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Abstract: Landslides are the most common and destructive secondary geological hazards caused by
earthquakes. It is difficult to extract landslides automatically based on remote sensing data, which is
import for the scenario of disaster emergency rescue. The literature review showed that the current
landslides extraction methods mostly depend on expert interpretation which was low automation
and thus was unable to provide sufficient information for earthquake rescue in time. To solve the
above problem, an end-to-end improved Mask R-CNN model was proposed. The main innovations
of this paper were (1) replacing the feature extraction layer with an effective ResNeXt module to
extract the landslides. (2) Increasing the bottom-up channel in the feature pyramid network to make
full use of low-level positioning and high-level semantic information. (3) Adding edge losses to the
loss function to improve the accuracy of the landslide boundary detection accuracy. At the end of
this paper, Jiuzhaigou County, Sichuan Province, was used as the study area to evaluate the new
model. Results showed that the new method had a precision of 95.8%, a recall of 93.1%, and an
overall accuracy (OA) of 94.7%. Compared with the traditional Mask R-CNN model, they have been
significantly improved by 13.9%, 13.4%, and 9.9%, respectively. It was proved that the new method
was effective in the landslides automatic extraction.

Keywords: earthquake; landslide; remote sensing; Mask R-CNN; deep learning

1. Introduction

In China’s mainland, about 70% of the area is mountainous areas with complex to-
pography and geological hazards. The losses caused by various geological hazards total
hundreds of millions yuan every year [1,2]. For example, the 2008 Wenchuan earthquake,
the 2010 Qinghai Yushu earthquake, the 2013 Sichuan Ya’an earthquake, and the 2017
Sichuan Jiuzhaigou earthquake have caused huge losses to the country. In these earth-
quakes, the losse of life and property caused by landslides were very serious.

Therefore, rapid acquisition of hazard information, such as the regional distributions,
numbers, and scales of landslides immediately, is the key to hazard reduction and relief.
However, the traditional landslide extraction methods are mostly based on field investiga-
tions. They are limited in survey scope, time-consuming, have a heavy workload, and low
efficiency, and thus struggle to meet rescue departments’ needs in efficiency [3,4].

With the rapid development of remote sensing technology, it is widely used in hazard
emergency and rescue due to its advantages of rapid, macro, all-time, and all-weather
monitoring [5].Therefore, it is of great significance for initially grasping the hazard situation,
formulating a reasonable rescue plan, and rationally settling the affected residents, to avoid
the secondary disaster damages using remote sensing [6].
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There are currently three main methods for landslides extraction based on remote sensing:
(1) Landslide identification methods based on visual interpretation.
Visual interpretation is the basic method to obtain landslide information using remote

sensing imageries [7,8]. It is extremely widely used in high-precision remote sensing
imagery information recognition. However, the time and results of interpretation are
mostly dependent on the interpreter experience, and there are problems in this method,
such as strong subjectivity, long time consumption, and low efficiency. It is difficult to meet
the needs of emergency responses [9,10].

(2) Pixel-based landslide identification methods.
The pixel-based landslide identification methods have overcome the shortcomings of

visual interpretation. These methods process the remote sensing imagery to obtain relevant
information based on the pixel spectral characteristics, such as the maximum likelihood,
support vector machine, and K-means clustering [11,12]. However, these methods do not
sufficiently use the remote sensing information, which cause pixels to lose their correlation
from each other to result in “salt and pepper” noises [13,14].

(3) Object-oriented landslides identification methods.
The essence of object-oriented remote sensing imagery classification methods is to

use the primitives to classify remote sensing imageries. In the process of classification,
features such as texture, spectrum, shape, and neighborhood are integrated to make the
classification more reasonable [15,16]. The usual methods are mainly based on multi-scale
imagery segmentation [17,18].

