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Abstract: Light detection and ranging (LiDAR) data systems mounted on a moving or stationary
platform provide 3D point cloud data for various purposes. In applications where the interested area
or object needs to be measured twice or more with a shift, precise registration of the obtained point
clouds is crucial for generating a healthy model with the combination of the overlapped point clouds.
Automatic registration of the point clouds in the common coordinate system using the iterative closest
point (ICP) algorithm or its variants is one of the frequently applied methods in the literature, and a
number of studies focus on improving the registration process algorithms for achieving better results.
This study proposed and tested a different approach for automatic keypoint detecting and matching
in coarse registration of the point clouds before fine registration using the ICP algorithm. In the
suggested algorithm, the keypoints were matched considering their geometrical relations expressed
by means of the angles and distances among them. Hence, contributing the quality improvement
of the 3D model obtained through the fine registration process, which is carried out using the ICP
method, was our aim. The performance of the new algorithm was assessed using the root mean
square error (RMSE) of the 3D transformation in the rough alignment stage as well as a-prior and
a-posterior RMSE values of the ICP algorithm. The new algorithm was also compared with the
point feature histogram (PFH) descriptor and matching algorithm, accompanying two commonly
used detectors. In result of the comparisons, the superiorities and disadvantages of the suggested
algorithm were discussed. The measurements for the datasets employed in the experiments were
carried out using scanned data of a 6 cm × 6 cm × 10 cm Aristotle sculpture in the laboratory
environment, and a building facade in the outdoor as well as using the publically available Stanford
bunny sculpture data. In each case study, the proposed algorithm provided satisfying performance
with superior accuracy and less iteration number in the ICP process compared to the other coarse
registration methods. From the point clouds where coarse registration has been made with the
proposed method, the fine registration accuracies in terms of RMSE values with ICP iterations
are calculated as ~0.29 cm for Aristotle and Stanford bunny sculptures, ~2.0 cm for the building
facade, respectively.

Keywords: automatic matching; keypoint detection; point cloud; registration; transformation; itera-
tive closest point (ICP)

1. Introduction

Utilizing 3-dimensional (3D) models in various applications considerably increased
in this century with the advances in laser scanning technologies [1]. The measurement
devices equipped with LiDAR (Light Detection and Ranging) sensors are commonly used
for the acquisition of 3D point clouds data, and the developed algorithms for processing
the point cloud data provide successful results in generating as-built models to compare
with the actual objects. The scanning process for generating accurate 3D point cloud data
of different scale objects and/or land-parts is rather fast and practical compared to the
conventional photogrammetric and surveying techniques [2]. The measurement with laser
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scanners bases on the line-of-sight principle, and in most of the cases, the scanned object
is acquired partially with overlapping for 3D modeling purposes. Generating a full 3D
model from the described modality is contingent on the effective integration of partially
obtained data with their alignment relative to a common reference frame. This process is
known as the registration of the point cloud data in photogrammetry and computer vision
disciplines [1,3]. Beside the density and position accuracy of the point cloud spots, the
used approach for the registration process has an essential role in the quality of the final
3D model [2].

In the literature, a number of registration methods have been proposed. In these
methods, registration of 3D point clouds obtained from different positions and sensors
generally consists of two stages including coarse and fine registration phases [4]. For
achieving better results, the fine registration should be applied after the coarse registration
by using an appropriate computation algorithm. The iterative closest point (ICP) algorithm
and/or its variants has become almost a standard procedure and commonly applied for
fine registration in most of the applications [5,6]. Besides, the deep-learning-based fine
registration methods such as PointNetLK [7] have also been studied recently. Habib and
Alruzouq [8] emphasize four essential points in a comprehensive registration procedure
as follows: (i) estimating transformation parameters (that relates the reference frames of
the involved point clouds); (ii) defining registration primitives (the conjugate features
that should be identified among the used point cloud datasets and used for estimating
the transformation parameters); (iii) deciding the similarity measure (the mathematical
constraint for describing the coincidence of conjugate features); (iv) deciding an appropriate
matching strategy (representing the controlling framework for the automatic registration
process) [1]. The initial alignment (coarse registration) methods, which are necessary to
apply prior to fine registration process, have been concentrated and studied with growing
interest in recent years. Among these methods, the automatic coarse registration algorithms
without artificial targets are more demanding [9]. The proposed method in this study is
for automatic coarse registration of the point clouds, which are obtained using either the
same or different laser scanner devices. In particular, coarse registration methods basically
consist of two main steps, namely the detection of the keypoints or the primitives (lines,
planes, surfaces) and the description of the conjugates [10].

