Mini-Map for Gamers Who Walk and Teleport in a Virtual Stronghold
Abstract
:1. Introduction
2. Aim and Questions
- What are the differences between the times of individual gameplay by walking and teleporting players, respectively?
- What impact does the mini-map examination time have on the total game time for walking and teleportation?
- What is the correlation between the mini-map examination time and the total game time while collecting the first coin and the last coin?
- Does complementary cartographic and IT game design in topographic space with mini-maps allow one to evaluate the gamer’s effectiveness in the game?
3. Methodology
- To pinpoint the conceptual assumptions (Section 3.1);
- To create a game in a virtual stronghold following a scheme and a geographical layout of the gameplay elements (Section 3.2, Figure 1, Figure 2 and Figure 3);
- To prepare and carry out surveys among walking and teleporting players (Section 3.3, Figure 4 and Figure 5).
3.1. Concept
- Type of multimedia application: VR coin collecting game in specified locations in a small, limited, topographic space, which is possible to present in a single mini-map view;
- Multimedia design: the geographic part (creating the island’s topography), the cartographic part (designing the trail and the mini-map) and the IT part (designing the game and eye tracking);
- Medium: full-immersive VR—presence and movement, supported with sound and animated effects;
- Software and equipment: graphic software (Photoshop), architectural software (SketchUp), geographical modeling software (CloudCompare), game engine (Unity), survey (HTC Vive Pro Eye goggles and HTC controllers);
- Technological process: managing transformation and data integration in a geomatic process in several workspaces;
- Geographic space: stronghold on the island, elements of natural landscape (trees, rampart, grass, lake) and historical buildings (church, palace, huts, bridges);
- Parameters of the scene: natural lighting, cloudless sky, sounds of wind, animation of leaves and water surface;
- Parameters of the gameplay: collecting coins, programming scripts, programming HTC Vive controllers for two types of movement: walking and teleportation;
- Mini-map: the view of the entire island in the stronghold’s graphics; 10% of the game window view; in the right top corner; location of coins marked with yellow dots; northern orientation, rectangular shape; gamer’s location indicated by the red arrow pointing to the direction of looking;
- Parameters of effectiveness: collecting time data scripts; individual and synthetic analysis; analysis of gamers’ effectiveness;
- Respondents: screen-based video game users; lacking experience in immersive VR environments; playing a minimum of 10 h per week;
- The way of conducting the research: each gamer stays in the virtual room; eye calibration of the position of goggles and controllers; eye-tracking study with HTC goggles; the same task for each gamer: to collect 7 coins, time for the task: approximately 15 min; obtaining data on the total game time and the mini-map examination time;
- Expected research results: statistical and graphic specification of time effectiveness of a gamer that walks and teleports by means of the mini-map.
3.2. Creating a VR Application
3.3. Participants and Experimental Process
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dent, B.D. Cartography: Thematic Map Design, 5th ed.; WCB/McGraw-Hill: Boston, MA, USA, 1999. [Google Scholar]
