate the “real” performance of regional ATS. The three-stage model combines
DEA and stochastic frontier analysis (SFA). It is an adjusted model of the four-stage DEA
method by Fried, Schmidt [21]. It is worth noting here that, although SFA is another
commonly used parametric performance evaluation method, the purpose of SFA used in
this paper is not to directly evaluate performance, but to be used as a regression model in
the second stage. The role of the SFA is to identify and quantify the impact of operating
environment on the input slacks obtained by first stage DEA.

The remainder of the paper is structured as follows. Section 3 presents a brief intro-
duction to the methodology applied in this research. Section 4 describes the indicators
and data sources, including the input and output variables, as well as the environmental
variables. The empirical results are presented in Section 5 is concluding remarks.

2. Methods

A three-stage DEA-based model and bootstrap-Malmquist productivity index method
are applied in this research, as shown in Figure 1.

Figure 1. The method framework applied in this research.

2.1. The Three Stage DEA Model

At the first stage, the initial efficiency evaluation based on variable returns to scale
(VRS) is conducted with a BCC DEA analysis [22], using input and output quantity
data only.

The BCC model is modified from the CCR linear program introduced by Charnes,
Cooper, and Rhodes [23]. Let xt

k represent the kth decision making unit (DMU) input
vector of m inputs in period t, xt ∈ Rm

+, and let yt
k represent the DMUk’s output vector of

q outputs in period t, yt ∈ Rq
+. Under a panel of j = 1, 2, . . . , n regions and t = 1, 2, . . . , T

time periods, the contemporaneous production technology can be expressed as follows:

Tt =
{
(xt, yt : xt can produce yt)

}
(1)

Then, the input-based directional distance function is defined as follows:

Dt(xt
k, yt

k
)
= minθt

{
(θt : θt

xt
k ,yt

k
∈ Tt)

}
(2)
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θt ≤ 1 is the Farrell [24] input efficiency and equals the proportional contraction in
all inputs that can be feasibly accomplished given the level of outputs, if the DMU adopts
contemporaneous frontier production technology in period t.

Then, under the constant returns to scale (CRS) assumption that DMUs cannot or
change their scale (or size) of operations, CCR linear programming formula can be ex-
pressed as:

DCRS
t(xt

k, yt
k
)
= minθt

s.t.
n
∑

j=1
λt

jx
t
ij ≤ θtxt

ik

n
∑

j=1
λt

jy
t
rj ≥ yt

rk

λ ≥ 0; i = 1, 2, . . . , m; r = 1, 2, . . . , q; j = 1, 2, . . . , n;

(3)

where xt
ij is the amount of ith input to unit j in period t, yt

rj is the amount of rth output from
unit j in period t, n is the number of DMUs, m is the number of inputs, q is the number of
outputs. xt

ik and yt
rk are the ith input and rth output of the DMUk being evaluated in period

t. λt
j is j-dimensional weight vector of the DMUj in period t. θt′s CCR optimal solution

value indicates the estimation of technical efficiency (TE).
Compared with the CRS assumption of CCR model, BCC model only adds the con-

vexity constraint of
n
∑

j=1
λt

j = 1, which allows it take variable returns to scale (VRS) into

consideration. Note here that since our concern is the extent to which resource inputs
can be reduced in order to achieve technical efficiency without any reduction in air trans-
port capacity, input orientation BCC DEA model is adopted. The BCC model can be
expressed as:

DCRS
t(xt

k, yt
k
)
= minθt

s.t.
n
∑

j=1
λt

jx
t
ij ≤ θtxt

ik

n
∑

j=1
λt

jy
t
rj ≥ yt

rk

n
∑

j=1
λt

j = 1

λ ≥ 0; i = 1, 2, . . . , m; r = 1, 2, . . . , q; j = 1, 2, . . . , n;

(4)

The objective θt′s value of the liner program (4) indicates the pure technical efficiency
(PTE). Based on TE calculated from the CCR linear program and PTE from BCC model,
Scale Efficiency (SE) can be calculated by SE = TE/PTE.

Note here that the CCR model is used only for the separation of scale efficiency and
the estimation of DMUs’ returns to scale. Due to the assumption of various returns to
scale in this research, in the first and third stage of the three-stage model in this research,
BCC DEA model is employed to evaluate the ATS efficiency.

Then in period t, the quantities of ith input factor’s total slack (radial plus non-radial)
to unit j, st

ij, can be gained from the results of the BCC model in the first stage. st
ij illustrates

the difference between the existing inputs and the ideal inputs to achieve the optimum
efficiency of each DMU.

At the second stage, the input slacks st
ijsij gained from the first stage BCC analysis

are regressed against observable environmental variables and a composed error term by
stochastic frontier approach (SFA) regression analysis for each period t. In such a SFA
regression model, the regression equations can be expressed:
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st
ij = f

(
Zt

j , βt
i

)
+ ut

ij + vt
ij

εt
ij = ut

ij + vt
ij

(5)

where Zj is a vector representing the environmental variable vector affecting the efficiency
of the jth DMU in period t, Zj = (z1j, z2j, . . . , ztj). βt

i is the coefficient vector of environmen-

tal variable. f
(

Zt
j , βt

i

)
= Zt

j ·βt
i can calculate the environmental values which affect each

DMU’s inputs, εt
ij = ut

ij + vt
ij is the composed error term, ut

ij and vt
ij are uncorrelated vari-

ables, ut
ij reflects the managerial inefficiency component for the ith input of the jth DMU in

period t and uij ∼ N+(0, σui
2), vt

ij reflects statistical noise for the ith input of the jth DMU

in period t and vij ∼ N(0, σvi
2). Therefore, the role of the SFA is to decompose the first

stage slacks into environmental influences, managerial inefficiencies and statistical noise.
Then each DMU’s adjusted inputs are calculated from the results of SFA regressions

by means of:

xt
ij

A = xt
ij +

[
max

i

(
Zt

j × β̂t
i

)
− Zt

j × β̂t
i

]
+

[
max

i

(
v̂t

ij

)
− v̂t

ij

]
(6)

where xt
ij

A and xt
ij are adjusted and observed input quantities in period t, respectively, β̂t

i is
estimated values for βt

i by the SFA approach. The first adjustment on the right side of Equa-

tion (4),
[

max
i

(
Zt

j × β̂t
i

)
− Zt

j × β̂t
i

]
, puts all DMUs in a common operating environment.

The second adjustment,
[

max
i

(
v̂t

ij

)
− v̂t

ij

]
, puts all DMUs in the same state of nature. In or-

der to obtain estimates of v̂ij for each DMU, by using the Jondrow, Knox Lovell [25] and
Fried, Lovell [18] methodology, estimators of statistical noise residual can be calculated by:

Ê
[
vt

ij

∣∣∣ut
ij + vt

ij

]
= st

ij − Zt
j × β̂t

i − Ê
[
ut

ij

∣∣∣ut
ij + vt

ij

]
(7)

where the conditional estimators for managerial inefficiency is given by Ê
[
ut

ij

∣∣∣ut
ij + vt

ij

]
.

Then inputs adjusted for the impacts of both the observable environmental variables and
statistical noise can be obtained by:

xt
ij

A = xt
ij +

[
max

i

(
Zt

j ·β̂t
i

)
− Zt

j ·β̂t
i

]
+

[
max

i

(
Ê
[
vt

ij

∣∣∣ut
ij + vt

ij

])
− Ê

[
ut

ij

∣∣∣ut
ij + vt

ij

]]
(8)

Stage 3 is a rerunning of BCC DEA model, using adjusted inputs and original outputs.
The result of Stage 3 is a DEA-based evaluation of “real” performance couched solely in
terms of managerial efficiency, purged of the effects of the operating environment and
statistical noise.

2.2. The Malmquist Productivity Index and Bootstrap-Malmquist Approach

Then the adjusted inputs and original outputs are used to calculate the Malmquist
productivity index. Fare, Grosskopf [26] developed a DEA-based Malmquist productivity
index (MPI) to calculate the total factor productivity index (TFPI) overtime, as shown in
Equation (9):

M
(

xt, yt, xt+1, yt+1
)
=

[
Dt(xt+1, yt+1)

Dt(xt, yt)
×

Dt+1(xt+1, yt+1)
Dt+1(xt, yt)

]1/2

(9)

where y represents the output vector, and x is the input vector. Dt(xt, yt) is the input
distance function defined in Equation (2). M

(
xt, yt, xt+1, yt+1) measures the total produc-

tivity changes between period t and period t + 1 with reference to the frontier technology
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at period t. The total productivity improves if M > 1, remains unchanged if M = 1,
and declines if M < 1. The TFPI can be further decomposed into two components: the
technical efficiency change index (TECI), which measures “catching up” to the frontier
isoquant between period t and period t + 1; and the technological change index (TCI),
which captures the frontier isoquant from one period to another. That is, Equation (7) can
also be rearranged as the product of catch-up (TECI) and frontier shift (TCI) as shown in
Equation (10):

TFPI = TECI × TCI =
Dt+1(xt+1, yt+1)

Dt(xt, yt)
×
[

Dt(xt, yt)
Dt+1(xt, yt)

×
Dt(xt+1, yt+1)

Dt+1(xt+1, yt+1)

]1/2

(10)

The TECI indicates whether an DMU has moved closer to, or further from, the frontier
technology over the study period. It is related to DMU’s efforts for improving its efficiency.
The TCI reflects the change in the efficient frontiers between two time periods, which is
mainly due to improvements in technological level.

However, since the DEA-based Malmquist index estimators are obtained from ob-
served finite samples, the corresponding measures of efficiency may be sensitive to the
sampling variations of the obtained frontier [27,28]. To address this problem and provide a
statistical basis for the model applied, we use the smooth bootstrapping method proposed
by Simar and Wilson [27] and Simar and Wilson [28], to approximate the sampling dis-
tribution of the unknown true values of MPI, and get the bootstrapping MPI estimators.
The bootstrapping procedure can be found detailed in the related literatures [27,28].