The object-oriented methods’ segmentation results depend on the choice of segmenta-
tion scales. It is difficult to find a suitable segmentation scale simultaneously, and it needs
to be determined by trial and error [19]. Currently, segmentation algorithms cannot quickly
process complex and large-scale remote sensing data, especially for high-resolution remote
sensing data, leading to their low segmentation efficiency [20].

Landslide identification methods based on deep learning methods.
Deep learning methods have achieved advanced performance in computer vision, such

as imagery segmentation [21–23], target detection [24], and imagery classification [25,26],
and have provided effective frameworks for automatically extracting landslides.

Compared with traditional methods, deep learning methods can automatically learn
features through convolution operations with the help of deep learning frameworks and
replace manual features recognition with hierarchical feature extractions [27–29]. How-
ever, the methods based on Convolutional Neural Networks (CNN) designed for land-
slides extraction have only just begun. Yu Hong et al. [30] trained a simple convolutional
neural network from the data sets and used a region-growing algorithm to extract the
landslides. Ding Anzi et al. [31] used a CNN to extract imagery features after the dis-
aster, and used change detection methods to extract the Shenzhen landslides in 2015.
Omid Ghorbanzadeh et al. [32] analyzed the influence of the number and size of different
convolution kernels on landslide extraction accuracy. In the above studies, a relatively
basic network structure is adopted, which is composed of a series of convolutional layers,
pooling layers, and fully connected layers. The network structure is relatively simple, and
there are certain restrictions on landslide extraction. Zhang Qianying et al. [33] applied the
Faster R-CNN [34], YOLO [35] (You Only Look Once), and SSD [36] (Single Shot MultiBox
Detector) to landslides extraction and achieved good results in the bounding, but they
could not get landslide shape.

Therefore, although efforts have been made to develop a useful landslide extraction
model, there are still some unresolved problems in the application of deep learning mod-
els to landslides extraction [37]. It is important to develop a more effective model for
landslide extraction.

This article aims to propose an end-to-end improved Mask R-CNN [38] model to
extract landslides. Mask R-CNN is an imagery segmentation model with perfect structure,
strong ability to extract target features, and it can effectively detect the irregular targets
boundary. To make it suitable for landslide extraction, we improve the Mask R-CNN
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according to the landslide’s characteristics in the following aspects: (1) Replacing the
feature extraction layer with the ResNeXt network to fully extract the landslides features to
effectively distinguish the landslides from other features. (2) Adding bottom-up channels
in the construction of the feature pyramid network to reduce the number of missed smaller
landslides. (3) Adding edge losses function to accurately extract the landslides boundary
and improve the overall extraction accuracy of the landslides.

2. Model
2.1. The Developed Model

Mask R-CNN belongs to the R-CNN [39,40] series. It is a new type of target detection
model developed by He Kaiming et al. based on Faster R-CNN. As shown in Figure 1, com-
bining the Feature Pyramid Network (FPN) [41] and the Residual Network (ResNet) [42]
for feature extraction, it can make better use of multi-scale information. The main steps of
Mask R-CNN are as follows. First, inputting the imagery into ResNet to extract features
to generate multi-scale feature maps. Performing side connection, double up-sampling
the feature maps of each stage, and merging them with the adjacent feature layers. Then,
we sent it to the Region Proposal Network (RPN) to generate proposal boxes on feature
maps in different sizes and to generate the proposal boxes and feature maps into RoI Align.
The proposal box will intercept its corresponding feature layers and pool the intercepted
results to perform classification and regression to obtain the adjustment parameters of the
proposal box. Finally, adjust the proposal box to obtain the prediction box, and generate
the segmentation mask of the detected objects.

Figure 1. Mask R-CNN model structure diagram.

As shown in Figure 1, C and P, respectively, represent different feature layers. FC
represents the Fully Convolutional Networks. Because the size of the C1 layer is too
large, the extraction of subsequent information will cause the number of parameters
to increase quickly. Comprehensive considerations have discarded C1 for it does not
participate in the construction of FPN. Therefore, it is not drawn in Figure 1. The outputs
of “Classes Softmax”, “Boundary Box Regressor”, and “Mask” correspond to Classification,
Positioning, and Segmentation, respectively.

