The Role of Spatio-Temporal Information to Govern the COVID-19 Pandemic: A European Perspective
Abstract
:1. Introduction
1.1. COVID-19 Pandemic
1.2. Spatiotemporal Nature of Infectious Diseases
2. Materials and Methods
2.1. The Nomenclature of Territorial Units for Statistics (NUTS) in Europe
2.2. Member States Dashboards
2.2.1. France
2.2.2. Netherlands
2.2.3. Germany
3. Challenges of COVID-19 Data Provision
3.1. European Level
3.2. Data Shortcuts and Challenges
- The quest for reliable data
- 2.
- The timeliness of reporting
- 3.
- The need for unambiguous definitions
4. Discussion
4.1. The Role of Spatio-Temporal Data
4.2. Public Health Data and Spatial Data Infrastructures
5. Towards an Integrated System Building on INSPIRE
5.1. Integration of Public Health Data, Statistical Data and Basic Geospatial Data
5.2. Conceptual Considerations for an Integrated Public Health Information System in the European Union
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO World Health Organization. Coronavirus Disease (COVID-2019) Situation Reports. 2020. Available online: https://www.who.int (accessed on 15 June 2020).
- Hale, T.; Angrist, N.; Cameron-Blake, E.; Hallas, L.; Kira, B.; Majumdar, S.; Petherick, A.; Phillips, T.; Tatlow, H.; Webster, S. Oxford COVID-19 Government Response Tracker; Blavatnik School of Government: Oxford, UK, 2020. [Google Scholar]
- UN-GGIM: COVID-19: Ready to Respond. The Role of the Geospatial Community in Responding to COVID-19. White Paper. 2020. Available online: https://ggim.un.org/meetings/GGIM-committee/10th-Session/documents/Covid-19_Ready-to-Respond.pdf (accessed on 7 January 2021).
- European Union. Member States of the European Union. 2020. Available online: https://europa.eu/european-union/about-eu/countries_en (accessed on 29 December 2020).
- Verhagen, M.D.; Brazel, D.M.; Dowd, J.B.; Kashnitzky, I.; Mills, M.C. Forecasting spatial, socioeconomic and demographic variation in COVID-19 health care demand in England and Wales. BMC Med. 2020, 18, 203. [Google Scholar] [CrossRef] [PubMed]
- Balcan, D.; Colizza, V.; Goncalves, B.; Hu, H.; Ramasco, J.J.; Vespignani, A. Multiscale Mobility Networks and the Spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA 2009, 106, 21484–21489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backer, J.A.; Klinkenberg, D.; Wallinga, J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Eurosurveillance 2020, 25, 2000062. Available online: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.5.2000062#html_fulltext (accessed on 7 January 2021). [CrossRef] [PubMed] [Green Version]
- Yang, W.; Deng, M.; Li, C.; Huang, J. Spatio-Temporal Patterns of the 2019-nCoV Epidemic at the County Level in Hubei Province, China. Int. J. Environ. Res. Public Health 2020, 17, 2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuliani, D.; Dickson, M.M.; Espa, G.; Santi, F. Modelling and Predicting the Spatio-Temporal Spread of Coronavirus Disease 2019 (COVID-19) in Italy (3/20/2020). 2020. Available online: https://ssrn.com/abstract=3559569 (accessed on 7 January 2021). [CrossRef] [Green Version]
- Kraak, M.J.; Ormeling, F. Cartography: Visualization of Geospatial Data; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Juergens, C. Trustworthy COVID-19 Mapping: Geo-spatial Data Literacy Aspects of Choropleth Maps. KN-J. Cartogr. Geogr. Inf. 2020, 70, 155–161. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. 2020. Available online: https://qap.ecdc.europa.eu/public/extensions/COVID-19/COVID-19.html (accessed on 29 December 2020).
- Goovaerts, P. Geostatistical Analysis of Health Data: State-of-the-Art and Perspectives. In Geoenv VI–Geostatistics for Environmental Applications; Soares, A., Pereira, M.J., Dimitrakopoulos, R., Eds.; Springer Science+Business Media B.V.: Luxembourg, 2008; pp. 3–22. [Google Scholar] [CrossRef]
- UN Economic and Social Council: Strengthening of Geospatial Information Management, E/C.20/2020/23/Add.1. 2020. Available online: https://ggim.un.org/meetings/GGIM-committee/10th-Session/documents/E-C.20-2020-23-Add_1-Strengthening-Geospatial-Information-3Aug2020.pdf (accessed on 9 January 2021).
- European Commission. 2021. Available online: https://inspire.ec.europa.eu/inspire-principles/9 (accessed on 5 January 2021).