The keypoint detection and matching tasks in coarse registration require special
attention for the derivation of the transformation function precisely. The first step of any
matching procedure is to detect the feature locations in the dense point cloud datasets and
describe them. In the detection process, the keypoints are defined from the point cloud
according to the features such as intensity, surface normal, curvature, red-green-blue (RGB)
values, roughness, etc. Hence, once the descriptors are generated, they can be compared
to figure out the relationship between the point clouds for carrying out the ‘matching’
procedure in the next step. Therefore, we need a feature detector and descriptor to extract
the keypoints in the point clouds accordingly [11].

The working principle of feature detectors and descriptors relies on detecting the
keypoints that are covariant to a class of transformations. Then, for each detected feature
point, an invariant feature vector representation, called the descriptor, for point cloud spots
around the detected keypoint is determined. The feature descriptors can be constituted
using the second-order derivatives, parametric equations with estimated coefficients from
transforms, or with their combinations [11]. Basically, the extracted features can be catego-
rized as global and local. Global features such as color, texture, etc. are generally considered
when an image is concerned in the processes and aim to describe an image as a whole that
can be interpreted as a particular property of the image involving all pixels. Considering
global color and texture features gives applicable results while looking for similar images in
a database. On the other hand, local features are for detecting keypoints either in an image
or a point cloud and describing them. In this manner, if the used local feature descriptor
reveals n keypoints in the dataset, this means there are n vectors describing each keypoint’s
position, orientation, color, etc. Choosing either of the features depends on the purpose of
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the application; however, local feature descriptors are superior for keypoint matching and
point cloud registration purposes [11].

In the literature, there are different algorithms, which are designed and used for
keypoint detection, description and matching purposes in point cloud registration [4].
Because the significant contribution of the proposed algorithm in this study is on the coarse
registration process, the literature on the coarse registration methods is widely cited here.
Basically, coarse registration methods consist of two main steps: the detection step, which
includes the determination of either keypoints, lines, planes, surfaces or global features of
point clouds; and the description step where the conjugates are determined [10,12]. In the
literature, four-points congruent sets (4PCS) and many variants of it are used as a point-
based coarse registration algorithm [13]. The 4PCS approach is an algorithm that reduces
the number of selected keypoints and simultaneously applies descriptor and matching to
determine the conjugate points [12]. Besides, for determining the geometric features of the
keypoints in a point-based registration, the descriptors such as point feature histogram
(PFH), fast PFH [14], signature of histogram of orientations (SHOT) [15] or the semantic
analysis [16,17] methods are commonly used [12]. In the detection step, there are various
point-based detectors released so far [18]. Förstner operator [19], 3D Harris [20], local
surface patches (LSPs) [21], normal aligned radial feature (NARF) [22], 3D scale invariant
feature transform (3DSIFT) [23,24] and intrinsic shape signatures (ISS) algorithm [25] are
commonly used as keypoint detectors.

On the other hand, primitive-based registration approaches are also commonly applied
for coarse registration, and these approaches include algorithms, which use lines [26],
curves [27], planes [9], or surfaces [28]. The global feature-based registration methods
including the normal distributions transform (NDT) based algorithms [29] as well as the
algorithms that transform 3D point clouds into 1D histograms and 2D images [30] are also
among the frequently used algorithms in practice. In this article, a point-based coarse
registration approach is proposed and tested.

In this study, a new automatic keypoint description and matching method for coarse
registration of point clouds has been introduced and tested. The original contribution of the
proposed algorithm is mainly in its descriptor and matching parts. In the description part
of the proposed algorithm, the keypoints are divided into subsets using the mathematical
combination method. The distances between the reference keypoint and saliency points
in the subset and the angles between the constituted connection lines are calculated in
a combinational manner. Using the combination technique for constituting the subsets
of the keypoints and method used for calculating the distances and angles between the
points and lines is the novelty of the proposed algorithm. Contrary the other methods,
which are commonly in use in literature, the proposed method considers the calculated
angles independently from the surface normal or surface. In the matching algorithm of
the new approach, the sum of the differences of the distances and the angle values created
for a certain keypoint set in the two-point clouds are taken into account. For matching the
subsets, the summations of the differences of the distances and of the angles, respectively,
are used as the single values. The set of points whose summation of the distance and
angular differences are closest to zero value are considered conjugate points. In addition to
descriptor and matching algorithms of the new method, its detector algorithm contains
novelty as well. Unlike the ISS and LSP methods, in the proposed detector, a single
point with the highest curvature from each voxel (cube) is selected, and the most suitable
keypoints are determined accordingly.