RoI Align

After obtaining the proposal box, RoI Align pools the corresponding areas into a fixed-
size feature map according to the proposal box’s position coordinates on the feature map
and carries out subsequent classification, regression, and mask generation. RoI Align is a
new type of regional feature aggregation method proposed in the Mask R-CNN. It directly
cuts out the feature corresponding to the proposal box’s location from the feature map and
carries out bilinear interpolation and pooling to transform the feature into a uniform size.
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In which, 7× 7 is the input convolution kernel for classification and regression and 14× 14
is the mask segmentation convolution kernel. As shown in Figure 2, the steps of the RoI
Align process are as follows. First, traverse each candidate area and keep the floating-point
number boundary without quantization, Then, divide the candidate area into k× k units.
Finally, calculate and fix four coordinate positions in each unit by bilinear interpolation and
max pooling. For RoI, Align introduces bilinear interpolation into the pooling process to
turn the previously discrete pooling into a continuous one, it solves the problem of regional
mismatch caused by two quantifications in RoI Pooling.

Figure 2. RoI Align process.

2.2. Improvement of the Mask R-CNN Network Structure

Although the Mask R-CNN is one of the most advanced target detection models at
present, there are three problems when directly using it to detect landslides: (1) Landslide
distribution, shape, size, and texture are so different from each other that the shallow
ResNet cannot extract landslides effectively, while the deep ResNet has a complex network
structure with so many parameters that make it computationally intensive. (2) For small-
sized landslides, it is easy to lose information in the feature layer, which decreases the
detection accuracy. (3) The geometric outline of the landslide is complex and the posture is
different. There is a certain gap between the predicted mask edge and the real target edge,
and even some parts of the target are lost.

Based on the above reasons, this paper developed a model based on Mask R-CNN. It
combined ResNeXt to extract feature information, and improved FPN to rise the targets
extraction accuracy in various sizes. It also added the edge loss functions to improve the
landslide extraction accuracy.

2.2.1. Improvement of the Feature Extraction Network Structure

The traditional network structure usually increases the accuracy by widening the
network thus leading to an increase of hyperparameters, making the network difficult
to train. However, ResNeXt module [43] was proposed to improve the accuracy without
in-creasing parameters.

By comparing the network structure and performance of ResNet101 and ResNeXt50
feature detectors, we use the ResNeXt50 network structure as the feature detector for
landslide extraction, which has the following advantages.

(1) The network structure is modular, straightforward, and few parameters are needed.
Figure 3 shows the comparison structure diagram of ResNet and ResNeXt network

blocks. The ResNeXt network combines the stacking ideas of the VGG network and the split-
transform-merge ideas of inception to make the network scalable, improve generalization,
and increase the accuracy without reducing the complexity of the model. 256-d means the
dimension is 256, 1 × 1 means the convolution kernel size is 1 × 1 for operation, and plus
sign (+) means the corresponding numbers are added.
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Figure 3. The comparison structure of ResNet (left) and ResNeXt (right) network blocks.

(2) Perfomance of ResNeXt is better than ResNet.
A 50-layer ResNeXt has the same accuracy as a 101-layer ResNet, but the calculation

amount is only half of the latter. Table 1 lists the internal structure of ResNet-50 and
ResNeXt-50, and the last two lines indicate that there is little difference in parameters and
Floating Point Operations (FLOPs) between these two models. It can be found from the
following table that the total number of channels in ResNeXt in each Conv is more than
that that in ResNet, but their parameters are the same.

Table 1. Feature extraction network structure comparison table.