3. Data

In this research, DMUs are China’s 30 provincial ATSs. Consistent with China’s
Industrial Classification for National Economic Activities (GB/T 4754—2017), the ATS
referred in this paper consists of air passenger and freight transport, general aviation
service, plus air transport support activities, which includes airports, air traffic control and
other air transport auxiliary activities. The important fact to note here is that according
to accounting standards in air transport industry, major investments, such as aircraft
fleets (rolling stock), and the construction of airports and related facilities (infrastructure),
are fixed asset investments. This fact serves as an important basis for our selection of input
indicators later.

3.1. Input Indicators

Inputs in this research are defined as the resources that ATS take to generate air trans-
port capacity. The capital (rolling stock and infrastructure) and the number of employees
(or hours of work) are the most frequently considered variables since they represent the
main production process inputs [29]. Air transport is a capital-intensive industry, the mea-
sure of capital input is crucial in its efficiency analysis since investments in infrastructure
and rolling stock and the cost related to their usage account for a prominent part of firms’
expenses in this industry. Capital input may be considered as either a flow or stock vari-
able. In previous studies the stock index is often used as an input indicator. As stated by
Crescenzi, Di Cataldo [30] and Farhadi [31], in order to accurately estimate the growth
effect of infrastructure, the capital stock rather than the flow of infrastructure should be
used, because it is the stock rather than the flow that really matters for long-term effects.
This is especially true for transportation infrastructure, because capital investment requires
construction and trial operation to achieve the transportation function, which leads to
certain lag. Using stock rather than flow can give more robust results and reduce the
reverse causality in empirical models [32,33], which also makes stock a more frequently
adopted variable. Furthermore, capital stock can be measured in monetary terms [34,35],
or in physical terms, for example, the length, area, or density of road and railway net-
work [30,33]. However, measuring capital inputs in physical units is often accused of
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posing several issues, as authors use a vast range of variables and it is quite hard to define
a unique unit of measure [29].

Therefore, in this research we use the monetary measure of capital stock as the proxy
of capital input. We apply the perpetual inventory method [36,37], which is most widely
used and considered as the most correct approach in measuring stocks of fixed assets [29],
to estimate each province’s ATS capital stock. For each province, the net ATS capital stock
at the end of current period Kt can be calculated by:

Kt = (1− δ)Kt−1 + It, t = 2003, 2004, . . . 2017. (11)

where It is the ATS fixed-asset investment in the current period, while δ is the depreciation
rate. Each province’s annual data on It comes from China Statistical Yearbook [38] and
Statistical Yearbook of the Chinese Investment in Fixed Assets [3].

In this research we assume ATS capital stock depreciates at a constant rate δ. As to the
value of δ, we use the comprehensive China infrastructure depreciation rate estimated by
previous studies [39–41], which is 0.0921. In addition, according to the Perpetual Inventory
Method, the estimation of the initial capital stock K0, in our case the capital stock at the
end of 2002, is calculated by:

K0 =
I0

δ + g
(12)

where I0 is the gross investment in initial year 2002, g is the geometric average growth rate
of fixed asset investment to the ATS during research period. Based on the collected data
between year 2002 and 2012, the value of g can be calculated, which is 0.15607.

In terms of labor input, we select the number of full-time employees in ATS as
the indicator. Data on this index comes from China Statistical Yearbook of the Tertiary
Industry [42].

3.2. Output Indicators

Output variables of the transportation industry typically are in two main categories:
transportation services (volume of passenger, freight and vehicles), and transportation
value added (GDP of the industry) [43–45]. Considering that the output value of air
transport is not only reflected in GDP in transportation industry, but also lies in the indirect
and catalytic effects of passenger and freight movement on other industries, the volume
of passenger, freight, and vehicles are used as three output variables of provincial ATS.
The data are collected from website of Civil Aviation Administration of China (CAAC) (http:
//www.caac.gov.cn/ (accessed on 30 December 2020)). Starting from 2017, CAAC reported
each province’s annual air transport passenger and freight throughput. For years prior to
2017, we follow the same method adopted by the CAAC and add up throughputs of all
civil airports in a province to get each province’s air transportation throughput.

3.3. Environmental Variables

It has been theoretically and empirically demonstrated that some social and economic
factors affect air transportation, which are referred to as environmental variables in this
study. Firstly, since an increase in economic income leads to an increase in economic activity
and affects the demand for air passenger and freight transport [46], the gross domestic
product (GDP) per capita is selected as an environmental variable. Secondly, because of
the relatively high price of air transport service, the regional consumption level has a sig-
nificant impact on air passenger and cargo transport volume [47,48]. Therefore, we choose
household consumption expenditure (HCE) as the second environmental variable. Thirdly,
due to the high dependence of R&D industries and other “on-time” technology-intensive
industries on air transport services [49], and considering technological development level’s
impacts on the operational efficiency of air transport, in this research three kinds of patent
granted per 10,000 people is selected as an environmental variable to express provincial
scientific and technological level. Fourthly, Balsalobre-Lorente, Driha [50] traced long-run

http://www.caac.gov.cn/
http://www.caac.gov.cn/
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asymmetry relationship and strong connection between economic growth and tourism
industry in conjunction with the ATS. This strong connection between tourism and avail-
ability of air transport is also supported by the studies of Gallego and Font [51] and Khan,
Dong [52]. Thus, the number of inbound tourists is selected as the environmental variable
to measure the tourism industry level. Fifthly, due to its direct demands on air cargo
transportation Malighetti, Martini [53], wholesale and retail sector’s value added is used
as another environmental variable. Sixthly, air transport is the foundation of global trade
and globalization, provides crucial services for international business and cross-border
investments [54,55]. Thus, regional openness is assumed to have impacts on air transport
demand, and on regional ATS efficiency. Therefore, as the openness indicator, actual uti-
lization of foreign direct investment (FDI) is selected as an environmental variable. Finally,
as previous studies of Melo, Graham [56] and Jiang, Timmermans [57] argued, the effect
of infrastructure on industries development varies across industry groups and transport
modes. Thus, we choose industrial structure as an environmental variable, and use the ratio
of the tertiary industry added value to GDP to represent the provincial industrial structure.

In summary, the input, output, and environmental variables of the three-stage DEA
approach applied are listed in Table 1.

Table 1. Index system for air transport system (ATS) efficiency and productivity evaluation.

Input Indicators Output Indicators Environmental Variables

Capital Stock Volume of Passengers Gross Domestic Product per capita
Number of Employees Volume of Freight Consumption

Number of Planes
taking off and landing Scientific and technological level

Tourism industry
Wholesale and retail industry

Value of capital stock is calculated according to the fixed-asset investment data from China Statistical Yearbook
[38] and Statistical Yearbook of the Chinese Investment in Fixed Assets [3]. Data of Number of Employees are
from China Statistical Yearbook of the Tertiary Industry [42]. Data of output indicators are collected from Civil
Aviation Administration of China website (http://www.caac.gov.cn/ accessed on 30 December 2020). Data of
environmental variables are from China Statistical Yearbook [38] and China Statistical Yearbook of the Tertiary
Industry [42].

Note here that following the Fried (2002) method, all seven environmental variables
are posited to influence ATS performance, although without assumption of the directions of
their impacts [18]. The impacts of the environmental variables will be further investigated
in Stage 2 SFA analysis.

Data of environmental variables are from China Statistical Yearbook [38] and China
Statistical Yearbook of the Tertiary Industry [42].

4. Results
4.1. First Stage Results

In the first stage, the BCC DEA is applied to evaluate the performance of thirty
provinces’ ATS. Tables A1 and A2 recapitulate detailed results of the first-stage DEA (no
adjustment in the environmental variable and statistical noise). The national average PTE
and average SE over the 16-year period are shown in Figure 2. Based on the first-stage
DEA results, the operating inefficiency is mainly caused by PTE. For comparison purposes,
more detailed first stage results will be discussed in the third stage results. Capital and
labor input slacks were gained by the first stage BCC model.

http://www.caac.gov.cn/
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Figure 2. National average of pure technical efficiency (PTE) and scale efficiency (SE) over the study
period in the first stage.

4.2. Second Stage Results

The main purpose of second stage is to use SFA to identify the influences of selected
macro-economic factors on ATS efficiency, and then calculate the adjusted input values
to evaluate real ATS efficiency removing these influences. The SFA regression is utilized
to regress capital and labor input slacks respectively, against seven exterior environmen-
tal variables, including the GDP per capita, consumption, scientific and technological
level, tourism industry, wholesale and retail industry, openness to foreign investment,
and industrial structure.

The regression results of the SFA model are demonstrated in Table 2. These results
suggest that the environment factors do indeed exert a statistically significant influence on
ATS efficiency. In accordance with Table 1, likelihood ratio test values of the regressions
for the two input slacks are both higher than the threshold value of the mixed chi-square
distribution examination and are at 1% confidence level, rejecting the hypothesis that the
one-sided error component makes no contribution to the composed error term, implying
the rationality of the stochastic frontier specification [18]. The values of γi for two regression
models are close to 1, which implies that the impact of managerial inefficiency dominates
that of statistical noise in the determination of input slack. When examining the impact
of environmental variables on input slack variables, if the coefficient is positive, it means
that the increase in the value of environmental variables will lead to the increase in input
slack variables or the decrease in output, resulting a negative impact on ATS efficiency.
If the coefficient is negative, it indicates that the increase of this environmental variable
will bring the reduction of input slack or increase of output, which will have a positive
impact on the ATS efficiency.

Table 2. The second stage stochastic frontier analysis (SFA) results.

Independent Variable
Dependent Variable

Capital Input Slack Labor Input Slack

Constant term −81,133.907 ***
(−6146.518)

1196.001 ***
(3.100)

GDP per capita 127,103.120 ***
(11,302.493)

861.606 **
(2.202)

Consumption −131,960.330 ***
(−10,983.392)

−2025.766 ***
(9.109)

Technological level −96,452.384 ***
(−5560.775)

−778.917
(−1.500)

Tourism industry level 49,024.917 ***
(2954.973)

22.793
(0.091)

Wholesale and retail industry level −36,260.115 ***
(−2309.660)

1519.889 ***
(3.302)
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Table 2. Cont.