- Kraak, M.-J.; Ormeling, F. Cartography: Visualization of Geospatial Data, 4th ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Robinson, A.H.; Morrison, J.L.; Muehrcke, P.C.; Kimerling, A.J.; Guptill, S.C. Elements of Cartography, 6th ed.; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Forrest, D.; Pearson, A.; Collier, P. The Representation of Topographic Information on Maps—The Coastal Environment. Carto. J. 1997, 34, 77–85. [Google Scholar] [CrossRef]
- Wielebski, Ł.; Medyńska-Gulij, B.; Halik, Ł.; Dickmann, F. Time, Spatial, and Descriptive Features of Pedestrian Tracks on Set of Visualizations. ISPRS Int. J. Geo-Inf. 2020, 9, 348. [Google Scholar] [CrossRef]
- Medyńska-Gulij, B. Kartografia i Geomedia; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2021. [Google Scholar]
- Edler, D.; Keil, J.; Tuller, M.-C.; Bestgen, A.-K.; Dickmann, F. Searching for the ‘Right’ Legend: The Impact of Legend Position on Legend Decoding in a Cartographic Memory Task. Cartogr. J. 2018, 57, 6–17. [Google Scholar] [CrossRef]
- Horbiński, T.; Cybulski, P.; Medyńska-Gulij, B. Graphic Design and Button Placement for Mobile Map Applications. Cartogr. J. 2020, 57, 196–208. [Google Scholar] [CrossRef]
- Edler, D.; Keil, J.; Wiedenlübbert, T.; Sossna, M.; Kühne, O.; Dickmann, F. Immersive VR Experience of Redeveloped Post-industrial Sites: The Example of “Zeche Holland” in Bochum-Wattenscheid. KN J. Cartogr. Geogr. Inf. 2019, 69, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Hruby, F.; Castellanos, I.; Ressl, R. Cartographic Scale in Immersive Virtual Environments. KN J. Cartogr. Geogr. Inf. 2020, 21, 1–7. [Google Scholar] [CrossRef]
- Wessels, S.; Ruther, H.; Bhurtha, R.; Schroeder, R. Design and creation of a 3D virtual tour of the world heritage site of Petra, Jordan. In Proceedings of the AfricaGEO, Cape Town, South Africa, 1–3 July 2014. [Google Scholar]
- Callieri, M.; Dellepiane, M.; Scopigno, R. Remote visualization and navigation of 3d models of archeological sites. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 5, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Yuqiang, B.; Niblock, C.; Bonenberg, L. Lincoln Cathedral Interactive Virtual Reality Exhibition. In Proceedings of the 17th International Conference on Computer Aided Architectural Design Futures, Istanbul, Turkey, 12–14 July 2017. [Google Scholar]
- Khan, N.; Rahman, A.U. Rethinking the Mini-Map: A Navigational Aid to Support Spatial Learning in Urban Game Environments. Int. J. Hum.-Comput. Interact. 2018, 34, 1135–1147. [Google Scholar] [CrossRef]
- Medyńska-Gulij, B.; Zagata, K. Experts and Gamers on Immersion into Reconstructed Strongholds. ISPRS Int. J. Geo-Inf. 2020, 9, 655. [Google Scholar] [CrossRef]
- Si, C.; Pisan, Y.; Tan, C.T.; Shen, S. An initial understanding of how game users explore virtual environments. Entertain. Comput. 2017, 19, 13–27. [Google Scholar] [CrossRef]
- Johanson, C.; Gutwin, C.; Mandryk, R.L. The Effects of Navigation Assistance on Spatial Learning and Performance in a 3D Game. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play, Amsterdam, The Netherlands, 15–18 October 2017; Association for Computing Machinery (ACM): New York, NY, USA, 2017; pp. 341–353. [Google Scholar]
- Kłosiński, M. Hermeneutyka Gier Wideo. Interpretacja, Immersja, Utopia; Wydawnictwo IBL PAN: Warsaw, Poland, 2018. [Google Scholar]
- Dominic, J.; Robb, A. Exploring Effects of Screen-Fixed and World-Fixed Annotation on Navigation in Virtual Reality. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Atlanta, GA, USA, 22–26 March 2020; pp. 607–615. [Google Scholar]