The developed automatic new keypoint matching approach for coarse registration
was assessed in result of fine registration using the ICP algorithm [5]. The 3D similarity
transformation method was employed in the algorithm. The tests of the study have been
carried out using three datasets. The first dataset was obtained through the laser scanning
measurements in a laboratory environment, and it is to model a small size sculpture. The
second dataset included the point clouds of a building facade with regular geometrical
details that were obtained through the terrestrial laser scanning measurements from the
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stationary and mobile platforms. Further information regarding the measurements and the
used laser scanning sensors was provided in the second section of the article. Besides the
two datasets obtained through the laser scanning by the authors, the tests were repeated
using the publicly available bunny point cloud by the Stanford 3D scanning repository
(http://graphics.stanford.edu/data/3Dscanrep/ accessed on 15 March 2021) to make the
accuracy values obtained with the proposed algorithm reproducible.

The new algorithm, which was suggested for coarse registration in this study, filters
the point cloud and down samples the dataset at first. Then, it identifies the keypoints
considering the angles and distances among the point cloud spots. The transformation
parameters are automatically calculated for the coarse registration with the Gauss Markov
least-squares adjustment (LSA) model. After all, fine registration is applied with the ICP
method. In order to provide a comparison between the new keypoint descriptor and
matching algorithm and the other methods, which are currently in use, the registration
processes using both sculptures and building facade data were repeated. Accordingly, ISS
and LSP algorithms for keypoint detection and point future histograms (PFH) for keypoint
description and matching were used as well. In the conclusions, the tested algorithms were
compared by means of accuracy of the transformation before and after ICP as well as the
success of the generated 3D models with each algorithm. The new algorithm outperformed
the other tested algorithms by providing smaller RMSE values of the transformation and a
smaller iteration number in the ICP process.

The organization of this paper is as follows: detailed information of the laser scanning
measurements and used datasets were described in Section 2. The theoretical background
of the tested keypoint detecting and matching algorithms as well as the new suggested
formula were explained in subtitles of this section as well. The mathematical formula-
tion and fundamental theory of the ICP algorithm were summarized in the last subtitle
of Section 2. The numerical results with the comparative test statistics were provided
in Section 3. A comprehensive discussion based on the obtained results was given in
Section 4. Finally, the major conclusions as well as the recommendations for future studies
are included in Section 5.

2. Materials and Methods
2.1. Datasets Used in the Tests

In the tests of the point cloud registration algorithms, three datasets were used. The
first dataset was obtained with the indoor measurements of Aristotle sculpture (approxi-
mate size: 6 cm × 6 cm × 10 cm) (see Figure 1) in ITU Geomatics Engineering Department
Surveying Laboratory. NextEngine 3D Laser Scanner Ultra HD was used in the scanning of
the sculpture [31]. The dimensional accuracy of the scanner is 0.1 mm in macro mode, and
0.3 mm in wide mode [31]. Considering the size and accuracy of the used laser scanner,
it is practical and cost-effective equipment for scanning in 3D model generation of small
areas or object in industrial applications.

The point cloud data obtained with scanning the southern facade of ITU Yilmaz
Akdoruk guest-house building in Maslak Campus area (Figure 2a) is the second dataset
in the study. The facades of the building were scanned using static terrestrial (TLS) and
mobile laser scanning (MLS) techniques and the 3D models of the facades were generated
by combining the point clouds data obtained from these two techniques. In TLS measure-
ments, Leica ScanStation C10 terrestrial laser scanners with 4 mm distance measurement
accuracy, 12” angle measurement accuracy and 6 mm point position accuracy (for single
measurement), was used [32]. Riegl VMX 450 mobile laser scanning system (see Figure 2b)
was used for MLS measurements of the building facades [33]. In Riegl VMX-450 mobile
laser scanning systems, two Riegl VQ-450 laser scanners with 8 mm position accuracy are
integrated with IMU/GNSS unit.