Independent Variable
Dependent Variable

Capital Input Slack Labor Input Slack

Openness to foreign investment −2859.904 ***
(−164.608)

−292.306 *
(−1.904)

Industrial structure −122,923.980 ***
(−8783.660)

−385.309 **
(2.303)

σ2
i

6.190 × 1011 ***
(6.190 × 1011 )

2.00E × 107 ***
(1.67E × 107)

γi
9.10E ×10−1 ***

(152.434)
6.61 × 10−1 ***

(28.100)
LR test of the one-sided error 0.68152907 × 103 0.19282677 × 103

*** Significant at the 1% level, ** Significant at the 5% level, * Significant at the 10% level. Values in brackets
represent t-statistics of the coefficients.

1 GDP per capita

As show in the second row in Table 2, the coefficients of the GDP per capita are
positive and significant at 5% level or better in the regression of capital slack and labor
slack (127,103.12, and 861.606). This shows that the increase of per capita GDP will lead
to the increase of the slack variable of capital and labor input. This may be because the
provinces with higher per capita GDP have higher willingness and capacity to invest in air
transport, but the resources invested are not fully utilized, which has a negative impact on
the efficiency of ATS.

2 Consumption

The coefficients of consumption on capital and labor input slack variables are both
negative and significant at the significance level of 1% (−131,960.33, and −2025.766).
This shows that higher consumption level is beneficial to air transport operation. Compared
with other modes of transportation, air transportation has a higher price. In provinces with
high consumption capacity, people are more likely to have a stronger ability to purchase air
transportation services, and the resource investment in air transportation can be more easily
converted into the growth of passenger and cargo volume, thus avoiding investment waste.

3 Technology level

The regression coefficient of technology level on capital input slack variables is neg-
ative and significant at the 1% level (−96,452.384). The improvement of scientific and
technological level can improve the operation efficiency of airlines, airports and air traffic
control through the application of new technology and equipment and the improvement of
management level. This shows that it is reasonable to adhere to the strategy of building
“smart airport” and “smart civil aviation”, which is conducive to the improvement of
the overall efficiency of ATS. Another reason may be that, as pointed out in the previous
literature, technology intensive industries, such as high-tech manufacturing and R&D,
are more dependent on air transport services, which will lead to more demand for air
transport, thus reducing input redundancy.

4 Tourism industry

The coefficient of tourism level on capital input slack is positive and significant at
1% level (49,024.917). ATS is an important transportation foundation of tourism industry.
Provinces and cities rich in tourism resources and focusing on the development of tourism
are more inclined to invest in ATS to improve their urban image and facilitate tourism
industries. Large-scale input of resources leads to increased input slack. Therefore, at the
present stage, although tourism provides the volume demand for the ATS, it does not
necessarily bring the improvement of air transport efficiency. Especially under the strategy
of moderately advanced construction, provinces and cities need to pay attention to the
improvement of ATS efficiency while increasing investment.
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5 Wholesale and retail industry

The regression coefficient of the wholesale and retail level to the capital input slack
variable is negative, while the coefficient of the labor input slack variable is positive, both of
which are significant at the significance level of 1% (−36,260.115 and 1519.889, respectively).
This shows that higher level of wholesale and retail can lead to the reduction of capital
input slack, and lead to the increase of labor input slack. More developed wholesale and
retail industries can bring business volume to air transport, and previous studies have
demonstrated that transportation infrastructure serves as the basis for the development
of wholesale and retail industries [53]. Better civil aviation infrastructure can also help
enterprises to better maintain contact with upstream and downstream dealers, grasp market
information faster and more accurately, and expand the market. The mutual promotion
mechanism between wholesale and retail and air transport makes this environmental
variable have significant effect.

6 Openness to foreign investment

The regression coefficient of openness to foreign investment on capital and labor
input slack variables are both negative and significant at 10% level or better (−2859.904,
and −292.306). The increase in the degree of openness to foreign capital will significantly
reduce the input slacks of capital and labor. The decrease in the input slacks of capital
and labor is attributed to a benevolent environment for ATS supported by sufficient
openness. Foreign enterprises need air transportation to maintain domestic and foreign
relations, and their production and sales activities often rely on international trade. All these
demands for civil aviation can make the investment in air transportation more efficient.

7 Industrial structure

The regression coefficient of the industrial structure on capital and labor input slack vari-
ables are both negative and significant at the 5% level or better (−122,923.98, and −385.309).
This shows that the increase of the proportion of the tertiary industry will lead to the
decrease of capital and labor input slacks. Previous studies [50,56] have suggested that
air transport contributes more to the growth of the tertiary industry. From the economic
perspective of improving the input-output ratio of airlines and airports, the spatial layout
and subsidy of the new airlines and airports should be inclined to the cities with better ter-
tiary industry foundation. The results of this study show similar conclusions from another
direction. The tertiary industry is more dependent on air transport, and the developed
tertiary industry can indeed bring higher input-output ratio to air transport and improve
the efficiency of air transport.

The original inputs are then adjusted to account for the effects of variation in the
operating environment and in statistical noise, by separating managerial inefficiency
component and statistical noise item utilizing the SFA approach. The values of capital and
labor input variables are adjusted by Equation (7), excluding the exterior environmental
values and statistical noise through substituting the coefficients values σ2

i , γi in Table 2
into Equations (5) and (6). Provinces with relatively unfavorable air transport operating
environments and relatively bad luck have their inputs adjusted downward by a relatively
small amount, while provinces with relatively favorable operating environments and
relatively good luck have their inputs adjusted upward by a relatively large amount [18].

4.3. Third Stage Results

At the third stage, based on the adjusted inputs from the second stage and the original
outputs, we can estimate the efficiency again with BCC DEA model. This final evaluation
put all provinces on a level playing field and can reflect the actual ATS performance, since
variation in operating environments and the vagaries of luck have been accounted for.
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• Pure technical efficiency (PTE)

Table 3 listed the polished PTE of the 30 provincial air transport industries. After ex-
cluding the influences of exterior environmental factors and statistical noise, 25 out of
30 provinces have improved their PTE values in the evaluation results of the third stage
(Table A1 in Appendix A, Table 3). Four provinces were found to be best performers
over the entire study periods having consistently full DEA PTE indexes (i.e., Shanghai,
Guangdong, Henan, and Qinghai). The civil aviation administration of China (CAAC)
has divided China’s air transport into six regions, namely North China, Northeast China,
East China, Central and Southern China, Southwest China, Northwest China, each of
which consists of several geographically adjacent provinces. Regional administration was
set up for each region. Before the adjustment, the six regions’ average PTE indexes over
the study period are 0.6610, 0.7617, 0.4810, 0.7568, 0.6680 and 0.7899, respectively. After the
adjustment, they are 0.9546, 0.9373, 0.8684, 0.9356, 0.9160 and 0.9597, respectively. This indi-
cates that in the BCC DEA method, the PTE indexes of most provinces are underestimated
because the differences in environmental factors are not considered. In addition, after the
adjustment, the six regions’ relative ranking in PTE has changed greatly. As shown in
Figure 3a, in the first stage, the PTE is highest in Central and Southern China before 2009,
and highest in Northwest China after 2009. In the third stage, the PTE value is the highest in
North China before 2008, and highest in Northwest China after 2008. However, as shown
in Figure 3b, after the adjustment, the gap of pure technical efficiency among each region
narrows. After removing the influence of environmental factors, the PTEs of the ATS in
each region have improved, and the relative differences among provinces in each year over
the study period have narrowed.

Figure 3. Six regions’ PTEs over the study period before and after the adjustment.
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Table 3. The third stage pure technical efficiency (PTE) results.

Region 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Average

North China

Beijing 1 1 1 1 1 1 1 1 1 1 1 1 1 0.89 0.894 0.916 0.981
Tianjin 1 0.91 1 0.974 0.963 0.995 0.933 0.908 1 1 0.882 0.911 0.916 0.934 0.967 0.895 0.949
Hebei 0.867 0.985 1 1 1 0.982 0.933 0.952 0.917 0.93 0.987 0.985 0.982 0.979 0.988 0.962 0.966
Shanxi 1 0.975 0.895 0.941 0.933 0.926 0.95 0.833 0.882 0.861 0.914 0.943 0.977 0.982 1 1 0.938

Inner Mongolia 1 0.938 0.939 0.967 0.95 0.941 0.883 0.775 0.843 0.835 0.95 1 1 1 1 1 0.939
Mean 0.973 0.962 0.967 0.976 0.969 0.969 0.940 0.894 0.928 0.925 0.947 0.968 0.975 0.957 0.970 0.955 0.955

Northeast
China

Liaoning 0.909 0.788 0.807 0.83 0.798 0.782 0.828 0.626 0.666 0.568 0.734 0.73 0.729 0.792 0.809 0.781 0.761
Jilin 0.97 0.91 0.904 0.909 0.885 0.893 0.846 0.783 0.847 0.853 0.899 0.912 0.9 0.957 0.96 0.896 0.895

Heilongjiang 0.892 0.927 0.925 0.952 0.958 0.906 0.985 0.929 0.953 0.93 0.962 0.971 1 1 0.965 0.925 0.949
Mean 0.924 0.875 0.879 0.897 0.880 0.860 0.886 0.779 0.822 0.784 0.865 0.871 0.876 0.916 0.911 0.867 0.868

East China

Shanghai 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000
Jiangsu 0.811 0.864 0.872 0.802 0.768 0.892 1 1 1 1 1 0.952 0.967 1 1 1 0.933

Zhejiang 0.981 0.878 0.976 0.828 1 1 1 1 1 1 1 1 1 1 1 1 0.979
Anhui 0.959 0.972 0.973 0.984 0.981 0.94 0.97 0.884 0.888 0.858 0.918 0.954 1 0.975 0.979 0.963 0.950
Fujian 0.933 0.911 0.872 0.886 0.851 0.83 0.877 0.581 0.652 0.719 0.914 0.896 0.887 0.905 0.921 0.855 0.843
Jiangxi 0.892 0.961 0.949 0.978 0.97 0.931 0.969 0.821 0.87 0.874 1 0.901 1 1 1 1 0.945

Shandong 0.938 0.963 0.949 0.956 0.914 0.914 0.855 0.817 0.791 0.835 0.877 0.92 0.929 0.949 0.973 1 0.911
Mean 0.931 0.936 0.942 0.919 0.926 0.930 0.953 0.872 0.886 0.898 0.958 0.946 0.969 0.976 0.982 0.974 0.937