Stage Output ResNet-50 ResNeXt-50

Conv1 112 × 112 7 × 7, 64, stride2 7 × 7, 64, stride2
3 × 3, max pool, stride2 3 × 3, max pool, stride2

Conv2 56 × 56

 1 × 1 64
3 × 3 64

1 × 1 256

× 3

 1 × 1 128
3 × 3 128
1 × 1 256

, C = 32

× 3

Conv3 28 × 28

 1 × 1 128
3 × 3 128
1 × 1 512

× 3

 1 × 1 256
3 × 3 256
1 × 1 512

, C = 32

× 3

Conv4 14 × 14

 1 × 1 256
3 × 3 256
1 × 1 1024

× 3

 1 × 1 512
3 × 3 512

1 × 1 1024
, C = 32

× 3

Conv5 7 × 7

 1 × 1 512
3 × 3 512
1 × 1 2048

× 3

 1 × 1 1024
3 × 3 1024
1 × 1 2048

, C = 32

× 3

1 × 1 Global average pool
1000-d fc, softmax

Global average pool
1000-d fc, softmax

#params 25.5 × 106 25.0 × 106

FLOPs 4.1 × 109 4.2 × 109

2.2.2. Improvement of FPN

FPN in the Mask R-CNN model uses a side connection method for multi-scale feature
maps by fusing high-level semantic information into low-level accurate positioning infor-
mation and performs well in the experiment. Although it uses multi-scale information, the
side connection method only exists in a top-down path. The feature map inputting into the
RPN layer is a single size selected from the path. A major problem with such structure is
that low-level features contain precise location information, and high-level features contain
strong semantic information. Analyzing the top-down path of the FPN, the final feature
map inputting into the RPN only contains the feature information of the current layer
and the higher layer, but not the lower layer. Such a design fails to make full use of each
level’s feature information so that the position information cannot be integrated into the
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high-level semantic information, and the useful information on the remaining layers may
be lost, which results in non-optimal target detection accuracy.

According to the problems mentioned above, in order to make full use of the accurate
position information of the low-level features in the FPN, this paper developed an improved
FPN by adding branches with reverse side connections from bottom to top, which is shown
in the Figure 4(2). Among them, P2, P3, P4, P5, and P6 are the feature layers of the FPN.
The newly added bottom-up path merges the low-level feature map Ni and the higher-level
feature map Pi+1 to generate a new feature map Ni+1. The specific operation is as follows:
Ni is firstly downsampled by a 3 × 3 convolution kernel with a stride of 2 to obtain a
feature map of the same size as Pi+1. Then, each element in the feature map Pi+1 is added
to the downsampled feature map. The new feature map is processed by a 3× 3 convolution
kernel with a stride of 1 and the feature map Ni+1. This operation is shown in the following
formula and Figure 4.

Ni+1 = (Ni ×Conv(stride = 2, size = 3) + Pi+1) × Conv(stride = 1, size = 3) (1)

Figure 4. (1) Original structure of Mask R-CNN. (2) Path structure improved in this paper.

In which, the newly generated feature maps N2, N3, N4, N5, and N6 have merged
the high-level and low-level features, while their main features are still on their own
hierarchy. Therefore, the improved FPN makes full use of low-level positioning and
high-level semantic information.

2.3. Improvement of the Mask R-CNN Loss Functions

By observing the segmentation results of Mask R-CNN, it is found that there are
certain gaps between the edges of most masks and the real edges of the target, and even
some parts of the target are lost. In the process of segmentation, the model does not directly
classify the pixels in the imagery but first recognizes the target edge and then fills the
closed area. In order to improve the accuracy of the algorithm for target edge detection,
this paper integrates the edge information in the imagery into the network framework, and
at the same time uses the edge information to point out a path for gradient descent during
the training process, which accelerates the network training speed.