The third dataset used for testing the proposed algorithm is the bunny sculpture point
clouds made available by the Stanford 3D scanning repository (http://graphics.stanford.
edu/data/3Dscanrep/, accessed on 15 March 2021). The bunny data is known as one of

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
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the Stanford models, which was scanned with a Cyberware 3030 MS scanner at Stanford
University Computer Graphics Laboratory (see Figure 3). Cyberware 3030 MS scanner has
0.1 mm dimensional accuracy. This data is frequently used as sample model for testing
keypoint matching algorithms in literature.
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2.2. Methodology
2.2.1. Keypoint Detection

The essential step in the beginning of 3D modeling workflow is the registration of the
point clouds data of partially scanned objects. This process requires successfully merging
the overlapped point clouds using the estimated transformation parameters. In precise
estimation of the transformation parameters, and hence in high performance of point
clouds registration, detecting and matching the keypoints rigorously is crucial.

In order to give comparative results on the performance of the detection algorithm
suggested and tested in this study, the local surface patches (LSP) and intrinsic shape sig-
natures (ISS) algorithms were also chosen and applied for the keypoint detection. The LSP
algorithm is one of the point-wise saliency measurement method, and detects saliency of a
vertex considering the shape index (SI(p)), which bases on the maximum and minimum
principle curvatures (Cmax., Cmin.) at the vertex as given in Equation (1) [21,34].

SI(p) =
1
2
− 1

π
tan−1 Cmax.(p) + Cmin.(p)

Cmax.(p)− Cmin.(p)
(1)

and if the mean shape index µSI is as given in Equation (2):

µSI(p) =
1
N ∑

qε(p)
SI(p) (2)

where (p) means the set of points in the support of p, and q is a member of this set,
N = [(p)] is the number of points in the support of p.

Accordingly, a feature point goes out of the pruning steps when its SI is significantly
greater or smaller than µSI such as in SI(p) ≥ (1 + α)µSI(p) ∨ SI(p) ≤ (1− β)µSI(p), and
α and β are scalar parameters, which define the magnitude of differences from the mean
assumed as significant [34].

The intrinsic shape signatures (ISS) algorithm bases on the eigenvalue decomposition
of the scatter matrix having the points, which belong to the support of p is given in
Equation (3) [25]:

∑ (p) =
1
N ∑

qε(p)
(q− µp)(q− µp)

T , with µp =
1
N ∑

qε(p)
q (3)

where ∑ (p) shows the scatter matrix of the support of point p, and its eigenvalues with
order of decreasing magnitudes are λ1, λ2, λ3. In the process, the points having the ratio
between the two successive eigenvalues below a threshold value (Th) are retained (see in
Equation (4)).

λ2(p)
λ1(p)

< Th12 ∧
λ3(p)
λ2(p)

< Th23 (4)

Further explanations and details of the special cases on the implementation of the ISS
algorithm with case studies are given by Tombari et al. [34].

In the proposed and tested detection algorithm given here, similar processing steps
with the LSP and ISS point-wise saliency measurement methods are followed, and the
surface curvatures at the points are considered in order to identify the keypoints. While
estimating the surface curvature at each point, the covariance analysis method, which uses
the ratio between minimum and summation of the Eigen values, was preferred. However,
while the given algorithms work directly on the point cloud without any intermediate
tessellation, the detector concentrates on samples in regions of high curvature and employs
the estimates of local variations and quadric error metrics [35]. In the algorithm, a voxel-
based filtering is applied to enhance the computational efficiency considering maximum
surface curvatures. Accordingly, the point cloud spots, in xyz-plane, are partitioned into
three dimensional blocks with an appropriate block size decided considering the resolution
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of dataset. In each block, the laser spots are further organized into an octree partition
structure with a set of three-dimensional voxels (as seen in Figure 4) [36]. Figure 5 gives an
overview of the major steps of the suggested keypoint detection algorithm. The keypoint
detection algorithm was developed on the Matlab platform.
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2.2.2. Keypoint Description and Matching

After extracting the keypoints from point clouds using 3D detectors, which analyze
local neighborhoods in order to identify the points of interest as described in the previous
section, the neighborhood of a keypoint is described with a 3D descriptor that projects the
neighborhood into a proper space. In the end, descriptors defined on different surfaces are
matched each other [34]. According to this process, the 3D keypoint descriptors serve a
description of the environment in the neighborhood of a point within the cloud, and this
description usually depends on the geometrical relationships. Points in two different point
clouds having similar feature descriptor mostly correspond to the same surface point.