Central and
Southern China

Henan 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000
Hubei 0.889 0.93 0.882 0.953 0.894 0.903 0.897 0.702 0.738 0.783 0.963 0.958 1 1 1 0.955 0.903
Hunan 0.842 0.915 1 0.929 1 1 1 1 0.921 0.862 0.949 0.986 0.98 0.994 0.991 0.936 0.957

Guangdong 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000
Guangxi 1 0.971 0.978 0.969 0.987 0.997 0.974 0.935 0.929 0.875 0.969 1 0.919 0.962 0.977 0.937 0.961
Hainan 1 0.939 0.885 0.841 0.793 0.773 0.771 0.459 0.628 0.618 0.846 0.847 0.925 0.814 0.745 0.798 0.793
Mean 0.955 0.959 0.958 0.949 0.946 0.946 0.940 0.849 0.869 0.856 0.955 0.965 0.971 0.962 0.952 0.938 0.936

Southwest
China

Chongqing 0.953 0.957 0.908 1 1 1 0.852 0.648 0.704 0.703 0.95 0.946 0.997 0.982 0.949 0.933 0.905
Sichuan 0.926 0.835 0.83 0.804 0.793 0.777 0.73 0.722 1 1 1 1 1 1 1 1 0.901
Guizhou 0.998 0.962 0.949 0.977 0.966 0.939 0.894 0.918 0.892 0.855 0.877 0.939 0.962 0.95 0.901 0.891 0.929
Yunnan 1 1 1 1 1 1 1 0.737 0.833 0.718 0.88 0.895 0.879 0.954 0.964 0.998 0.929
Mean 0.969 0.939 0.922 0.945 0.940 0.929 0.869 0.756 0.857 0.819 0.927 0.945 0.960 0.972 0.954 0.956 0.916

Northwest
China

Shaanxi 0.915 0.856 0.829 0.892 0.974 0.958 1 1 1 1 1 1 1 1 1 1 0.964
Gansu 0.92 0.932 0.925 0.937 0.963 1 1 1 1 0.995 1 1 1 1 1 1 0.980

Qinghai 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000
Ningxia 0.995 1 1 1 1 1 0.981 0.937 0.983 1 1 1 1 1 1 1 0.994
Xinjiang 0.91 0.879 0.884 0.899 0.844 0.824 0.837 0.653 0.703 0.761 0.858 0.985 0.957 0.958 0.93 0.905 0.862

Mean 0.948 0.933 0.928 0.946 0.956 0.956 0.964 0.918 0.937 0.951 0.972 0.997 0.991 0.992 0.986 0.981 0.960



ISPRS Int. J. Geo-Inf. 2021, 10, 83 15 of 29

As stated in previous study [58,59], when evaluating industrial competitiveness or
efficiency, the average efficiency of the ATS during one particular year compared to other
years is very important, as this would indicate whether any year was the best performing
year with respect to overall industrial efficiency. As Figure 3b shows, in 2009, 2010 and
2011, there is a decline in ATS PTE in all six regions, and it reaches the low point over all 16
years. This is consistent with the practice that, after the 2009 financial crisis, China adopted
large-scale infrastructure investment plan, including large scale air transport investment,
to boost the economy. During this period, the investment into China’s civil aviation industry
increased significantly. However, the payoff of transportation investment had a certain lag
effect, and passenger and cargo traffic did not increase in parallel to the increasing inputs.
Therefore, the efficiencies in 2009 and the following two years are significantly lower than
the other years.

• Scale efficiency (SE)

As shown in Tables 4 and A2, after the adjustment, the scale efficiency of 25 out of
30 provinces have decreased, and the overall level of SE gets lower (Figure 4a,b). These changes
in SE caused by this adjustment can also be clearly seen from Figure 3a,b. The average
SE values over the study years in North China, East China, Northeast China, Central and
southern China, Southwest China, and Northwest China are 0.807, 0.768, 0.765, 0.574, 0.485
and 0.472, respectively. Between 2002 and 2017, the average SE is much lower than the
average PTE (Figures 3b and 4b).

Figure 4. Six regions’ SEs over the study period before and after the adjustment.
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Table 4. The third stage scale efficiency (SE) results.

Region 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Average

North China

Beijing 1 1 0.978 0.642 0.699 0.763 0.645 0.794 0.685 0.796 0.734 0.689 0.625 0.707 0.692 0.621 0.754
Tianjin 0.31 0.24 0.285 0.401 0.424 0.44 0.612 0.61 0.593 0.574 0.503 0.542 0.53 0.474 0.502 0.64 0.480
Hebei 0.164 0.082 0.073 0.222 0.289 0.161 0.159 0.184 0.278 0.336 0.38 0.382 0.437 0.348 0.339 0.517 0.272
Shanxi 0.277 0.229 0.261 0.308 0.346 0.373 0.405 0.474 0.485 0.478 0.579 0.612 0.604 0.569 0.598 0.831 0.464

Inner Mongolia 0.423 0.149 0.187 0.204 0.246 0.25 0.303 0.411 0.393 0.457 0.64 0.623 0.717 0.669 0.621 1 0.456
Mean 0.435 0.340 0.357 0.355 0.401 0.397 0.425 0.495 0.487 0.528 0.567 0.570 0.583 0.553 0.550 0.722 0.485

Northeast China

Liaoning 0.932 0.696 0.738 0.702 0.798 0.852 0.817 0.964 0.956 0.969 0.922 0.874 0.82 0.714 0.781 0.964 0.844
Jilin 0.705 0.208 0.203 0.201 0.216 0.227 0.25 0.31 0.367 0.365 0.427 0.455 0.446 0.457 0.34 0.51 0.355

Heilongjiang 0.474 0.359 0.358 0.367 0.352 0.337 0.427 0.562 0.586 0.568 0.664 0.67 0.671 0.688 0.585 0.712 0.524
Mean 0.704 0.421 0.433 0.423 0.455 0.472 0.498 0.612 0.636 0.634 0.671 0.666 0.646 0.620 0.569 0.729 0.574

East China

Shanghai 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000
Jiangsu 0.593 0.559 0.598 0.64 0.719 0.767 0.923 1 1 1 0.962 0.986 0.987 1 1 1 0.858

Zhejiang 0.672 0.93 0.972 0.924 1 1 1 1 1 0.93 1 1 1 1 1 1 0.964
Anhui 0.429 0.291 0.283 0.289 0.292 0.287 0.299 0.355 0.362 0.365 0.458 0.448 0.475 0.391 0.434 0.493 0.372
Fujian 0.923 0.843 0.821 0.774 0.846 0.874 0.829 0.994 0.999 0.997 0.941 0.93 0.898 0.861 0.845 0.899 0.892
Jiangxi 0.163 0.247 0.244 0.291 0.292 0.287 0.326 0.394 0.366 0.38 0.5 0.504 0.465 0.472 0.343 0.577 0.366

Shandong 0.65 0.812 0.825 0.822 0.901 0.937 0.902 0.993 0.999 0.912 0.947 0.937 0.994 0.938 0.994 0.851 0.901
Mean 0.633 0.669 0.678 0.677 0.721 0.736 0.754 0.819 0.818 0.798 0.830 0.829 0.831 0.809 0.802 0.831 0.765

Central and
Southern China

Henan 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000
Hubei 0.54 0.542 0.543 0.506 0.583 0.719 0.658 0.876 0.797 0.985 0.863 0.868 0.982 0.86 0.957 0.966 0.765
Hunan 0.456 0.615 0.635 0.661 0.66 0.673 0.693 0.875 0.847 0.883 0.905 0.879 0.936 0.873 0.858 0.922 0.773

Guangdong 1 1 0.937 0.854 0.741 0.771 0.724 0.662 0.673 0.927 0.964 0.492 0.515 0.627 0.624 0.607 0.757
Guangxi 0.587 0.563 0.589 0.576 0.562 0.58 0.599 0.756 0.753 0.77 0.787 0.758 0.729 0.763 0.744 0.949 0.692
Hainan 1 0.75 0.783 0.716 0.755 0.831 0.797 0.976 0.952 0.928 0.884 0.85 0.859 0.802 0.853 0.893 0.852
Mean 0.764 0.745 0.748 0.719 0.717 0.762 0.745 0.858 0.837 0.916 0.901 0.808 0.837 0.821 0.839 0.890 0.807

Southwest China

Chongqing 0.759 0.593 0.586 0.579 0.675 0.771 0.692 0.87 0.838 0.89 0.884 0.857 0.864 0.803 0.835 0.869 0.773
Sichuan 0.933 0.802 0.873 0.869 0.977 0.978 0.907 0.889 0.716 0.766 1 0.627 0.776 0.861 0.84 0.741 0.847
Guizhou 0.644 0.343 0.357 0.345 0.376 0.383 0.38 0.485 0.488 0.481 0.574 0.57 0.616 0.572 0.582 0.8 0.500
Yunnan 0.874 1 1 1 1 1 1 0.998 0.84 0.908 0.979 0.972 0.998 0.952 0.935 0.78 0.952
Mean 0.803 0.685 0.704 0.698 0.757 0.783 0.745 0.811 0.721 0.761 0.859 0.757 0.814 0.797 0.798 0.798 0.768

Northwest China

Shaanxi 0.793 0.684 0.757 0.767 0.742 0.779 0.794 1 1 1 1 1 1 1 1 1 0.895
Gansu 0.313 0.187 0.2 0.208 0.198 0.22 0.219 0.278 0.313 0.293 0.38 0.437 0.399 0.386 0.403 0.61 0.315

Qinghai 0.071 0.09 0.089 0.081 0.08 0.089 0.101 0.135 0.136 0.143 0.23 0.23 0.234 0.252 0.236 0.254 0.153
Ningxia 0.088 0.115 0.13 0.132 0.126 0.141 0.164 0.218 0.246 0.264 0.332 0.364 0.378 0.381 1 0.594 0.292
Xinjiang 0.603 0.519 0.603 0.545 0.514 0.547 0.498 0.594 0.716 0.76 0.826 0.877 0.899 0.88 0.87 0.998 0.703

Mean 0.374 0.319 0.356 0.347 0.332 0.355 0.355 0.445 0.482 0.492 0.554 0.582 0.582 0.580 0.702 0.691 0.472
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This shows that compared with PTE, SE is the main factor restricting the investment
efficiency of the ATS in most provinces. In this study, the efficiency evaluation is based on
BCC model, which assumes variable returns to scale (VRS). Thus return-to-scale categories
(increasing returns to scale, constant returns to scale, or decreasing returns to scale) of
each DMU can be determined. As shown in Figure 5a, after the adjustment, the number of
DMUs operating at IRS increases significantly. Each year the number of DMUs at IRS is
higher than before the adjustment. The numbers of provinces at DRS and CRS decrease
significantly. After adjustment, in each year the number of provinces at DRS is less than
that before the adjustment except 2005 (Figure 5b), and the number of provinces at CRS is
less than or equal to that before the adjustment except 2003 (Figure 5c).