The Mask R-CNN outputs have three branches, whose functions include classifica-
tion, positioning, and segmentation. Therefore, the loss function of the Mask R-CNN is
L = Lcls + Lbox + Lmask. The edge detection can also be integrated into the network as a
branch [44,45], and at the same time, adding an auxiliary part Ledge on the edge loss to the
function L. The edge error Ledge is generated between the detection edge and the real target
edge. The new loss function is

L = Lcls + Lbox + Lmask + Ledge (2)
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In this paper, the edge detection filter is regarded as a convolution with a 3× 3 kernel,
such as Sobel filter [46]. The Sobel filter is a two-dimensional filter used to detect edges. It
contains two filters:

Sx =

 −1 0 1
−2 0 2
−1 0 1

, Sy =

 1 2 1
0 0 0
−1 −2 −1

 (3)

In which Sx is a transverse filter for describing the horizontal gradient and Sy is a
longitudinal filter for describing the vertical gradient. Generally, the edges in the imagery
will produce a higher response along the filter direction. The Sobel filter S (Sx or Sy) is a
filter with a dimension of 3× 3× 2.

To detect the edge consistency error Ledge, a small network is constructed behind
the output mask branch. The network’s input is the result of the predicted and real
masks, which convolve with the Sobel filter S to determine the edge difference between
the predicted and the real masks. Figure 5 shows the auxiliary network structure for the
calculation of the edge consistency error. The predicted mask segmentation results and
that of the actual masks are firstly obtained from Mask R-CNN network. Their errors are
then calculated by the loss functions:

Ledge(y, ŷ) =
1
N

N

∑
i=1

(|yi − ŷi|)2 (4)

Figure 5. Edge consistency error calculation auxiliary network.

In which, for the ith sample, yi is the real value, ŷi is the predicted value, N is the
number of samples, and Ledge(y, ŷ) is the mean square error between the real and the
predicted values.

2.4. Technical Flowchart

The technical flowchart is shown in Figure 6, which includes five steps. The first step
is data collection to obtain high-resolution remote sensing data. The second step is the data
set production, which is divided into image cropping, sample label, and data enhancement.
The third step is the usage of different methods to extract landslide information. The fourth
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step is the accuracy calculation, which evaluates the accuracy of the extraction results of
different methods. The final step is the analysis of the extraction results.

Figure 6. Mask R-CNN flowchart.

2.5. Accuracy Evaluation

Indicators such as Precision, Recall, Overall Accuracy (OA), F1 score (F1), and Mean
Intersection over Union [47] (mIoU) are used to evaluate the extraction results of the
model quantitatively.

2.5.1. Precision, Recall, and OA

Precision is the number of correctly extracted landslides in the total number of ex-
tracted landslides. Recall is the proportion of all landslides that are correctly extracted.
OA is the proportion of correctly classified samples to all samples. Formulas for Precision,
Recall, and OA are as follows:

Precision =
TP

FP + TP
(5)

Recall =
TP

FN + TP
(6)

OA =
TP + TN

TP + FN + FP + TN
(7)

Among them, TP, FP, FN, and TN are shown in Table 2. TP is the number of landslides
that are correctly extracted, FP is the number of landslides that are incorrectly extracted,
FN is the number of landslides that are not correctly extracted, and TN is the number of
non-landslides that are not correctly extracted.
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Table 2. Confusion matrix of predicted and real results.

Predicted Results
Real Results

Landslides Others

Landslides True Positive (TP) False Positive (FP)
Others False Negative (FN) True Negative (TN)

2.5.2. Mean Intersection over Union

MIoU calculates the ratio of the intersection and union of two sets. In the image
segmentation, these two sets represent ground truth and predicted segmentation. In this
article, these two sets are the landslides interpretation map and landslides predicted map.
The larger the ratio is, the higher the correct rate is. Its formula is

mIoU =
1

k + 1

k

∑
j=0

Pij
Pii

∑k
j=0 Pij + ∑k

j=0 Pji − Pii
(8)

mIoU =
TP

FP + TP + FN
(9)

In which k + 1 is the number of categories. i is the label of the ground truth value, and
j is the label of the predicted value. Pii is the number of pixels marked i and predicted to be
i, Pij is the number of pixels marked i but predicted to be j, and Pji is the number of pixels
marked j but predicted to be i.