- EUROSTAT. Regions in the European Union, 2018 ed.; Nomenclature of Territorial Units for Statistics—NUTS 2016/EU-28; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Wexler, S.; Shaffer, J.; Cotgreave, A. The big book of dashboards: Visualizing your data using real-world business scenarios; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Sarikaya, A.; Correll, M.; Bartram, L.; Tory, M.; Fisher, D. What do we talk about when we talk about dashboards? IEEE Trans. Vis. Comput. Graph. 2018, 25, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Carver, S.J. Integrating multi-criteria evaluation with geographical information systems. Int. J. Geogr. Inf. Syst. 1991, 5, 321–339. [Google Scholar] [CrossRef] [Green Version]
- French Government. Vigilance Map for France on 9 June 2020. 2020. Available online: https://www.gouvernement.fr/info-coronavirus/carte-et-donnees#activite-epidemique (accessed on 8 September 2020).
- RTL Nieuws. 2020. Available online: https://www.rtlnieuws.nl/nieuws/nederland/artikel/5128431/corona-gemeente-nederland-verspreiding-wanneer-haard-besmettingen (accessed on 15 June 2020).
- Ministry of Health, Welfare and Sport. 2020. Available online: https://coronadashboard.government.nl/over (accessed on 7 January 2021).
- Rijksinstituut voor Volksgezondheid en Milieu. Number of Hospitalized People and COVID-19 Cases for the Period 18–31 March 2020 per 100.000 Inhabitants per Municipality. 2020. Available online: https://www.rivm.nl/coronavirus-covid-19/actueel (accessed on 8 September 2020).
- Ministry of Health, Welfare and Sport. COVID-19 dashboard Netherlands. 2020. Available online: https://coronadashboard.rijksoverheid.nl/landelijk/ziekenhuis-opnames (accessed on 29 December 2020).
- Ministry of Health, Welfare and Sport. COVID-19 dashboard Netherlands. 2020. Available online: https://coronadashboard.rijksoverheid.nl/landelijk/sterfte (accessed on 29 December 2020).
- German Federal Government. Press Release Number151/20 of 6 May 2020. 2020. Available online: https://www.bundesregierung.de/resource/blob/973812/1751456/c197062365f7e60780e9039dc4e336ee/2020-05-06-beschluss-bund-laender-eng-data.pdf?download=1 (accessed on 15 June 2020).
- Bissantz Business Intelligence. Dynamics of Infections per 100,000 Inhabitants in Germany at the NUTS 3 Level. 2020. Available online: https://data.bissantz.de/Session.aspx?application=2000#s-237 (accessed on 13 June 2020).
- Robert Koch-Institut (RKI). COVID-19 Dashboard Germany. 2021. Available online: https://experience.arcgis.com/experience/478220a4c454480e823b17327b2bf1d4/page/page_1/ (accessed on 4 January 2021).
- Robert Koch-Institut (RKI), dl-de/by-2-0, Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under CC BY SA. Available online: https://www.rki.de (accessed on 13 March 2021).
- The Washington Post: Millions Track the Pandemic on Johns Hopkins’s Dashboard. Those Who Built It Say Some Miss the Real Story, by Kyle Swenson, 29 June 2020 at 9:50 p.m. GMT+2. 2020. Available online: https://www.washingtonpost.com/local/johns-hopkins-tracker/2020/06/29/daea7eea-a03f-11ea-9590-1858a893bd59_story.html (accessed on 15 June 2020).
- European Centre for Disease Prevention and Control. 2021. Available online: https://www.ecdc.europa.eu/en/interpretation-covid-19-data (accessed on 6 January 2021).
- Rosstat. Covid-19: Russia admits to understating deaths by more than two thirds. BMJ 2020, 371. [Google Scholar] [CrossRef]
- Worldometer. COVID-19 Coronavirus Pandemic. 2020. Available online: https://www.worldometers.info/coronavirus/ (accessed on 6 January 2021).
- Mocnik, F.B.; Raposo, P.; Feringa, W.; Kraak, M.J.; Köbben, B. Epidemics and pandemics in maps–the case of COVID-19. J. Maps 2020, 16, 144–152. [Google Scholar] [CrossRef]
- Murgante, B.; Borruso, G.; Balletto, G.; Castiglia, P.; Dettori, M. Why Italy First? Health, Geographical and Planning Aspects of the COVID-19 Outbreak. Sustainability 2020, 12, 5064. [Google Scholar] [CrossRef]
- European Union (EU). Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). OJ L 108, 25.4.2007, p. 1–14 (BG, ES, CS, DA, DE, ET, EL, EN, FR, IT, LV, LT, HU, MT, NL, PL, PT, RO, SK, SL, FI, SV) Special edition in Croatian: Chapter 13. Volume 30, pp. 270–283. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32007L0002 (accessed on 7 January 2021).