Figure 5. The number of provinces at increasing returns to scale, decreasing returns to scale and
constant returns to scale, respectively.

It is also showed that PTEs of most provinces are underestimated, while SEs of most
provinces are largely overestimated since the differences in environmental factors are not
considered in BCC DEA model. After adjustment, SE emerged as the main factor restricting
the efficiency of the ATS.

Combined with the above results of scale efficiency and returns to scale, it can be told
that China’s civil aviation infrastructure and airline networks still have room for expansion,
and the air transport market is not yet saturated. Under the expected growth rate of
air transport demand, civil aviation development can still be achieved by expanding the
resource inputs. The “moderately advanced” development strategy currently adopted by
the CAAC is reasonable. After the Localization Reform of Civil Aviation in 2002, with the
removal of a series of strict regulatory restrictions, the investment and financing channels
for civil aviation development were largely expanded. Meanwhile local governments
often have huge enthusiasm in investing on local airports and local airline companies for
various economic and political motivations. Between 2002 and 2017, local governments
were actively increasing investment in air transport, and the scale of China’s civil aviation
construction unprecedentedly grew. However, despite the rapid expansion, the scale
efficiency of the ATS is relatively low. Considering the reality in China, the ATS’s low scale
efficiency can be improved through the development of more productive aviation network,
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by which the utilization of aviation infrastructure, especially regional and remote airports
and local airlines can be optimized. Therefore, the central civil aviation administration
should have long-term strategic vision, pay attention to the overall layout planning and
resource allocation among provinces while expanding scale.

Considering the recentness, in year 2017, six provinces (Inner Mongolia, Shanghai,
Jiangsu, Zhejiang, Henan, and Shaanxi) are fully scale efficient. Meanwhile, 18 provinces’
ATSs are operating at IRS, which means that that an increase in inputs could realize a
more than proportional increase in outputs. So, they could attain better performances
by moving towards the scale efficient size based on the currently available technology.
The other six provinces (Beijing, Shandong, Guangdong, Sichuan, Yunnan, Xinjiang) are
operating at DRS, indicating that an increase in inputs could realize a less than proportional
increase in outputs. Four of these (Beijing, Guangdong, Sichuan, Yunnan) are among
the top five provinces with largest air transport passenger volume. At first impression,
this recommends reducing the scale of these very largest provincial ATSs. So, they could
attain better performances by moving towards the scale efficient size based on the currently
available technology. A better alternative explanation is modifying airspace limitations
and regulatory conditions that impose significant constraints on these provincial ATSs
as they grow. For example, these provinces are some of the regions with greatest air
transport demands, largest air traffic volumes and steady growth rate. However, due to
the limitation of airspace resources, the scale efficiencies and returns to scale of their ATSs
are heavily constrained. More scientific and effective utilization of airspace resources can
improve the scale effect and efficiency, such as optimizing and integrating traffic flow trend
along the air routes, and appropriate use of large and medium-sized aircraft. In addition,
new navigation technology and air traffic control technology should be adopted to improve
the automation level and reduce the chance of flight delay.

4.4. The Results of Bootstrap-Malmquist Productivity Model

Using the input–output index value calculated in the second stage, the smooth boot-
strapping procedure for Malmquist index calculation is implemented. The bootstrapping
time is set to 2000. The mean value of the Malmquist index bootstrap adjusted results is
calculated using geometric mean. The bootstrap adjusted values of total factor productivity
index (TFPI), technical efficiency change index (TECI), and technological change index
(TCI) are gained to analyze the productivity change.

• The outline of the air transport productivity change

Detailed results of the TFPI, TECI, and TCI are shown in Table A3, Table A4, and Table A5.
As displayed in Figure 6, bootstrap adjusted TFPI and TCI exhibit similar patterns over
the 16 years span. Although TECI exhibits a significantly different pattern after 2008,
technological change serves as the main cause of the TFPI pattern. This result indicates
that productivity of air transport is influenced by a technological change more heavily
than a technical efficiency change. This is true not only for the national average (Figure 6),
but also for each of the six regions (Figure 7).

• Total Factor Productivity Index (TFPI)

As shown in Table A3, national average ATS productivity decreases slightly by 0.3%
from 2002–2017. Although the air traffic volume of China has increased significantly
during this period, the ATS was also invested with a huge number of resources, and overall,
the ATS productivity does not gain significant increase yet. Seven provinces, including
Inner Mongolia, Zhejiang, Fujian, Henan, Hainan, Yunnan, Ningxia have experienced
increases in total productivity by 0.9%, 6.9%, 1.2%, 10.5%, 1.3%, 3.1%, 0.4%, respectively
between 2002 and 2017, whereas the other 23 provinces have experienced declines in
total productivity during the study period. Compared with countries with developed air
transport system, China’s ATS is still in a period of rapid expansion, and airports, airlines
and related ATS auxiliary facilities were, and still are attracting a lot of resource inputs.
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Therefore, from the perspective of input-output efficiency, the productivity of the ATS has
not improved significantly.

Figure 6. National average total factor productivity index (TFPI), technical efficiency change index
(TECI), and technology change index (TCI) over the study period (bootstrap adjusted).

Figure 7. Six regions’ average TFPI, TECI, and TCI over the study period (bootstrap adjusted).

• Technical Efficiency Change Index (TECI)

Table A4 summarized the bootstrap adjusted TECI results over the study period.
As shown in Figure 7b, TECI in six regions saw a zigzag rise between 2007 and 2013.
After five years of rapid investment and expansion from 2002, China’s civil aviation
industry began to pay attention to the improvement of its own management and resource
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utilization in 2007. Although this industry still drew a lot of investment during 2007 to 2013,
TECI still showed improvement thanks to the improvement of management level. However,
due to the 2009 crisis and its lagged impacts, air transport demand failed to get steady growth,
and the overall growth pattern from 2007 to 2013 showed a zigzag trend (Figure 7b). This is
in consistent with the research of Örkcü, Balıkçı [6], which concluded that after rebounding
in 2010 over the 2009 depression, the world air traffic increase stagnated until 2013.

• Technological change Index (TCI)

Table A5 summarized the changes of TCI over the study period, which don’t show
consistent increase until 2014. As shown in Figure 7c, TCI across all six regions experienced
increase during the last three consecutive years of the study period, and peaked in 2017.
Technical change is often triggered by external factors such as shifts in government policies,
advances in technology, and changes in economic environments [6,7]. Following the Next
Generation Air Transportation System (NextGen, https://www.faa.gov/NEXTGEN (ac-
cessed on 30 December 2020)) of the USA and Single European Sky ATM Research (SESAR)
in Europe, the CAAC launched the modernization of China’s air transportation system to
make air transport more efficient. It proposed civil aviation technological development
portfolio encompassing the planning and implementation of new technologies, such as
automation, information, and intelligence technologies. As a result, ATS saw sustained
growth in TCI in recent years. The technology development strategy of China’s ATS began
to show effects between 2014 and 2017, with TCI continuously improving and reaching
apex, as shown in Figures 6 and 7c.

5. Conclusions and Discussion of Policy Implications

The efficiency and productivity evaluation of ATS is not only affected by direct inputs
and outputs, but also by exterior economic and social environment and statistic noise.
To overcome the drawbacks of deterministic DEA method, this study applies a three-stage
model to evaluate regional ATS performance and productivity. This model takes variable
measurement errors and unobserved but potentially relevant variables into consideration
by a stochastic disturbance term in SFA. Meanwhile features of the operating environment
are taken into consideration by the introduction of seven environmental variables. In order
to measure the resource input more accurately, the perpetual inventory method is used to
calculate the capital input of the ATS. The bootstrapping Malmquist productivity index is
adopted to analyze ATS productivity change over time.

The empirical results show that, environmental factors pose significant influences on
ATS performance. Scale efficiency is shown to be the main factor that restricts the efficiency
of China’s ATS. Compared with developed countries, China’s ATS is still at the stage of in-
creasing scale benefit. Nearly two-thirds of the DMUs are operating at an insufficient scale.
Combined with the results of scale efficiency and returns to scale, most provinces’ ATSs are
still at the stage of increasing scale benefit. However, six provinces are at DRS, with four of
these provinces (Beijing, Guangdong, Sichuan, Yunnan) having largest provincial air trans-
port passenger numbers. While China’s ATS is experiencing dividends from expansion,
special attention should be paid to the coordinated planning and balanced development of
air transport in different regions to improve scale efficiency. Bootstrap-Malmquist produc-
tivity index results indicate that ATS TECI has not improved significantly in recent years.
This can also give the policy inspiration that the management practice still has room for
improvement [7]. For example, in practice, the organizational structure and management of
airports and airlines can be improved to enhance their public-private cooperation in finance,
operation and other aspects. Moreover, technological change determined the trend of ATS
total factor productivity in China (Figure 7a,c). This result is similar to the findings of Ahn
and Min [7] and Örkcü, Balıkçı [6]. They both found that total factor productivity in the
airport industry is mainly influenced by the TCI. Since the TCI is often triggered by external
factors such as R&D, innovation, and technological progress [60,61]. This result supports
the legitimacy of China’s air transport modernization policy as well as ATS technological
development strategy [62], which has resulted in increasingly enormous investment into

https://www.faa.gov/NEXTGEN


ISPRS Int. J. Geo-Inf. 2021, 10, 83 21 of 29

ATS technological development in the past few years. This technology-oriented industrial
development strategy has enhanced the productivity of China’s ATS. In addition to techno-
logical innovation and progress, there are some other major external changes that will affect
TCI, such as government policies shifts, and changes in economic environment, etc. [6,7].
Additionally, the severe impact of the Covid-19 outbreak on global air transport industry
shows us that major social changes, such as public health events, can also be determinants
of TCI and ATS productivity. Governments and civil aviation industry should pay special
attention to changes in the external environment. These external changes, as well as the
ability of civil aviation industry to adapt to the changes, exerts an important impact on
ATS performance and productivity.