- Adams, E. Fundamentals of Game Design, 3rd ed.; New Riders: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Edler, D.; Keil, J.; Dickmann, F. Varianten interaktiver Karten in Video-und Computerspielen—Eine Übersicht. KN J. Cartogr. Geogr. Inf. 2018, 68, 57–65. [Google Scholar] [CrossRef]
- Slater, M.; Usoh, M.; Steed, A. Taking steps. ACM Trans. Comput. Interact. 1995, 2, 201–219. [Google Scholar] [CrossRef]
- Funk, M.; Müller, F.; Fendrich, M.; Shene, M.; Kolvenbach, M.; Dobbertin, N.; Günther, S.; Mühlhäuser, M. Assessing the Accuracy of Point & Teleport Locomotion with Orientation Indication for Virtual Reality using Curved Trajectories. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, Scotland, UK, 4–9 May 2019; Association for Computing Machinery (ACM): New York, NY, USA, 2019; p. 147. [Google Scholar]
- Llorach, G.; Evans, A.; Blat, J. Simulator sickness and presence using HMDs. In Proceedings of the 20th ACM Symposium on Access Control Models and Technologies, Edinburgh, Scotland, UK, November 2014; Association for Computing Machinery (ACM): New York, NY, USA, 2014; pp. 137–140. [Google Scholar]
- Langbehn, E.; Lubos, P.; Steinicke, F. Evaluation of Locomotion Techniques for Room-Scale VR. In Proceedings of the Virtual Reality International Conference—Laval Virtual, Laval, France, 4–6 April 2018; Association for Computing Machinery (ACM): New York, NY, USA, 2018; p. 4. [Google Scholar]
- Langbehn, E.; Steinicke, F. Redirected Walking in Virtual Reality. In Encyclopedia of Computer Graphics and Games; Springer International Publishing: Berlin, Germany, 2018; pp. 1–11. [Google Scholar]
- Lütjens, M.; Kersten, T.P.; Dorschel, B.; Tschirschwitz, F. Virtual Reality in Cartography: Immersive 3D Visualization of the Arctic Clyde Inlet (Canada) Using Digital Elevation Models and Bathymetric Data. Multimodal Technol. Interact. 2019, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Walmsley, A.P.; Kersten, T.P. The Imperial Cathedral in Königslutter (Germany) as an Immersive Experience in Virtual Reality with Integrated 360° Panoramic Photography. Appl. Sci. 2020, 10, 1517. [Google Scholar] [CrossRef] [Green Version]
- Medynska-Gulij, B. The Effect of Cartographic Content on Tourist Map Users. Cartography 2003, 32, 49–54. [Google Scholar] [CrossRef]
- Wielebski, Ł.; Medyńska-Gulij, B. Graphically supported evaluation of mapping techniques used in presenting spatial accessibility. Cartogr. Geogr. Inf. Sci. 2019, 46, 311–333. [Google Scholar] [CrossRef]
- Çöltekin, A.; Heil, B.; Garlandini, S.; Fabrikant, S.I. Evaluating the Effectiveness of Interactive Map Interface Designs: A Case Study Integrating Usability Metrics with Eye-Movement Analysis. Cartogr. Geogr. Inf. Sci. 2009, 36, 5–17. [Google Scholar] [CrossRef]
- Smith, S.P.; Du’Mont, S. Measuring the effect of gaming experience on virtual environment navigation tasks. In Proceedings of the 2009 IEEE Symposium on 3D User Interfaces, Lafayette, LA, USA, 14–15 March 2009; pp. 3–10. [Google Scholar]
- Cybulski, P.; Wielebski, Ł. Effectiveness of Dynamic Point Symbols in Quantitative Mapping. Cartogr. J. 2018, 56, 146–160. [Google Scholar] [CrossRef]
- Gkonos, C.; Enescu, I.I.; Hurni, L. Spinning the wheel of design: Evaluating geoportal Graphical User Interface adaptations in terms of human-centred design. Int. J. Cartogr. 2018, 5, 23–43. [Google Scholar] [CrossRef]
- Cybulski, P. Spatial distance and cartographic background complexity in graduated point symbol map-reading task. Cartogr. Geogr. Inf. Sci. 2020, 47, 244–260. [Google Scholar] [CrossRef]
- Cybulski, P.; Horbiński, T. User Experience in Using Graphical User Interfaces of Web Maps. ISPRS Int. J. Geo-Inf. 2020, 9, 412. [Google Scholar] [CrossRef]
