Coastal Tourism Spatial Planning at the Regional Unit: Identifying Coastal Tourism Hotspots Based on Social Media Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Social Media Data and Visitation Data
2.3. Estimating Empirical Visitation Rate
2.4. Identifying Regional Hotspots for Marine Tourism
3. Results
3.1. Correlation between Social Media Data and Visitation Data
3.2. Estimating Visitation Rates for Coastal Tourism
3.3. Regional Hotspots for Coastal Tourism
4. Discussion
4.1. Social Media as an Evidence of Spatial Distribution of Coastal Tourism
4.2. Characteristics of Coastal Tourism Hotspots Using Social Meida Data
4.3. Application of Coastal Tourism Hotspots for Regional Spatial Planning
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Explanation of Statistical Visitation Data
Type of Tourist Attractions | Count | Type of Tourist Attractions | Count |
---|---|---|---|
Beach | 40 | Park | 8 |
Exhibition, Museum | 28 | Cruise ship | 4 |
Island | 17 | Resort | 2 |
Natural scenery | 10 | The others | 23 |
Cultural heritage | 10 | - | - |
Appendix B
Appendix C
Data. | Multiple R2 | RMSE | Exp (RMSE) (Actual RMSE) | Pearson Correlation Coefficient |
---|---|---|---|---|
Training data | 0.5713 | 0.8378 | 1,191,774 | 0.7698 |
Test data | - | 0.8696 | 1,069,451 | 0.7023 |
Appendix D
Mark | Name | Province | Weather It Belong to Hotspots |
---|---|---|---|
P1 | Gunsan Port | Jeollabuk-do | O |
P2 | Gyeokpo Port | Jeollabuk-do | O |
P3 | Gwangyang Port | Jellanam-do | O |
P4 | Mokpo Port | Jellanam-do | O |
P5 | Yeosu Port | Jellanam-do | O |
P6 | Masan Port | Gyeongsangnam-do | X |
P7 | Busan Port | Busan city | O |
P8 | Okpo Port | Gyeongsangnam-do | X |
P9 | Tongyeong Port | Gyeongsangnam-do | X |
P10 | Jeju Port | Jeju-do | O |
P11 | Seogwipo Port | Jeju-do | O |
AP1 | Gunsan Airport | Jeollabuk-do | O |
AP2 | Jeju Airport | Jeju-do | O |
N1 | Seonyu Island | Jeollabuk-do | X |
N2 | Byeonsan Peninsula National Park | Jeollabuk-do | O |
N3 | Jeung Island | Jellanam-do | O |
N4 | Suncheon Bay | Jellanam-do | O |
N5 | Hong Island | Jellanam-do | O |
N6 | Haeundae Beach | Busan city | O |
N7 | Gujora Beach | Gyeongsangnam-do | X |
N8 | Hyeopjae Beach | Jeju-do | O |
N9 | Seongsan Ilchulbong Peak | Jeju-do | O |
N10 | Jungmun Jusangjeolli Cliff | Jeju-do | O |
A1 | Saemangeum Seawall | Jeollabuk-do | O |
A2 | Yeosu EXPO Park | Jellanam-do | O |
A3 | Jagalchi Market | Busan city | O |
A4 | Jungmun Tourist Complex | Jeju-do | O |
References
- European Commission. A European Strategy for More Growth and Jobs in Coastal and Maritime Tourism; EU Publications: Luxembourg, 2014. [Google Scholar] [CrossRef]
- World Tourism Organization. Tourism Towards 2030 Global Overview; UNWTO: Madrid, Spain, 2011. [Google Scholar]
- World Travel Organization. International Tourism Highlights, 2019 ed.; UNWTO: Madrid, Spain, 2019. [Google Scholar] [CrossRef]
- Tonazzini, D.; Fosse, J.; Morales, E.; González, A.; Klarwein, S.; Moukaddem, K.; Louveau, O. Blue Tourism–Towards a Sustainable Coastal and Martime Tourism in World Marine Regions; Eco-Union: Barcelona, Spain, 2019. [Google Scholar]
- Meyer, -A.; Klaus, J. Geomorphic Impacts of Resort Evolution along the Gulf of Mexico coast: Applicability of Resort Cycle Models. Tour. Environ. Case Coast. Areas 1993, 26, 125–138. [Google Scholar]
- JICA. Japanese, Filipino Scientists’ Project Backs Conservation of ‘Highly Endangered’ Boracay Ecosystem. Available online: https://www.jica.go.jp/philippine/english/office/topics/news/150528.html (accessed on 21 May 2020).