2.5.3. F1 Score

F1 score is used to evaluate the model’s overall performance and is defined as the har-
monic average of precision and recall. The higher the value F1 is, the better the performance
of the model is. Its formula is

F1 =
(

1 + β2
)Precision× Recall

Precision + Recall
, β = 1 (10)

3. Experiment
3.1. Application of the Model to the Jiuzhaigou County

On 8 August 2017, a 7.0 magnitude earthquake occurred in Jiuzhaigou County, north-
ern Sichuan Province, China, with a focal depth of 20 km. As shown in Figure 7, the
epicenter was located in Bimang Village, Zhangzha Town, Jiuzhaigou County. The earth-
quake occurred during the peak tourist season of Jiuzhaigou Scenic Area. A large number
of earthquake-triggered landslides occurred, causing at least 29 roads to be blocked. In-
vestigating spatial locations of these landslides is critical for hazard reduction and the
reconstruction of the scenic spots.

Figure 7. Study area location.



ISPRS Int. J. Geo-Inf. 2021, 10, 168 10 of 17

3.2. Data Set
3.2.1. Remote Sensing Data Acquisition

Unmanned Aerial Vehicle (UAV) remote sensing technology is widely used to obtain
landslides data due to its convenience, high efficiency, and ability to fly under low-altitude
clouds. This article uses UAV data in the Jiuzhaigou area to carry out training and testing
operations for the model. We took 366 landslides, with an area of 34.6 km2, near Panda
Sea, Wuhua Sea, and Jianzhu Sea as the training sets, and 233 landslides, with an area
of 12.6 km2, from Shangsizhai to Ganhaizi in Jiuzhaigou County as the test sets. Their
geographical locations are shown in Figure 8.

Figure 8. Location of training area and test area.

The landslide interpretation map mentioned in this paper has been verified in the
field to make sure that the final interpretation accuracy to be 98%, which can be used as a
reference landslides map. Part of the field verification is shown in Figure 9.

Figure 9. Parts of field verification.

3.2.2. Data Set Production

Due to the computer’s limited operating memory and the model’s limitation on
the size of the input data, large-sized imageries cannot be directly input into the net-
work for training, which need to be clipped. By cutting out image blocks with a size
of 256× 256 pixels from a large remote sensing imagery and sending the small-blocked
imageries into the network for training in batches, the network’s training speed was accel-
erated and the landslides on the imagery can be quickly extracted during the application
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process. This article uses this method to split the original imageries, label imageries, and
test imageries. The detailed splitting process of the test imageries is shown in Figure 10.

Figure 10. Data set production.

3.2.3. Data Set Enhancement

For deep learning methods, data enhancement operations, such as rotation and flip-
ping, are applied on the imageries, which include 90◦, 180◦, and 270◦ rotations and left-right,
up-down flipping. As the landslides can show various directions, structures, and boundary
shapes on the imagery, the training sets are rotated and flipped to enhance the training
samples. From which, a total of 9762 samples were obtained for model training.

3.3. Experimental Environment and Model Training

The hardware environment of this experiment: the graphics card is RTX2080Ti, the
processor is Intel i7-8700K, and the internal memory is 32G.

The software environment of the model: Mask R-CNN model and improved model
are implemented by Keras. Keras is a high-level neural network API, written in pure
Python, with TensorFlow or Theano as the backend. The training parameters of the model
are shown in Table 3 below.

Table 3. Deep learning model training parameters.

Name Parameter

Learning Rate 0.0001
Batch Size 4

Epoch 200
Steps-Per-Epoch 2440

Based on the above environments, five experiments are designed for comparisons:
ResNet101, ResNeXt50, ResNeXt101, ResNeXt50 + Improved FPN, and ResNeXt50 + Im-
proved FPN + Ledge. The first three experiments are carried out to determine the feature
extraction layer choices. The transfer learning method is used to train the weights obtained
by Mask R-CNN on the official COCO2014 [48] data set as the pre-training weights of the
landslides detection algorithm in this paper. Based on this pre-training weights, sample
training is carried out on its own set, so that the learning method can not only reduce
the training cost, but also effectively improve the model performance and the overall
detection accuracy.