- Mccoleman, C.; Thompson, J.; Anvari, N.; Azmand, S.J.; Barnes, J.; Barrett, R.C.A.; Byliris, R.; Chen, Y.; Dolguikh, K.; Fischler, K.; et al. Digit eyes: Learning-related changes in information access in a computer game parallel those of oculomotor attention in laboratory studies. Atten. Percept. Psychophys. 2020, 82, 2434–2447. [Google Scholar] [CrossRef]
- Medynska-Gulij, B.; Halik, Ł.; Wielebski, Ł.; Dickmann, F. Mehrperspektivische Visualisierung von Informationen zum räumlichen Freizeitverhalten—Ein Smartphone-gestützter Ansatz zur Kartographie von Tourismusrouten. KN J. Cartogr. Geogr. Inf. 2015, 65, 323–329. [Google Scholar] [CrossRef]
- Halik, Ł.; Medyńska-Gulij, B. The Differentiation of Point Symbols using Selected Visual Variables in the Mobile Augmented Reality System. Cartogr. J. 2017, 54, 147–156. [Google Scholar] [CrossRef]
- Van Elzakker, C.P.; Ooms, K. Understanding map uses and users. In The Routledge Handbook of Mapping and Cartography; Informa UK Limited: London, UK, 2018; pp. 55–67. [Google Scholar]
- Alghofaili, R.; Sawahata, Y.; Huang, H.; Wang, H.-C.; Shiratori, T.; Yu, L.-F. Lost in Style. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, Scotland, UK, 4–9 May 2019; Association for Computing Machinery (ACM): New York, NY, USA, 2019; p. 348. [Google Scholar]
- Burch, M. Teaching Eye Tracking Visual Analytics in Computer and Data Science Bachelor Courses. In Proceedings of the Symposium on Eye Tracking Research and Applications, Stuttgart, Germany, 2–5 June 2020; Association for Computing Machinery (ACM): New York, NY, USA, 2020. [Google Scholar]
- Medyńska-Gulij, B.; Wielebski, Ł.; Halik, Ł.; Smaczyński, M. Complexity Level of People Gathering Presentation on an Animated Map—Objective Effectiveness Versus Expert Opinion. ISPRS Int. J. Geo-Inf. 2020, 9, 117. [Google Scholar] [CrossRef] [Green Version]
- Kay, M.; Rector, K.; Consolvo, S.; Greenstein, B.; Wobbrock, J.O.; Watson, N.F.; Kientz, J.A. PVT-Touch: Adapting a Reaction Time Test for Touchscreen Devices. In Proceedings of the 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, Venice, Italy, 5–8 May 2013. [Google Scholar]
- Cybulski, P.; Wielebski, Ł.; Medyńska-Gulij, B.; Lorek, D.; Horbiński, T. Spatial visualization of quantitative landscape changes in an industrial region between 1827 and 1883. Case study Katowice, southern Poland. J. Maps 2020, 16, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Smaczyński, M.; Medyńska-Gulij, B.; Halik, Ł. The Land Use Mapping Techniques (Including the Areas Used by Pedestrians) Based on Low-Level Aerial Imagery. ISPRS Int. J. Geo-Inf. 2020, 9, 754. [Google Scholar] [CrossRef]
A. Total Time—Walking | B. Individual Time (Start–1 Coin)—Walking | C. Individual Time (6–7 Coins)—Walking | |||||||
---|---|---|---|---|---|---|---|---|---|
Id | tWS: | tWM: | tWM/tWS: | t1WS: | t1WM: | t1WM/t1WS: | t2WS: | t2WM: | t2WM/t2WS: |
1 | 353.2 | 177.9 | 50% | 56.8 | 16.3 | 29% | 56.0 | 27.6 | 49% |
2 | 419.0 | 208.6 | 50% | 59.6 | 29.0 | 49% | 80.1 | 47.0 | 59% |
3 | 386.5 | 181.0 | 47% | 87.5 | 41.8 | 48% | 54.5 | 19.9 | 36% |
4 | 453.4 | 178.7 | 39% | 79.7 | 20.0 | 25% | 68.4 | 25.2 | 37% |
5 | 544.8 | 208.5 | 38% | 64.1 | 6.7 | 10% | 67.6 | 38.1 | 56% |
6 | 530.4 | 200.3 | 38% | 71.5 | 17.7 | 25% | 67.4 | 32.8 | 49% |
7 | 377.0 | 130.7 | 35% | 55.7 | 8.3 | 15% | 55.6 | 29.7 | 53% |
8 | 392.7 | 129.4 | 33% | 65.6 | 19.2 | 29% | 59.0 | 18.8 | 32% |
9 | 380.1 | 119.5 | 31% | 59.7 | 13.4 | 22% | 54.5 | 16.5 | 30% |
10 | 371.0 | 113.8 | 31% | 59.2 | 13.2 | 22% | 60.2 | 21.0 | 35% |
11 | 393.2 | 108.7 | 28% | 49.8 | 13.2 | 27% | 80.5 | 20.9 | 26% |