The shortcoming of the method applied in this article is that it only considers the
impact of operational environment factors on performance, but fails to consider the impact
of other potentially alternative transport modes on the air transport industry, such as
high-speed railway (HSR), which is demonstrated in many research literature [63–65].

Future research work can focus on developing appropriate methods to consider the
different impacts of other transport modes on the air transport industry in different regions
when evaluating ATS performance, to obtain a more realistic evaluation result. The research
period selected in this paper is before the outbreak of COVID-19, which totally changed
the global air transportation industry. Therefore, another more ambitious and challenging
direction for future research is to figure out the impact of COVID-19 on the current and
future performance of the global air transport industry, and how to mitigate this impact.
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Appendix A

Table A1. The first stage pure technical efficiency results from BCC model.

Region 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Average

North China

Beijing 1 1 1 1 1 1 1 1 1 1 1 1 1 0.854 0.865 0.883 0.975
Tianjin 0.333 0.631 0.741 0.649 0.623 1 0.752 0.823 0.825 0.825 0.497 0.577 0.608 0.534 0.719 0.652 0.674
Hebei 1 0.592 0.861 1 0.493 0.52 0.548 0.496 0.437 0.437 0.526 0.529 0.633 0.518 0.607 0.46 0.604
Shanxi 0.343 0.342 0.254 0.336 0.328 0.359 0.381 0.441 0.431 0.431 0.593 0.656 0.764 0.845 1 1 0.532

Inner Mongolia 0.416 0.186 0.256 0.302 0.268 0.244 0.24 0.266 0.318 0.318 0.633 0.884 1 1 1 1 0.521
Mean 0.618 0.550 0.622 0.657 0.542 0.625 0.584 0.605 0.602 0.602 0.650 0.729 0.801 0.750 0.838 0.799 0.661

Northeast China

Liaoning 0.149 0.364 0.389 0.412 0.358 0.367 0.4 0.333 0.353 0.353 0.445 0.44 0.393 0.418 0.469 0.535 0.386
Jilin 0.18 0.24 0.254 0.244 0.192 0.215 0.216 0.377 0.442 0.442 0.483 0.522 0.719 0.852 0.576 0.575 0.408

Heilongjiang 0.163 0.369 0.357 0.434 0.411 0.69 0.607 0.662 0.71 0.71 0.758 0.911 1 1 0.813 0.784 0.649
Mean 0.164 0.324 0.333 0.363 0.320 0.424 0.408 0.457 0.502 0.502 0.562 0.624 0.704 0.757 0.619 0.631 0.481

East China

Shanghai 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000
Jiangsu 1 0.699 0.855 1 1 0.739 1 1 1 1 1 0.979 0.997 1 1 1 0.954

Zhejiang 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000
Anhui 0.246 0.415 0.494 0.508 0.479 0.918 1 0.464 0.407 0.407 0.54 0.506 1 0.702 0.843 0.79 0.607
Fujian 0.317 0.617 0.515 0.533 0.438 0.401 0.467 0.376 0.389 0.389 0.658 0.636 0.621 0.565 0.639 0.559 0.508
Jiangxi 1 0.415 0.214 0.509 0.445 0.581 0.634 0.377 0.421 0.421 1 0.549 1 1 1 1 0.660

Shandong 0.4 0.588 0.546 0.584 0.456 0.487 0.472 0.589 0.607 0.607 0.61 0.656 0.716 0.615 0.742 0.959 0.602
Mean 0.709 0.676 0.661 0.733 0.688 0.732 0.796 0.687 0.689 0.689 0.830 0.761 0.905 0.840 0.889 0.901 0.762

Central and
Southern China

Henan 1 1 1 1 1 1 1 1 1 1 1 1 0.967 1 1 1 0.998
Hubei 0.436 0.466 0.356 0.505 0.364 0.424 0.439 0.412 0.474 0.474 0.752 0.712 1 1 1 0.684 0.594
Hunan 0.504 0.635 1 0.922 0.931 0.978 1 0.91 0.68 0.68 0.771 0.925 0.931 1 0.977 0.723 0.848

Guangdong 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.000
Guangxi 1 0.708 0.604 0.757 0.658 0.699 0.635 0.683 0.602 0.602 0.783 0.93 0.578 0.742 0.822 0.732 0.721
Hainan 0.287 0.667 0.525 0.433 0.327 0.299 0.346 0.108 0.112 0.112 0.495 0.512 0.669 0.401 0.308 0.484 0.380
Mean 0.705 0.746 0.748 0.770 0.713 0.733 0.737 0.686 0.645 0.645 0.800 0.847 0.858 0.857 0.851 0.771 0.757

Southwest China

Chongqing 0.295 0.689 0.488 1 1 1 0.657 0.353 0.429 0.429 0.735 0.714 0.989 0.818 0.684 0.691 0.686
Sichuan 0.238 0.442 0.462 0.447 0.405 0.401 0.374 1 1 1 1 1 1 1 1 1 0.736
Guizhou 0.332 0.5 0.482 0.585 0.48 0.446 0.437 0.573 0.468 0.468 0.522 0.558 0.706 0.641 0.491 0.529 0.514
Yunnan 0.667 1 1 1 1 0.935 0.655 0.444 0.393 0.393 0.584 0.639 0.615 0.73 0.79 0.952 0.737
Mean 0.383 0.658 0.608 0.758 0.721 0.696 0.531 0.593 0.573 0.573 0.710 0.728 0.828 0.797 0.741 0.793 0.668

Northwest China

Shaanxi 0.182 0.372 0.335 0.471 0.676 0.627 0.676 1 1 1 1 1 1 1 1 1 0.771
Gansu 0.147 0.23 0.247 0.277 0.413 1 1 1 0.891 0.891 1 1 0.968 1 1 1 0.754

Qinghai 1 1 1 0.891 0.732 1 1 1 1 1 1 1 1 1 1 1 0.976
Ningxia 1 1 1 1 1 1 0.729 0.96 1 1 1 1 1 1 1 1 0.981
Xinjiang 0.142 0.329 0.353 0.392 0.284 0.281 0.254 0.325 0.421 0.421 0.533 0.719 0.773 0.77 0.704 0.772 0.467

Mean 0.494 0.586 0.587 0.606 0.621 0.782 0.732 0.857 0.862 0.862 0.907 0.944 0.948 0.954 0.941 0.954 0.790
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Table A2. The first stage scale efficiency results from BCC model.

Region 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Average

North China

Beijing 0.793 0.502 0.301 0.316 0.247 0.286 0.311 0.312 0.434 0.434 0.47 0.554 0.521 0.54 0.542 0.502 0.442
Tianjin 0.822 0.909 0.871 0.898 0.846 0.854 0.899 0.9 0.928 0.928 0.99 0.915 0.838 0.816 0.83 0.868 0.882
Hebei 0.951 0.815 0.356 0.507 0.579 0.355 0.403 0.478 0.56 0.56 0.979 0.971 0.811 0.874 0.716 0.903 0.676
Shanxi 0.87 0.877 0.762 0.846 0.874 0.867 0.99 0.783 0.812 0.812 0.973 0.999 0.95 0.98 0.841 1 0.890

Inner Mongolia 0.3 0.858 0.658 0.764 0.808 0.783 0.96 0.737 0.729 0.729 0.998 0.931 1 1 1 1 0.828
Mean 0.747 0.792 0.590 0.666 0.671 0.629 0.713 0.642 0.693 0.693 0.882 0.874 0.824 0.842 0.786 0.855 0.744

Northeast China

Liaoning 0.997 0.997 0.995 0.992 0.995 0.986 0.974 0.999 0.945 0.945 0.997 0.984 0.992 0.961 0.963 0.991 0.982
Jilin 0.419 0.96 0.73 0.8 0.803 0.74 0.817 0.638 0.668 0.668 0.9 0.982 0.804 0.721 0.713 0.893 0.766

Heilongjiang 0.709 0.952 0.882 0.953 0.881 0.496 0.755 0.847 0.852 0.852 0.977 0.995 1 0.955 0.777 0.961 0.865
Mean 0.708 0.970 0.869 0.915 0.893 0.741 0.849 0.828 0.822 0.822 0.958 0.987 0.932 0.879 0.818 0.948 0.871

East China

Shanghai 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.964 0.998
Jiangsu 1 0.963 0.956 1 0.897 0.898 1 1 1 1 1 0.999 0.996 1 1 1 0.982

Zhejiang 1 1 1 1 1 1 1 0.839 0.835 0.835 1 1 1 1 1 1 0.969
Anhui 0.684 0.97 0.787 0.827 0.829 0.45 0.597 0.652 0.628 0.628 0.942 0.994 0.86 0.887 0.868 0.862 0.779
Fujian 0.951 0.999 1 0.999 0.985 0.978 0.925 0.977 0.988 0.988 0.9 0.991 0.974 0.972 0.97 0.941 0.971
Jiangxi 1 0.944 0.81 0.927 0.847 0.591 0.627 0.683 0.695 0.695 1 0.998 0.951 1 0.757 1 0.845

Shandong 0.975 0.999 0.999 0.996 0.996 0.995 0.981 0.875 0.856 0.856 0.999 0.987 0.983 0.997 0.847 0.528 0.929
Mean 0.944 0.982 0.936 0.964 0.936 0.845 0.876 0.861 0.857 0.857 0.977 0.996 0.966 0.979 0.920 0.899 0.925