3.4. Experimental Results

ResNet101, ResNeXt50, ResNeXt101, ResNeXt50 + Improved FPN, and ResNeXt50 +
Improved FPN + Ledge were trained on the same data set, respectively. The training loss
curves are shown in the Figure 11. In the extraction part of the feature layer, ResNet101,
ResNeXt50, and ResNeXt101 are compared each other. It can be seen from the curves
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that ResNet101 and ResNeXt50 have similar detection effects. However, compared with
ResNet101, ResNeXt50 reduces the amount of parameters by half. Therefore, during the
change of the loss value, the ResNeXt50 drops faster. In the same training process, it takes
less time to complete the same epoch. Therefore, in the feature extraction, the ResNeXt50
network is selected to extract landslides.

Figure 11. Training loss curve of five models.

The loss curve of ResNeXt50 + Improved FPN has a certain degree of slowing down in
the early stage. The main reason is that the increased bottom-up path makes the information
contained in the feature layer more complicated, and at the same time increases the amount
of parameters that need to be trained. However, the loss value at the plateau stage is lower
than the ResNeXt50 model. It can be seen from the loss curve of ResNeXt50 + Improved
FPN + Ledge that it drops faster and lower. The main reason is that the edge loss is increased,
which is equivalent to using the edge information to point out a path for gradient to fall
down during the training process, which accelerates the network’s training rate and further
improves the detection convergence speed.

After the training is completed, ResNeXt50, ResNeXt50 + Improved FPN, and ResNeXt50 +
Improved FPN + Ledge are compared, and the landslides from Shangsizhai to Qianhaizi area
are extracted. During the process of landslide extraction, the original imagery is firstly splitted
into 256× 256 clips in training process and the same sized clips are also splitted in predicting
process. After splitting, each clip is predicted by the proposed method in this paper. Finnaly,
we mosaic the predicted clips into a large imagery to identify the landslides.

Figure 12a is the landslide interpretation map, which provides a reference for the
accuracy evaluation on the landslides extraction using different methods.

Figure 12b is the extracted result of ResNeXt50. It can be seen from the figure that
the situation of error extraction and missed extraction is more prominent, which leads to
unsatisfactory accuracy. The ResNeXt network has a better effect in landslide extraction.
Most landslides and roads can be effectively distinguished. However, there are some
mountain roads or soil on the roads after the earthquake, which is similar to the landslide
and may cause the error extraction (as shown in Figure 13). At the same time, some houses
that were similar in tone were mistakenly extracted as landslides. The missed extraction is
mainly because the boundary of the landslides cannot be well identified. For some smaller
landslides, due to their small areas and fewer pixels, the target information is lost in the
feature layer with higher semantic information in the process of extracting features through
ResNeXt downsampling.
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Figure 12. Extraction results.
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Figure 13. Error landslides extractions. (a) Originally visual interpretation. (b) Extractions of
ResNeXt50. (c) Extractions of ResNeXt50 + Improved FPN. (d) Extractions of ResNeXt50 + Improved
FPN + Ledge.

Figure 13 shows the error landslides extractions, Figure 14 shows the missed landslides
extractions, and Figure 15 shows the landslides edge extractions. Subfigures (a–d) in each
figure are the partial schematic diagrams taken from the corresponding positions in the
Figure 12. In which, the green spots represent the correct extraction, the red spots represent
the missed extraction, and the blue spots represent the error extraction.

Figure 14. Missed landslide extractions. (a) Originally visual interpretation. (b) Extractions of
ResNeXt50. (c) Extractions of ResNeXt50 + Improved FPN. (d) Extractions of ResNeXt50 + Improved
FPN + Ledge.

Figure 15. Landslides edge extractions. (a) Originally visual interpretation. (b) Edge extractions of
ResNeXt50. (c) Edge extractions of ResNeXt50 + Improved FPN. (d) Edge extractions of ResNeXt50 +
Improved FPN + Ledge.