12 | 375.3 | 100.3 | 27% | 69.4 | 13.8 | 20% | 54.5 | 18.1 | 33% |
13 | 412.4 | 110.2 | 27% | 56.2 | 8.1 | 14% | 81.9 | 25.9 | 32% |
14 | 366.6 | 94.3 | 26% | 62.8 | 10.6 | 17% | 59.6 | 17.8 | 30% |
15 | 378.8 | 91.4 | 24% | 66.8 | 12.8 | 19% | 60.1 | 15.6 | 26% |
16 | 499.2 | 114.3 | 23% | 77.8 | 8.0 | 10% | 67.3 | 24.2 | 36% |
17 | 349.2 | 59.6 | 17% | 61.6 | 8.8 | 14% | 56.1 | 7.9 | 14% |
18 | 302.3 | 49.7 | 16% | 49.4 | 5.9 | 12% | 49.2 | 8.7 | 18% |
19 | 389.2 | 60.0 | 15% | 66.6 | 6.2 | 9% | 66.0 | 11.4 | 17% |
20 | 379.0 | 56.2 | 15% | 55.0 | 5.4 | 10% | 88.9 | 11.2 | 13% |
Median | 383.3 | 114.0 | 29% | 62.2 | 13.0 | 19% | 60.2 | 20.4 | 33% |
A. Total Time—Teleportation | B. Individual Time (Start–1 Coin)—Teleportation | C. Individual Time (6–7 Coins)—Teleportation | |||||||
---|---|---|---|---|---|---|---|---|---|
Id | tTS: | tTM: | tTM/tTS: | t1TS: | t1TM: | t1TM/t1TS: | t2TS: | t2TM: | t2TM/t2TS: |
1 | 201.5 | 79.2 | 39% | 32.6 | 5.4 | 17% | 19.7 | 12.4 | 63% |
2 | 218.4 | 77.9 | 36% | 45.5 | 8.1 | 18% | 30.5 | 14.2 | 47% |
3 | 273.3 | 96.5 | 35% | 42.0 | 16.4 | 39% | 44.2 | 11.8 | 27% |
4 | 148.5 | 52.0 | 35% | 27.1 | 10.9 | 40% | 24.5 | 6.3 | 26% |
5 | 365.1 | 123.0 | 34% | 74.6 | 19.7 | 26% | 55.3 | 27.6 | 50% |
6 | 164.7 | 55.3 | 34% | 34.9 | 7.9 | 23% | 15.5 | 5.8 | 37% |
7 | 166.3 | 55.6 | 33% | 26.3 | 12.8 | 49% | 24.9 | 6.5 | 26% |
8 | 323.9 | 106.8 | 33% | 44.5 | 10.9 | 24% | 44.4 | 21.5 | 48% |
9 | 222.2 | 73.0 | 33% | 39.3 | 18.7 | 48% | 25.6 | 10.0 | 39% |
10 | 196.6 | 60.7 | 31% | 32.9 | 4.5 | 14% | 33.6 | 13.6 | 41% |
11 | 302.2 | 93.0 | 31% | 31.0 | 5.2 | 17% | 64.0 | 23.8 | 37% |
12 | 418.6 | 123.6 | 30% | 50.0 | 19.7 | 39% | 38.5 | 24.4 | 63% |
13 | 213.8 | 63.1 | 30% | 37.7 | 11.6 | 31% | 27.3 | 9.8 | 36% |
14 | 268.3 | 77.4 | 29% | 33.0 | 2.9 | 9% | 60.7 | 25.8 | 43% |
15 | 315.8 | 87.2 | 28% | 48.9 | 14.0 | 29% | 33.8 | 5.6 | 17% |
16 | 203.9 | 56.3 | 28% | 30.2 | 9.7 | 32% | 25.3 | 4.7 | 18% |
17 | 331.7 | 81.1 | 24% | 49.9 | 8.9 | 18% | 47.3 | 9.0 | 19% |
18 | 237.1 | 38.8 | 16% | 33.9 | 4.7 | 14% | 27.6 | 6.0 | 22% |
19 | 255.2 | 41.6 | 16% | 47.5 | 5.6 | 12% | 28.4 | 6.2 | 22% |
20 | 331.5 | 48.6 | 15% | 31.2 | 5.5 | 18% | 62.8 | 5.6 | 9% |
Median | 246.2 | 75.2 | 31% | 36.3 | 9.3 | 24% | 32.0 | 9.9 | 37% |
A. Median for Total Time | B. Median for Individual Time (Start–1 Coin) | C. Median for Individual Time (6–7 Coins) | |||||||
---|---|---|---|---|---|---|---|---|---|
Id | tS: | tM: | tM/tS: | t1S: | t1M: | t1M/t1S: | t2S: | t2M: | t2M/t2S: |
Walking | 383.3 | 114.0 | 29% | 62.2 | 13.0 | 19% | 60.2 | 20.4 | 33% |
Teleportation | 246.2 | 75.2 | 31% | 36.3 | 9.3 | 24% | 32.0 | 9.9 | 37% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagata, K.; Gulij, J.; Halik, Ł.; Medyńska-Gulij, B. Mini-Map for Gamers Who Walk and Teleport in a Virtual Stronghold. ISPRS Int. J. Geo-Inf. 2021, 10, 96. https://doi.org/10.3390/ijgi10020096
Zagata K, Gulij J, Halik Ł, Medyńska-Gulij B. Mini-Map for Gamers Who Walk and Teleport in a Virtual Stronghold. ISPRS International Journal of Geo-Information. 2021; 10(2):96. https://doi.org/10.3390/ijgi10020096
Chicago/Turabian StyleZagata, Krzysztof, Jacek Gulij, Łukasz Halik, and Beata Medyńska-Gulij. 2021. "Mini-Map for Gamers Who Walk and Teleport in a Virtual Stronghold" ISPRS International Journal of Geo-Information 10, no. 2: 96. https://doi.org/10.3390/ijgi10020096
APA StyleZagata, K., Gulij, J., Halik, Ł., & Medyńska-Gulij, B. (2021). Mini-Map for Gamers Who Walk and Teleport in a Virtual Stronghold. ISPRS International Journal of Geo-Information, 10(2), 96. https://doi.org/10.3390/ijgi10020096