- Wardana, I.M.; Utama, I.W.M.; Astawa, I.P. Model of Local Population Perception in Supporting Coastal Tourism Development and Planning in Bali. Geoj. Tour. Geosites. 2018, 23, 873. [Google Scholar] [CrossRef]
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development; General Assembly 70 Session; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Drius, M.; Bongiorni, L.; Depellegrin, D.; Menegon, S.; Pugnetti, A.; Stifter, S. Tackling Challenges for Mediterranean Sustainable Coastal Tourism: An Ecosystem Service Perspective. Sci. Total Environ. 2019, 652, 1302–1317. [Google Scholar] [CrossRef]
- Arkema, K.K.; Verutes, G.M.; Wood, S.A.; Clarke-Samuels, C.; Rosado, S.; Canto, M.; Rosenthal, A.; Ruckelshaus, M.; Guannel, G.; Toft, J.; et al. Embedding Ecosystem Services in Coastal Planning Leads to Better Outcomes for People and Nature. Proc. Natl. Acad. Sci. USA 2015, 112, 7390–7395Error. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, C.M. Trends in Ocean and Coastal Tourism: The End of the Last Frontier? Ocean. Coast. Manag 2001, 44, 601–618. [Google Scholar] [CrossRef]
- Papageorgiou, M. Coastal and Marine Tourism: A Challenging Factor in Marine Spatial Planning. Ocean. Coast. Manag. 2016, 129, 44–48Error. [Google Scholar] [CrossRef]
- Douvere, F. The Importance of Marine Spatial Planning in Advancing Ecosystem-Based Sea Use Management. Mar. Policy 2008, 32, 762–771Error. [Google Scholar] [CrossRef]
- Pınarbaşı, K.; Galparsoro, I.; Borja, Á.; Stelzenmüller, V.; Ehler, C.N.; Gimpel, A. Decision Support Tools in Marine Spatial Planning: Present Applications, Gaps and Future Perspectives. Mar. Policy 2017, 83, 83–91. [Google Scholar] [CrossRef]
- Tafon, R.; Howarth, D.; Griggs, S. The Politics of Estonia’s Offshore Wind Energy Programme: Discourse, Power and Marine Spatial Planning. Environ. Plan. C Politics Space 2019, 37, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Almeida, J.; Costa, C.; Nunes da Silva, F. A Framework for Conflict Analysis in Spatial Planning for Tourism. Tour. Manag. Perspect. 2017, 24, 94–106. [Google Scholar] [CrossRef]
- Heikinheimo, V.; Minin, E.D.; Tenkanen, H.; Hausmann, A.; Erkkonen, J.; Toivonen, T. User-Generated Geographic Information for Visitor Monitoring in a National Park: A Comparison of Social Media Data and Visitor Survey. ISPRS Int. J. Geo-Inf. 2017, 6, 85. [Google Scholar] [CrossRef] [Green Version]
- Chun, J.Y.; Kim, C.K.; Kim, G.S.; Jeong, J.Y.; Lee, W.K. Social Big Data Informs Spatially Explicit Management Options for National Parks with High Tourism Pressures. Tour. Manag. 2020, 81, 104136. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A Global Map of Human Impact on Marine Ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Losada, N.; Alén, E.; Cotos-Yáñez, T.R.; Domínguez, T. Spatial Heterogeneity in Spain for Senior Travel Behavior. Tour. Manag. 2019, 70, 444–452. [Google Scholar] [CrossRef]
- Kubo, T.; Uryu, S.; Yamano, H.; Tsuge, T.; Yamakita, T.; Shirayama, Y. Mobile Phone Network Data Reveal Nationwide Economic Value of Coastal Tourism under Climate Change. Tour. Manag. 2020, 77, 104010. [Google Scholar] [CrossRef]
- Coccossis, H.; Constantoglou, M. The Need of Spatial Typologies in Tourism Planning and Policy Making: The Greek CASE. In Proceedings of the 45th Congress of the European Regional Science Association, Vrije Universiteit, Amsterdam, The Netherlands, 23–27 August 2005; European Regional Science Association: Vrije Universiteit, Amsterdam, Netherlands, 2005; pp. 1–20. [Google Scholar]
- Edelheim, J.R. Tourist Attractions: from Object to Narrative; Channel View Publications: Bristol, UK, 2015; Volume 46. [Google Scholar]
- Kang, S.; Lee, G.; Kim, J.; Park, D. Identifying the Spatial Structure of the Tourist Attraction System in South Korea Using GIS and Network Analysis: An Application of Anchor-Point Theory. J. Destin. Mark. Manag. 2018, 9, 358–370. [Google Scholar] [CrossRef]