Central and
Southern China

Henan 1 1 1 1 1 1 1 1 1 1 1 1 0.98 1 1 1 0.999
Hubei 0.991 0.979 0.958 0.948 0.958 0.977 0.905 0.949 0.959 0.959 0.938 0.927 1 0.996 1 0.848 0.956
Hunan 0.959 0.991 1 0.986 0.962 0.959 0.978 0.955 0.968 0.968 0.998 0.975 0.997 0.974 1 0.986 0.979

Guangdong 0.568 0.815 0.706 0.652 0.473 0.459 0.452 0.455 0.435 0.435 0.715 0.397 0.418 0.456 0.519 0.506 0.529
Guangxi 1 0.993 0.981 0.979 0.947 0.941 0.977 0.923 0.933 0.933 0.994 0.954 0.973 0.989 0.992 0.997 0.969
Hainan 0.719 0.999 0.983 0.992 0.966 0.863 0.725 0.993 0.99 0.99 0.617 0.884 0.993 0.991 0.984 0.708 0.900
Mean 0.873 0.963 0.938 0.926 0.884 0.867 0.840 0.879 0.881 0.881 0.877 0.856 0.894 0.901 0.916 0.841 0.888

Southwest China

Chongqing 0.949 0.994 0.978 0.995 1 1 0.887 0.97 0.992 0.992 0.993 1 0.993 0.991 0.973 0.867 0.973
Sichuan 0.952 0.999 1 1 0.969 0.901 0.979 0.417 0.425 0.425 0.976 0.443 0.582 0.625 0.589 0.553 0.740
Guizhou 0.597 0.985 0.876 0.9 0.901 0.875 0.763 0.784 0.814 0.814 0.982 0.989 0.973 0.958 0.958 0.924 0.881
Yunnan 0.513 1 1 1 0.944 0.956 0.994 0.649 0.614 0.614 0.807 0.843 0.995 0.808 0.615 0.473 0.802
Mean 0.753 0.995 0.964 0.974 0.954 0.933 0.906 0.705 0.711 0.711 0.940 0.819 0.886 0.846 0.784 0.704 0.849

Northwest China

Shaanxi 0.987 0.996 1 0.978 0.981 0.977 0.989 1 1 1 1 1 1 1 1 1 0.994
Gansu 0.407 0.86 0.646 0.876 0.508 0.369 0.513 0.632 0.562 0.562 0.945 1 0.854 0.918 0.902 1 0.722

Qinghai 0.446 0.896 0.414 0.401 0.435 0.376 1 0.363 0.343 0.343 1 0.726 0.667 0.631 0.64 0.457 0.571
Ningxia 0.345 0.856 0.635 0.82 0.647 0.642 0.725 0.5 0.616 0.616 0.903 1 0.874 0.837 1 0.986 0.750
Xinjiang 0.709 0.99 0.983 0.949 0.94 0.935 0.986 0.903 0.93 0.93 0.989 1 0.994 0.981 0.971 0.894 0.943

Mean 0.579 0.920 0.736 0.805 0.702 0.660 0.843 0.680 0.690 0.690 0.967 0.945 0.878 0.873 0.903 0.867 0.796
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Table A3. Changes of bootstrapped TFPI over time.

Region 2002–
2003

2003–
2004

2004–
2005

2005–
2006

2006–
2007

2007–
2008

2008–
2009

2009–
2010

2010–
2011

2011–
2012

2012–
2013

2013–
2014

2014–
2015

2015–
2016

2016–
2017

Average over
Study Period

North China

Beijing 0.830 0.879 0.909 0.957 0.969 0.907 1.114 1.042 1.126 1.001 0.966 1.258 0.982 0.957 0.876 0.985
Tianjin 0.737 1.052 1.000 0.913 1.001 0.931 0.954 1.013 0.962 0.711 0.942 0.928 0.569 1.050 1.310 0.938
Hebei 0.983 1.086 0.911 0.925 0.961 0.981 1.056 0.868 0.981 0.976 0.891 0.888 0.485 1.058 1.539 0.973
Shanxi 1.504 0.953 0.976 0.987 1.000 1.028 0.987 0.966 0.953 0.945 0.994 0.938 0.648 0.940 1.165 0.999

Inner Mongolia 1.326 1.060 0.948 0.968 0.986 0.962 1.024 0.944 0.936 0.960 0.967 0.956 0.566 1.022 1.512 1.009

Northeast
China

Liaoning 0.935 1.222 0.982 1.034 1.027 1.027 0.999 1.043 0.804 0.921 1.015 0.973 0.658 1.059 1.277 0.998
Jilin 0.593 1.101 0.922 0.961 0.997 0.972 1.034 0.988 0.984 1.015 1.000 0.883 0.694 0.901 1.254 0.953

Heilongjiang 0.940 1.109 0.954 0.995 0.878 0.964 0.934 0.936 1.005 1.045 0.968 0.919 0.758 0.883 1.079 0.958

East China

Shanghai 0.994 0.999 0.946 0.876 0.918 0.998 0.947 1.108 0.994 1.042 1.005 1.050 0.899 0.917 0.973 0.978
Jiangsu 1.132 1.163 0.896 0.871 1.076 1.053 0.996 0.942 0.926 0.962 0.890 0.880 0.884 1.017 1.195 0.992

Zhejiang 1.008 1.383 0.836 1.301 1.031 0.958 1.121 1.008 1.004 1.022 1.141 1.051 0.827 1.029 1.316 1.069
Anhui 0.954 1.111 0.932 0.984 0.919 0.929 0.883 0.902 0.929 0.949 0.932 0.939 0.568 0.982 1.231 0.943
Fujian 0.990 1.159 0.973 1.034 1.040 1.019 0.973 1.127 1.049 0.925 0.980 0.953 0.650 1.002 1.304 1.012
Jiangxi 0.860 0.984 1.044 0.948 0.938 0.962 0.892 0.944 0.960 1.034 0.839 1.011 0.620 0.924 1.206 0.944

Shandong 1.076 1.191 0.957 1.010 1.037 0.936 1.046 1.003 1.121 0.863 1.057 0.978 0.660 1.073 1.511 1.035

Central and
Southern

China

Henan 0.770 1.310 1.278 0.914 1.448 1.574 1.204 1.130 0.784 1.264 0.801 0.747 0.759 1.053 1.541 1.105
Hubei 0.890 1.105 0.996 0.969 1.057 0.925 1.162 0.935 1.012 0.884 0.944 0.996 0.604 1.052 1.482 1.001
Hunan 0.920 1.275 0.882 1.084 1.004 0.933 1.015 0.823 0.945 0.865 0.980 0.913 0.648 1.025 1.315 0.975

Guangdong 0.995 1.156 1.078 1.111 1.055 1.045 1.034 1.100 1.039 1.032 0.789 1.097 0.989 1.032 1.058 1.041
Guangxi 0.808 1.119 0.977 0.980 0.994 0.896 1.022 0.902 0.983 0.956 0.997 0.863 0.660 1.043 1.330 0.969
Hainan 0.987 1.162 0.902 1.014 1.061 0.961 1.172 1.243 1.007 0.743 1.007 1.059 0.546 1.037 1.300 1.013

Southwest
China

Chongqing 0.582 1.115 1.029 1.059 1.062 0.790 1.006 0.965 0.951 0.942 1.008 1.032 0.609 1.014 1.309 0.965
Sichuan 0.948 1.235 0.949 1.082 1.018 0.946 1.185 1.713 1.136 1.209 0.661 1.196 0.981 1.042 1.218 1.101
Guizhou 0.732 1.124 0.940 0.997 0.983 0.943 1.020 0.889 0.955 0.866 0.993 0.965 0.583 1.024 1.325 0.956
Yunnan 0.903 1.136 1.094 1.132 1.022 0.762 0.733 1.175 1.002 0.939 1.085 1.077 0.797 1.120 1.489 1.031

Northwest
China

Shaanxi 0.985 1.117 1.049 1.089 0.996 0.900 1.353 0.950 1.109 0.784 1.053 1.028 0.833 1.007 1.095 1.023
Gansu 1.546 1.035 1.011 0.910 0.947 0.875 0.961 0.903 0.976 0.968 0.978 0.896 0.590 0.970 1.309 0.992

Qinghai 1.020 1.024 0.977 0.880 0.932 0.952 0.990 0.899 0.956 0.979 0.870 0.890 0.560 0.973 1.274 0.945
Ningxia 1.180 1.019 0.999 0.886 0.944 0.923 0.933 0.926 1.016 1.049 0.998 0.851 0.634 2.255 0.447 1.004
Xinjiang 0.972 1.137 0.941 0.958 0.984 0.990 0.918 0.988 1.115 1.057 1.062 0.887 0.750 0.934 1.161 0.990

National average 0.970 1.117 0.976 0.994 1.009 0.968 1.022 1.013 0.991 0.964 0.960 0.970 0.700 1.047 1.247 0.997
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Table A4. Changes of bootstrapped TECI over time.