Principal component analysis (PCA) based keypoint descriptors and matching algo-
rithms are commonly used in various applications including object recognition such as
removing roof details of 3D building models. For example, Yoshimura et al. [4] applied the
principal component analysis (PCA) efficiently for determining the roof corners and sharp
roof lines of the buildings. The PCA technique allows analyzing the saliencies according
to the geometric properties of the objects. In their study, Yoshimura et al. [4] considered
that the points of a wall and the roof fringes extend along a straight line and hence fit the



ISPRS Int. J. Geo-Inf. 2021, 10, 204 8 of 28

equation of a straight line (ax+ by+ c = 0). Thus, they determined the building boundaries
considering the lines, which belong to the orthogonal projections of the detected points
and matched according to the building edge length and the angle similarity among the
issued points.

The point feature histograms (PFH) are also commonly used tools as descriptors [37].
In addition to point matching, the PFH descriptor is also used to determine points in a point
cloud, such as points on an edge, corner, and plane. This algorithm uses a Darboux frame
(see Figure 6) that is constructed between all point pairs within the local neighborhood
of a point [14,38]. The source points of the Darboux frame are the points with the smaller
angles between the surface normal and the connecting line of the point pairs ps and pt. If
ns/t is the corresponding point normal, the Darboux frame u, v, w are constructed as given
in Equations (5)–(7):

u = ns (5)

v = u× (pt − ps)/‖pt − ps‖ (6)

w = u× v (7)
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Three angular distances α, φ and θ, computed based on the Darboux frame are in
Equations (8)–(10):

α = v·nt (8)

φ = u·(pt − ps)/d (9)

θ = arctan(w·nt, u·nt) (10)

d = ‖pt − ps‖ (11)

where d is the distance between ps and pt (Equation (11)). Three angles and a distance
element in addition to two normal vectors are used to describe the geometrical relationship
of the point pairs in PFH method. These four elements including the angles and the
distance are added to the histogram of the point p and the mean percentage of the point
pairs in the neighborhood of p, which have like relationships. In PFH, these histograms are
calculated for all possible point pairs in the k number of neighborhoods of the point p [37].

As a different approach, in the four-points congruent sets (4PCS) algorithm, four
points are selected from the reference point cloud and their correspondences are searched
in the complementing point cloud. Thus the corresponding points are found according to
the defined similarity relations (see Figure 7) [39]. In Figure 7, the point e in the reference
point cloud (I1) that is selected with intersecting the coplanar connection lines of two-point
pairs (a-b and c-d). The corresponding point of e is e′ in the complementing point cloud
(I2) in the figure. In Equations (12) and (13), the r1 and r2 ratios are expressed based on the
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coplanarity of the intersection points and the correspondences of these ratios are sought in
the complementing point cloud as well.

r1 = (a− e)/(a− b) (12)

r2 = (c− e)/(c− d) (13)
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The processing with 4PCS algorithm is basically completed in four steps including the
following: (i) selecting four points from the point cloud (I1) with considering an adopted
threshold, (ii) calculating two intersecting diagonal lengths (x = b′ − a′ and y = d′ − c′, as
seen in Figure 7); (iii) estimating probable intersection point of two diagonal elements for each
point sets. This step is carried out following the expressions given in Equations (14) and (15):

eab = a′ + r1x , eba = b′ − r2x (14)

ecd = c′ + r1y , edc = d′ − r2y (15)

and the difference of these values are compared with a certain threshold δ as in Equation (16):

(eab − ecd) < δ , (eab − edc) < δ , (eba − ecd) < δ , (eba − edc) < δ (16)

and finally, step (iv) determining the most suitable four points, which satisfy the comparison
criteria in Equation (16).