- UN-GGIM. UN Committee of Experts on Global Spatial Data Management, Sixth session New York. 2016. Available online: http://ggim.un.org/knowledgebase/Attachment1651.aspx?AttachmentType=1 (accessed on 16 June 2020).
- UN (United Nations) Economic Commission for Europe, Conference of European Statisticians. In-Depth Review of Developing Geospatial Information Services Based on Official Statistics. Meeting of the 2015/2016 Bureau, Luxembourg, 9–10 February 2016, ECE/CES/BUR/2016/FEB/2. Available online: https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/bur/2016/February/02-In-depth_review_on_developing_geospatial_information_final.pdf (accessed on 16 June 2020).
- Lasschuyt, E.; van Hekken, M. Information Interoperability and Information Standardisation for NATO C2—A Practical Approach. In RTO Meeting Proceedings 64, Information Management Challenges in Achieving Coalition Interoperability; North Atlantic Treaty Organization, Science and Technology Organization: Quebec, QC, Canada, 2001; ISBN 92-837-1078-9. [Google Scholar] [CrossRef]
- Tóth, K. Data Consistency and Multiple-Representation in the European Spatial Data Infrastructure. In Proceedings of the 10th ICA Workshop on Generalisation and Multiple Representation, Moscow, Russia, 2–3 August 2007; International Cartographic Association, Commission on Multiple-Representation and Generalisation; Joint Research Centre Publications Repository; pp. 1–8. Available online: http://publications.jrc.ec.europa.eu/repository/handle/JRC37760 (accessed on 19 February 2021).
- Tóth, K.; Portele, C.; Illert, M.; Lutz, M.; Nunes de Lima, V. A Conceptual Model for Developing Interoperability Specifications in Spatial Data Infrastructures; Publications Office of the European Union: Luxembourg, 2012; ISBN 978-92-79-22552-9. [Google Scholar] [CrossRef]
Level | Minimum Number of Inhabitants | Maximum Number of Inhabitants |
---|---|---|
NUTS 1 | 3 million | 7 million |
NUTS 2 | 800.000 | 3 million |
NUTS 3 | 150.000 | 800.000 |
Criterion | Classification | Score | Weight |
---|---|---|---|
COVID-19 parameters | Number of cases (absolute/relative) Number of deaths (absolute/relative) Number of hospitalized people (absolute/relative) Number of positive test results compared to all conducted tests (relative) Reproduction number Other parameters | 1 = basic parameters available with limited variation in units 2 = some parameters available in various units 3 = fair number of parameters in various units 4 = extensive parameters in multiple units, going beyond the direct need | 2 |
Map type | No map Choropleth map Size map Heat map Dot map Multivariate map | 1 = no map 2 = size map 3 = choropleth map 4 = multiple maps | 1 |
Graph type | No graphs Bar graph Line chart Pie chart Histogram | 1 = no graphs 2 = few graphs 3 = some variety of graphs 4 = extensive variety of graphs | 1 |
Metadata | No metadata/unknown Frequency updates Data source Data collection method Definition indicators | 1 = no metadata 2 = frequency update 3 = some metadata 4 = extensive metadata | 2 |
Access to data | No access to raw data Pre-defined tables Downloadable data sets Feature and mapping services | 1 = no access 2 = table 3 = download service 4 = feature/mapping services | 2 |
Rating | Description | Total Weighted Score |
---|---|---|
0 | Not available/not found | NA |
1 | Marginal dashboard | 8–14 |
2 | Adequate dashboard | 15–20 |
3 | Good dashboard | 21–26 |
4 | Excellent dashboard | 27–32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, H.; Louwsma, M. The Role of Spatio-Temporal Information to Govern the COVID-19 Pandemic: A European Perspective. ISPRS Int. J. Geo-Inf. 2021, 10, 166. https://doi.org/10.3390/ijgi10030166
Müller H, Louwsma M. The Role of Spatio-Temporal Information to Govern the COVID-19 Pandemic: A European Perspective. ISPRS International Journal of Geo-Information. 2021; 10(3):166. https://doi.org/10.3390/ijgi10030166
Chicago/Turabian StyleMüller, Hartmut, and Marije Louwsma. 2021. "The Role of Spatio-Temporal Information to Govern the COVID-19 Pandemic: A European Perspective" ISPRS International Journal of Geo-Information 10, no. 3: 166. https://doi.org/10.3390/ijgi10030166
APA StyleMüller, H., & Louwsma, M. (2021). The Role of Spatio-Temporal Information to Govern the COVID-19 Pandemic: A European Perspective. ISPRS International Journal of Geo-Information, 10(3), 166. https://doi.org/10.3390/ijgi10030166