- García, -P.J.C.; Gutiérrez, J.; Mínguez, C. Identification of Tourist Hot Spots Based on Social Networks: A Comparative Analysis of European Metropolises Using Photo-Sharing Services and Gis. Appl. Geogr. 2015, 63, 408–417. [Google Scholar] [CrossRef]
- Swarbrooke, J.; Page, S.J. Development and Management of Visitor Attractions, 2nd ed.; Routledge: Woburn, UK, 2002. [Google Scholar]
- Botti, L.; Peypoch, N.; Solonandrasana, B. Time and Tourism Attraction. Tour. Manag. 2008, 29, 594–596. [Google Scholar] [CrossRef]
- Leiper, N. Tourist Attraction Systems. Ann. Tour. Res. 1990, 17, 367–384. [Google Scholar] [CrossRef]
- Deville, P.; Linard, C.; Martin, S.; Gilbert, M.; Stevens, F.R.; Gaughan, A.E.; Blondel, V.D.; Tatem, A.J. Dynamic Population Mapping Using Mobile Phone Data. Proc. Natl. Acad. Sci. USA 2014, 111, 15888–15893. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.A.; Guerry, A.D.; Silver, J.M.; Lacayo, M. Using Social Media to Quantify Nature-Based Tourism and Recreation. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef]
- Sonter, L.J.; Watson, K.B.; Wood, S.A.; Ricketts, T.H. Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated Via Social Media. PLoS ONE 2016, 11, e0162372. [Google Scholar] [CrossRef] [Green Version]
- Hawelka, B.; Sitko, I.; Beinat, E.; Sobolevsky, S.; Kazakopoulos, P.; Ratti, C. Geo-Located Twitter as Proxy for Global Mobility Patterns. Cartogr. Geogr. Inf. Sci. 2014, 41, 260–271. [Google Scholar] [CrossRef] [Green Version]
- Fisher, D.M.; Wood, S.A.; Roh, Y.-H.; Kim, C.-K. The Geographic Spread and Preferences of Tourists Revealed by User-Generated Information on Jeju Island, South Korea. Land 2019, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Van Zanten, B.T.; Van Berkel, D.B.; Meentemeyer, R.K.; Smith, J.W.; Tieskens, K.F.; Verburg, P.H. Continental-Scale Quantification of Landscape Values Using Social Media Data. Proc. Natl. Acad. Sci. USA 2016, 113, 12974–12979. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Lee, D.K.; Kim, C.K. Spatial Tradeoff between Biodiversity and Nature-Based Tourism: Considering Mobile Phone-Driven Visitation Pattern. Glob. Ecol. Conserv. 2020, 21, 899. [Google Scholar] [CrossRef]
- Ramezan, C.A.; Warner, T.A.; Maxwell, A.E. Evaluation of Sampling and Cross-Validation Tuning Strategies for Regional-Scale Machine Learning Classification. Remote Sens. 2019, 11, 185. [Google Scholar] [CrossRef] [Green Version]
- Tebbs, E.J.; Rowland, C.S.; Smart, S.M.; Maskell, L.C.; Norton, L.R. Regional-Scale High Spatial Resolution Mapping of Aboveground Net Primary Productivity (ANPP) from Field Survey and Landsat Data: A Case Study for the Country of Wales. Remote Sens. 2017, 9, 801. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.; Levinson, D. Mutual Causality in Road Network Growth and Economic Development. Transp. Policy 2016, 45, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Tong, S. Research on the Relationship between Economic Growth and Road Traffic Infrastructure in Inner Mongolia. IOP Conf. Ser. Earth Environ. Sci. 2019, 237. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H. SNS (Social Network Service) Usage Trend and Usage Behavior Analysis; KISID STAT Report 19-10; KISID: Jincheon, Korea, 2019. [Google Scholar]
- Ministry of Oceans and Fisheries. The Guidelines for the Assessment of Marine Spatial Characteristics; Ministry of Oceans and Fisheries: Sejong, Korea, 2019. [Google Scholar]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST +VERSION+ User’s Guide.; The Natural Capital Project, Stanford University, University of Minnesota: Minneapolis, MN, USA, 2016. [Google Scholar] [CrossRef]
- GetOldTweets-python. Available online: https://github.com/Jefferson-Henrique/GetOldTweets-python (accessed on 21 May 2020).