In the proposed descriptor and matching algorithm, the cosines of the angles and
the Euclidean distances among the connecting lines are considered. Thus, the cosine
similarities and the distance equalities of the 3D vectors are taken into account for matching
the keypoints (Equation (17)). In the PFH method, three angles connected to the surface
normal are used, while (n-2) angles between the connecting lines are calculated for n key
points in the proposed method. However, in order to find the geometric similarities of
the keypoint sets in the two-point clouds, the differences’ summation of the angle values
calculated between the keypoints in both point clouds is taken into account (see Figure 8).
As it is seen in Equation (17), the suggested algorithm is based on the use of scalar products
of the vectors that is another difference of the new tested algorithm than the commonly
used PFH algorithm that uses both cross and scalar products. While the 4PCS method does
not use any angle value, it only uses point distance ratio values. In the algorithm proposed
here, the (n-1) Euclidean distances are calculated for the n keypoints. For the geometric
similarity of the keypoints of the point clouds, the differences’ summation of the distances
between the keypoints is taken into account.

cos(θ) =
d2·d1

‖d2‖2·‖d1‖2 =
∑n

i=1 d2·d1√
∑n

i=1 (d2)
2
√

∑n
i=1 (d1)

2
(17)
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Figure 8. Cosine similarity algorithm.

In the proposed algorithm, angle cosines are described with Equation (17), and in the
equation d1 and d2 are the distance vectors between the salient point and the two other
keypoints in the combination subset, θ is the angle between two distance vectors. In the
algorithm, firstly the Euclidean distances among the points in the combination subset
and the relevant angle cosines are calculated, and then the similarity of the constructed
geometries for each selected salient point sets are considered. Algorithm 1 gives the
pseudo-codes of the new keypoint descriptor.

Algorithm 1. Generation of point cloud features.

Input: A point cloud is P, number of the sub-points that are going to be selected from the point
cloud is NC.
Output: Point cloud feature matrix F.

1: F ← ∅
2: NP ← point cloud(P)
3: C ← combination(NP, NC)
4: i← 1

5: for each point combination set PC in C do
6: each point p in PC do
7: pr ← p
8: pb ← {PC − p}
9: fA ← calculateAngleFeatures(pr, pb)
10: fD ← calculateDistanceFeatures(pr, pb)
11: F[i]← {pr ∪ pb ∪ fA ∪ fD}
12: i← i + 1
13: end for
14: end for
15: return F

The notations used in the algorithm are as follows: F is feature matrix for the descriptor
(a null matrix in the beginning), Np is the total number of the keypoints in the point cloud
“P”. C is the matrix, which holds all possible subsets of the point combinations, and Nc
is the number of the identified keypoints in the subsets. The pr means “reference point”,
and pb is benchmark. The fA is the function for calculating the angle cosines and fD is the
function for calculating the Euclidean distances among the feature points.

According to this algorithm, firstly, the total number of points in the keypoint list
is determined with an identification number (as ID = 1 to Np that is the total number of
points). This ID information is used as the labels of the points in the performed operations.
Then, using the labels of the points, possible subsets (C) consisting of Nc elements among
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the all points are generated. Generating the subsets is a basic combination process in the
algorithm and is expressed in the line 3 of the pseudocodes (see Algorithm 1).

In result of the described process, each salient point in a subset having Nc elements
is considered as a reference point (pr) and the remaining points in the subset are taken as
the benchmarks (pb), and the process is repeated iteratively. Hence the angle and distance
values ( fA and fD) are calculated and subsequently written into a separate row of the
F[i] matrix belong to the addressed point ID information. The given part of the process
so far (as given between the lines 7 and 11 in Algorithm 1) runs only the descriptor part
of the registration and allows us defining the distinctive features, which are required for
matching, and base on the described geometry with the angular and distance relations
among the potential keypoints.

In the proposed algorithm, the descriptor part includes calculating the Euclidean
distances between all points and the angles between all vectors in the subset. Figure 9
illustrates the calculation of the cosine similarity in algorithm. According to this illustration,
if we consider the subset having four points, one point is accepted as a reference at each
iteration and this assumption generates two angle cosines and three distance elements
between the reference and the benchmarks. These numbers of parameters in algorithm can
be generalized as (n-2) angle cosines and (n-1) distance elements when the number of the
points in the subset is shown with n. The points identified as keypoints in result of iterative
process of similarity checks constitute the matrix elements.

Figure 9. Cosine similarity combination approach.

Following the identification process, the keypoints are available to be matched.
Algorithm 2 gives the pseudocodes of the applied matching process. In the algorithm, the
subpoint sets are selected from the source and target point clouds in order to match the
keypoints between the two-point clouds. Accordingly, PS, PT , Nc and TA are the input
parameters in the algorithm. PS and PT are the source and target point clouds, respectively.
Nc is the number of points in the subsets that are selected from each point cloud in each
iteration. These parameters are also included in Algorithm 1 with the same symbols. TA is
a threshold parameter for deciding the angle-based geometrical similarities. In the output
of the algorithm, the information of the matched point sets selected from the source and
target point clouds showing highest similarity are included in a matrix with the name of
MM in the algorithm.