Figure 12c is the result of ResNeXt50 + Improved FPN landslides extraction. It can be
seen from the figure that the missed extraction decreased significantly. When constructing
FPN, a channel was added to further integrate the deep features and the shallow features
to identify small landslides. Simultaneously, the recognition of other landslides is more
accurate (as shown in Figure 14). It can also be seen from Figure 12c that there are a lot less
red spots compared to Figure 12b.

Figure 12d is the extracted results of ResNeXt50 + Improved FPN + Ledge. It can be
seen from the figure that the overall extraction effect is satisfactory. When the edge loss is
added, the accuracy of edge extraction is improved, the extracted shape is closer to the real
boundary (as shown in Figure 15), and the error of false extraction is also reduced for some
buildings with regular shapes.

To quantitatively evaluate the model’s performance, each accuracy index is calculated
according to the confusion matrix. The results are shown in Table 4. The precision and recall
in the table are obtained when the threshold is adjusted to maximize F1. The improved
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final model ResNeXt50 + Improved FPN + Ledge on the test set has a Precision of 95.8%, a
Recall of 93.1%, an OA of 94.7%, an mIoU of 89.6%, and an F1 of 94.5%. Compared with the
original ResNeXt50 model, they have been significantly improved by 13.9%, 13.4%, 9.9%,
16.4%, and 10%, respectively. Therefore, the results showed that the landslides automatic
extraction model established in this paper was feasible and effective.

Table 4. Comparison of Mask R-CNN and two improved models.

Precision/% Recall/% OA/% mIoU/% F1/%

ResNeXt50 81.9 79.7 84.8 73.2 84.5
ResNeXt50 + Improved FPN 86.7 88.8 87.9 78.2 87.7

ResNeXt50 + Improved FPN + Ledge 95.8 93.1 94.7 89.6 94.5

4. Conclusions and Prospects

This paper uses the aerial remote sensing imageries after the earthquake as the land-
slides data set, and proposes an improved Mask R-CNN landslides extraction model to
achieve good effects.

(1) Rebuilding the network structure and loss function of the Mask R-CNN model to
improve the accuracy of landslides extraction.

The feature extraction layer is replaced with a simple and effective ResNeXt network
to fully extract the unique landslides features and effectively distinguish the landslides
from other confusing objects. At the same time, adding bottom-up channels in FPN to
make the full use of low-level positioning and high-level semantic information to reduce
the number of missed landslides. The edge loss added to the loss function improves the
detection accuracy of the landslides boundary, because it uses the edge information to
accelerate the network training speed and improves the overall extraction accuracy of
the landslides.

(2) The improved Mask R-CNN model is feasible for landslides extraction.
Taking the Jiuzhaigou earthquake landslides as an example to carry out the experiment,

the results showed that the improved Mask R-CNN model (ResNeXt50 + Improved FPN +
Ledge) were feasible and effective for landslides extraction on the high spatial resolution
remote sensing imageries. The results showed that the new method has a Precision of
95.8%, a Recall of 93.1%, and an OA of 94.7%. Compared with the traditional Mask R-CNN
model, these parameters have been significantly improved by 13.9%, 13.4%, and 9.9%,
respectively. Compared with other methods, the new method only needs to obtain UAV
remote sensing data of the post-earthquake area, and does not need the pre-earthquake
imageries, and thus avoids those conditions that are unable to acquire satellite imageries
in time.

The method has served earthquake emergency departments, including Sichuan Earth-
quake Administration, Xinjiang Earthquake Administration, and Gansu Earthquake Ad-
ministration of China to respond quickly in geological hazards reduction.

However, due to the limited training set of seismic landslides, there are still some
errors in the extracted results. In order to make the model more practical, the following
work needs to be further improved: extending the ranges of the training set to include
remote sensing images with different types and resolutions, as well as landslide types in
different regions.
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