- The Number of Visitors of Major Tourist Attractions. Available online: https://know.tour.go.kr/stat/visitReportStatAfterReportDis.do? (accessed on 21 May 2020).
- Harris, N.L.; Goldman, E.; Gabris, C.; Nordling, J.; Minnemeyer, S.; Ansari, S.; Lippmann, M.; Bennett, L.; Raad, M.; Hansen, M.; et al. Using Spatial Statistics to Identify Emerging Hot Spots of Forest Loss. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- Isobe, A.; Uchida, K.; Tokai, T.; Iwasaki, S. East Asian Seas: A Hot Spot of Pelagic Microplastics. Mar. Pollut. Bull. 2015, 101, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Lepers, E.; Lambin, E.F.; Janetos, A.C.; DeFries, R.; Achard, F.; Ramankutty, N.; Scholes, R.J. A Synthesis of Information on Rapid Land-Cover Change for the Period 1981–2000. BioScience 2005, 55, 115. [Google Scholar] [CrossRef]
- Chaix, B.; Merlo, J.; Chauvin, P. Comparison of a Spatial Approach with the Multilevel Approach for Investigating Place Effects on Health: The Example of Healthcare Utilisation in France. J. Epidemiol. Community Health 2005, 59, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Ord, J.K.; Getis, A. The Analysis of Spatial Association. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- ESRI How Hot Spot Analysis (Getis-Ord Gi) Work. Available online: https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm (accessed on 21 May 2020).
- Li, H.; Calder, C.A.; Cressie, N. Beyond Moran’s I: Testing for Spatial Dependence Based on the Spatial Autoregressive Model. Geogr. Anal. 2007, 39, 357–375. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Song, M.; Peng, J.; Wang, J.; Zhao, J. Environmental Efficiency and Economic Growth of China: A Ray Slack-Based Model Analysis. Eur. J. Oper. Res. 2018, 269, 51–63. [Google Scholar] [CrossRef]
- ESRI How Spatial Autocorrelation (Global Moran’s I) Works. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-spatial-autocorrelation-moran-s-i-spatial-st.htm (accessed on 22 February 2020).
- Tenkanen, H.; Di Minin, E.; Heikinheimo, V.; Hausmann, A.; Herbst, M.; Kajala, L.; Toivonen, T. Instagram, Flickr, or Twitter: Assessing the Usability of Social Media Data for Visitor Monitoring in Protected Areas. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kim, C.K.; Lee, D.K.; Lee, H.W.; Andrada, R.I.T. Quantifying Nature-Based Tourism in Protected Areas in Developing Countries by Using Social Big Data. Tour. Manag. 2019, 72, 249–256. [Google Scholar] [CrossRef]
- Orams, M. Marine tourism: Development, impacts and management; Routledge: New York, NY, USA, 2002. [Google Scholar]
- Miller, M.L. The Rise of Coastal and Marine Tourism. Ocean Coast. Manag. 1993, 20, 181–199. [Google Scholar] [CrossRef]
- Lonely Planet’s Best in Asia 2018. Available online: https://www.lonelyplanet.com/articles/lonely-planets-best-asia-2018 (accessed on 21 May 2020).
- Ehler, C.; Douvere, F. Marine Spatial Planning: A Step-By-Step Approach toward Ecosystem-Based Management; Intergovernmental Oceanographic Commission and Man and the Biosphere Programme; IOC Manuals and Guides no. 53; UNESCO: Paris, France, 2009; Available online: https://www.oceanbestpractices.net/handle/11329/459 (accessed on 12 March 2021).