Region 2002–
2003

2003–
2004

2004–
2005

2005–
2006

2006–
2007

2007–
2008

2008–
2009

2009–
2010

2010–
2011

2011–
2012

2012–
2013

2013–
2014

2014–
2015

2015–
2016

2016–
2017

Average over
Study Period

North China

Beijing 0.989 0.996 1.011 0.987 0.995 0.995 0.900 1.048 0.994 1.086 1.011 1.018 0.906 1.004 1.023 0.998
Tianjin 0.932 1.097 0.971 0.990 1.034 0.930 0.949 1.110 1.015 0.895 1.036 1.012 1.021 1.037 0.917 0.996
Hebei 1.132 0.998 1.002 1.013 0.984 0.943 1.003 0.975 1.021 1.070 1.003 1.004 0.998 1.009 0.961 1.008
Shanxi 0.978 0.921 1.058 0.992 0.986 1.028 0.860 1.058 0.976 1.080 1.037 1.039 1.005 1.004 0.975 1.000

Inner Mongolia 0.956 1.004 1.034 0.981 0.987 0.939 0.849 1.108 0.984 1.160 1.062 0.986 1.006 1.003 0.969 1.002

Northeast
China

Liaoning 0.873 1.021 1.032 0.954 0.973 1.066 0.723 1.082 0.834 1.358 1.001 1.002 1.085 1.020 0.956 0.999
Jilin 0.945 0.991 1.008 0.969 1.004 0.947 0.908 1.087 1.001 1.071 1.015 0.993 1.065 1.010 0.921 0.996

Heilongjiang 1.049 0.997 1.032 1.004 0.935 1.096 0.923 1.034 0.966 1.047 1.014 1.028 1.000 0.977 0.949 1.003

East China

Shanghai 0.989 0.998 1.002 0.997 0.997 0.997 0.897 1.050 0.989 1.087 1.011 1.008 1.005 0.996 0.988 1.001
Jiangsu 1.077 1.003 0.910 0.957 1.162 1.080 0.926 1.029 1.022 1.059 0.960 1.023 1.018 0.995 0.986 1.014

Zhejiang 0.885 1.106 0.855 1.193 1.002 0.961 0.942 1.010 1.009 1.059 1.010 1.009 1.004 0.999 0.985 1.002
Anhui 1.011 1.000 1.014 0.991 0.953 1.029 0.893 1.016 0.960 1.091 1.046 1.049 0.980 1.004 0.979 1.001
Fujian 0.979 0.959 1.020 0.956 0.973 1.063 0.616 1.147 1.097 1.339 0.979 0.995 1.023 1.020 0.919 1.006
Jiangxi 1.080 0.979 1.045 0.991 0.951 1.044 0.829 1.065 0.999 1.143 0.923 1.108 1.000 1.000 0.984 1.009

Shandong 1.027 0.984 1.013 0.952 0.997 0.927 0.916 0.972 1.054 1.105 1.053 1.010 1.025 1.024 1.016 1.005

Central and
Southern

China

Henan 0.991 0.997 1.002 0.996 0.997 0.995 0.897 1.050 0.992 1.089 1.011 1.029 0.995 0.993 0.979 1.001
Hubei 1.062 0.942 1.089 0.931 0.998 1.007 0.731 1.080 1.047 1.288 1.000 1.025 1.016 0.986 0.962 1.011
Hunan 1.090 1.077 0.944 1.072 1.000 0.974 0.965 0.953 0.922 1.138 1.046 0.997 1.021 0.994 0.941 1.009

Guangdong 0.990 0.997 1.001 0.996 0.996 0.997 0.896 1.052 0.989 1.089 1.012 1.008 1.003 0.996 0.988 1.001
Guangxi 0.994 1.011 0.985 1.029 0.997 0.980 0.934 1.012 0.925 1.140 1.036 0.922 1.050 1.014 0.948 0.998
Hainan 0.973 0.940 0.960 0.938 0.971 1.000 0.556 1.408 0.974 1.450 1.003 1.094 0.880 0.908 1.076 1.009

Southwest
China

Chongqing 1.015 0.944 1.102 0.985 0.986 0.876 0.732 1.097 0.984 1.401 1.001 1.061 0.985 0.966 0.977 1.007
Sichuan 0.899 0.988 0.970 0.989 0.980 0.937 0.946 1.291 0.990 1.088 1.012 1.009 1.005 0.997 0.987 1.006
Guizhou 0.967 0.981 1.037 0.983 0.967 0.951 1.010 0.969 0.958 1.040 1.086 1.028 0.985 0.947 0.991 0.993
Yunnan 0.979 0.997 1.002 0.996 0.996 0.999 0.727 1.178 0.836 1.294 1.017 0.989 1.086 1.009 1.026 1.009

Northwest
China

Shaanxi 0.936 0.957 1.084 1.095 0.982 1.028 0.886 1.036 0.986 1.077 1.011 1.008 1.003 1.002 0.981 1.005
Gansu 1.003 0.990 1.013 1.031 1.031 0.987 0.995 0.987 1.005 1.024 0.998 1.018 1.001 1.000 0.974 1.004

Qinghai 0.993 1.003 1.009 1.002 0.984 0.993 0.974 1.014 0.998 1.008 1.022 1.005 1.009 0.995 1.001 1.001
Ningxia 0.989 0.993 1.008 1.002 0.994 0.991 0.934 1.049 0.980 1.030 1.008 1.012 1.002 0.994 1.003 0.999
Xinjiang 0.970 1.001 1.027 0.934 0.971 1.020 0.758 1.077 1.086 1.146 1.151 0.977 1.003 0.970 0.964 1.004

National average 0.992 0.996 1.008 0.997 0.993 0.993 0.869 1.068 0.986 1.132 1.019 1.016 1.006 0.996 0.978 1.003
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Table A5. Changes of bootstrapped TCI over time.

Region 2002–
2003

2003–
2004

2004–
2005

2005–
2006

2006–
2007

2007–
2008

2008–
2009

2009–
2010

2010–
2011

2011–
2012

2012–
2013

2013–
2014

2014–
2015

2015–
2016

2016–
2017

Average over
Study Period

North China

Beijing 0.838 0.882 0.899 0.969 0.973 0.912 1.238 0.994 1.132 0.922 0.956 1.236 1.084 0.953 0.856 0.990
Tianjin 0.791 0.959 1.030 0.922 0.968 1.002 1.006 0.913 0.948 0.794 0.909 0.917 0.557 1.012 1.429 0.944
Hebei 0.868 1.088 0.909 0.914 0.977 1.040 1.053 0.891 0.962 0.913 0.888 0.885 0.486 1.048 1.601 0.968
Shanxi 1.538 1.034 0.923 0.995 1.014 1.000 1.147 0.914 0.977 0.876 0.958 0.903 0.645 0.937 1.195 1.004

Inner Mongolia 1.386 1.056 0.917 0.987 0.999 1.025 1.207 0.852 0.951 0.828 0.910 0.970 0.563 1.020 1.561 1.015

Northeast
China

Liaoning 1.070 1.196 0.951 1.084 1.055 0.964 1.381 0.964 0.965 0.678 1.014 0.970 0.606 1.038 1.336 1.018
Jilin 0.627 1.111 0.915 0.992 0.992 1.027 1.138 0.909 0.983 0.947 0.985 0.889 0.651 0.891 1.361 0.961

Heilongjiang 0.897 1.113 0.924 0.991 0.940 0.880 1.011 0.905 1.040 0.998 0.955 0.895 0.759 0.904 1.137 0.956

East China

Shanghai 1.006 1.001 0.944 0.879 0.921 1.002 1.056 1.055 1.006 0.959 0.995 1.042 0.895 0.921 0.985 0.978
Jiangsu 1.051 1.160 0.984 0.910 0.926 0.976 1.075 0.915 0.906 0.908 0.927 0.860 0.869 1.022 1.212 0.980

Zhejiang 1.139 1.251 0.977 1.090 1.029 0.996 1.190 0.998 0.995 0.965 1.130 1.041 0.823 1.030 1.336 1.066
Anhui 0.944 1.111 0.919 0.993 0.964 0.902 0.989 0.888 0.969 0.870 0.891 0.896 0.580 0.978 1.257 0.943
Fujian 1.011 1.208 0.954 1.082 1.069 0.958 1.580 0.983 0.956 0.691 1.001 0.957 0.635 0.983 1.420 1.033
Jiangxi 0.796 1.005 0.999 0.956 0.986 0.921 1.076 0.887 0.961 0.905 0.910 0.913 0.620 0.924 1.225 0.939

Shandong 1.047 1.211 0.945 1.061 1.040 1.009 1.142 1.032 1.064 0.781 1.003 0.968 0.644 1.048 1.486 1.032

Central and
Southern

China

Henan 0.777 1.314 1.275 0.918 1.452 1.582 1.342 1.076 0.791 1.161 0.793 0.725 0.763 1.060 1.575 1.107
Hubei 0.838 1.173 0.914 1.041 1.059 0.918 1.590 0.866 0.967 0.687 0.943 0.972 0.595 1.068 1.541 1.011
Hunan 0.844 1.184 0.934 1.011 1.004 0.957 1.052 0.864 1.025 0.760 0.936 0.916 0.635 1.031 1.397 0.970

Guangdong 1.005 1.159 1.077 1.116 1.059 1.048 1.154 1.046 1.051 0.947 0.779 1.087 0.986 1.037 1.071 1.042
Guangxi 0.813 1.107 0.992 0.953 0.997 0.915 1.094 0.891 1.063 0.839 0.963 0.936 0.628 1.028 1.404 0.975
Hainan 1.014 1.236 0.940 1.080 1.093 0.961 2.109 0.883 1.034 0.513 1.003 0.968 0.621 1.143 1.208 1.054

Southwest
China

Chongqing 0.573 1.182 0.934 1.075 1.077 0.902 1.375 0.880 0.966 0.673 1.006 0.973 0.618 1.050 1.340 0.975
Sichuan 1.055 1.250 0.978 1.095 1.038 1.010 1.253 1.326 1.148 1.111 0.653 1.185 0.976 1.046 1.234 1.091
Guizhou 0.757 1.146 0.907 1.014 1.017 0.992 1.010 0.918 0.996 0.833 0.914 0.938 0.592 1.081 1.338 0.964
Yunnan 0.923 1.139 1.092 1.137 1.026 0.763 1.008 0.998 1.198 0.726 1.067 1.089 0.734 1.110 1.452 1.031

Northwest
China

Shaanxi 1.052 1.167 0.967 0.995 1.014 0.875 1.527 0.917 1.126 0.728 1.042 1.019 0.830 1.005 1.115 1.025
Gansu 1.541 1.046 0.998 0.883 0.919 0.886 0.967 0.915 0.971 0.946 0.980 0.880 0.590 0.971 1.343 0.989

Qinghai 1.028 1.021 0.968 0.878 0.947 0.959 1.017 0.886 0.958 0.971 0.851 0.885 0.556 0.978 1.273 0.945
Ningxia 1.193 1.026 0.991 0.885 0.950 0.932 0.999 0.883 1.036 1.019 0.990 0.840 0.633 2.269 0.446 1.006
Xinjiang 1.002 1.137 0.916 1.026 1.014 0.970 1.212 0.917 1.027 0.922 0.923 0.908 0.747 0.963 1.204 0.993

National average 0.981 1.122 0.969 0.998 1.017 0.976 1.200 0.946 1.006 0.862 0.942 0.956 0.697 1.052 1.278 1.000
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