- Honey, M.; Krantz, D. Global Trends in Coastal Tourism. Center on Ecotourism and Sustainable Development; A Nonprofit Research Organization Stanford University: Washington, DC, USA, 2007. [Google Scholar]
- Gramolini, R.; Grati, F.; Fabi, G.; Schulze, T. COEXIST (FP7/2007-–2013, Project Number 245178), Deliverable D 3.9, GRID GeoReference Interactions Database. European Union, 2013. Available online: http://coexistproject.eu/images/COEXIST/deliverables/WP3/COEXIST_245178_D3.9_FINAL.pdf (accessed on 12 March 2021).
- Richards, D.R.; Tuncer, B. Using Image Recognition to Automate Assessment of Cultural Ecosystem Services from Social Media Photographs. Ecosyst. Serv. 2018, 31, 318–325. [Google Scholar] [CrossRef]
Region | Province | Area (km2) | Population per Area (people/km2) | Gross Regional Domestic Production (GRDP) per Area (1 Million USD/km2) | Characteristics |
---|---|---|---|---|---|
Jeollabuk-do (A) | Jeollabuk-do | 8066 | 225.49 | 5.74 |
|
Jellanam-do (B) | Jellanam-do | 12,095 | 274.92 | 8.76 |
|
Gwangju city | |||||
Gyeongsang nam-do (C) | Busan city | 12,364 | 640.88 | 20.26 |
|
Ulsan city | |||||
Gyeongsangnam-do | |||||
Jeju-do (D) | Jeju-do | 1849 | 362.89 | 9.79 |
|
Scheme | All Four Regions | Jeollabuk-do | Jellanam-do | Gyeongsangnam-do | Jeju-do |
---|---|---|---|---|---|
Flickr | R = 0.7245 (df = 99) | R = 0.6371 (df = 8) | R = 0.7857 (df = 26) | R = 0.7706 (df = 41) | R = 0.7246 (df = 18) |
R = 0.5837 (df = 130) | R = 0.5562 (df = 15) | R = 0.6071 (df = 43) | R = 0.6444 (df = 47) | R = 0.5921 (df = 19) |
Multiple R2 | Degree of Freedom (N-1) | Root Mean Square Error (RMSE) | F | p-Value |
---|---|---|---|---|
0.5913 | 127 | 0.8631 | 30.62 | 2.2 × 10−16 |
Variables | Estimate | Std. Error | t Value | p-value |
Intercept | 10.35709 | 0.36491 | 28.383 | <2 × 10−16 |
ln(Flickr) | 1.15819 | 0.17000 | 6.813 | 3.43 × 10−10 |
ln(Twitter) | 0.44477 | 0.16192 | 2.747 | 0.00689 |
ln(Twitter) 2 | −0.05205 | 0.02579 | −2.018 | 0.0457 |
DummyJeollabuk-do | 0.32419 | 0.30851 | 1.051 | 0.29533 |
DummyJellanam-do | 1.05083 | 0.25670 | 4.094 | 7.5 × 10−5 |
DummyGyeongsangnam-do | 0.83554 | 0.23886 | 3.498 | 0.000647 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.S.; Chun, J.; Kim, Y.; Kim, C.-K. Coastal Tourism Spatial Planning at the Regional Unit: Identifying Coastal Tourism Hotspots Based on Social Media Data. ISPRS Int. J. Geo-Inf. 2021, 10, 167. https://doi.org/10.3390/ijgi10030167
Kim GS, Chun J, Kim Y, Kim C-K. Coastal Tourism Spatial Planning at the Regional Unit: Identifying Coastal Tourism Hotspots Based on Social Media Data. ISPRS International Journal of Geo-Information. 2021; 10(3):167. https://doi.org/10.3390/ijgi10030167
Chicago/Turabian StyleKim, Gang Sun, Joungyoon Chun, Yoonjung Kim, and Choong-Ki Kim. 2021. "Coastal Tourism Spatial Planning at the Regional Unit: Identifying Coastal Tourism Hotspots Based on Social Media Data" ISPRS International Journal of Geo-Information 10, no. 3: 167. https://doi.org/10.3390/ijgi10030167
APA StyleKim, G. S., Chun, J., Kim, Y., & Kim, C. -K. (2021). Coastal Tourism Spatial Planning at the Regional Unit: Identifying Coastal Tourism Hotspots Based on Social Media Data. ISPRS International Journal of Geo-Information, 10(3), 167. https://doi.org/10.3390/ijgi10030167