In Algorithm 2, the properties of point subsets, which are determined by using
Algorithm 1 for the source (indicated with indices S) and target (indicated with indices T)
point clouds, are calculated. This process is seen in lines 1 and 2 of the algorithm, and the
calculated properties are expressed with FS and FT that include the outputs of Algorithm 1.
Then, the distances between points and angles between vectors of the keypoint sets in the
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source point cloud are compared with the same properties of the keypoint sets in the target
point cloud. In lines 6 and 7 of Algorithm 2, the similarity checks are coded. In the lines,
the variables SA and SD are differences between the angle similarity properties and the
distance similarity properties, respectively. Then, the ID information (LS and LT) of the
points that the relevant features belong to them, and the similarities calculated from these
features are stored in a MST matrix.

After the SA and SD calculations, which are carried out in a certain order following
the clock-wise turn, the MST matrix is organized in order to have rows with descending
SA values. The rows with TA values smaller than the threshold are selected in the matrix.
These selected rows correspond to the points in the subset with the highest similarity in
the source (S) and target (T) point clouds. Thereafter, these rows, which are recorded in a
MM matrix, are reordered in order to have descending SD values, and hence the optimum
subset of the points for matching purpose is determined. In summary of the followed
process, the points are roughly selected considering the angular similarity and they are
ordered with respect to the distance-based similarity. In the final step of our description
and matching algorithm, the points having the distance differences close to zero values are
selected as the common keypoints of the point clouds.

Algorithm 2. Selection of the subpoint sets from the source and target point clouds for matching.

Input: Source and target point clouds are PS and PT , number of the sub-points that are going to be
selected from the point cloud is NC, distance threshold for similarity of angle based features is TA.
Output: Matrix MM storing the information of matched sub-point sets of PS and PT .

1: FS ← calculatePointCloudFeatures(PS, NC)
2: FT ← calculatePointCloudFeatures(PT , NC)
3: i← 1

4: for each feature vector fS in feature matrix FS do
5: for each feature vector fT in feature matrix FT do
6: SA = normL1( fS(angle f eatures), fT(angle f eatures))
7: SD = normL1( fS(distance f eatures), fT(distance f eatures))
8: LS = fS(point f eatures)
9: LT = fT(point f eatures)
10: MST [i]← {LS ∪ LT ∪ SA ∪ SD}
11: i← i + 1
12: end for
13: end for

14: sort the rows o f MST by descending order o f SA
15: copy the rows o f MST to matrix MM where SA ≤ TA
16: sort the rows o f MM by descending order o f SD
17: return MM

The processing steps of the descriptor and matching algorithms (see in the pseu-
docodes given in Algorithms 1 and 2) of the proposed method are also summarized with a
flowchart in Figure 10.
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Figure 10. The fundamental processing steps of the descriptor and matching algorithms of the proposed algorithm in
the study.

2.2.3. Iterative Closest Point (ICP) Algorithm

The iterative closest point algorithm completes the registration of two coarsely aligned
point clouds; hence, it aims to provide combined point cloud data in the end of the
process. Basically, an ICP algorithm follows these four steps: (i) detecting and selecting
keypoints; (ii) matching the points according to minimum distance difference principle;
(iii) calculating the rotations R(αx, αy, αz) and translations T(δx, δy, δz); (iv) providing an
optimum alignment in result of the iterative process [5,41]. Iterations in the algorithm are
continued until the root mean square error of the transformation residuals decreases under
a predetermined threshold value (τ > 0) or a given iteration number (a) [5]. Figure 11
shows the ICP algorithm steps.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 14 of 29 
 

 

 
Figure 11. Iterative closest point (ICP) algorithm steps. 

The iterative closest point (ICP) algorithm can be used with various geometric data 
including point sets, polylines, implicit and parametric curves, triangulated faceted sur-
faces. In principle, the ICP algorithm handles these geometrical representations by evalu-
ating the closest points in two datasets. In the formulation of the algorithm, ܲ means a 
“data” (target) shape, which is moved (registered) to be in best alignment with ܺ as a 
“model” (source) shape [5]. The distance “݀” between an individual data point Ԧ of ܲ 
and a model ܺ is shown in Equation (18). ݀(Ԧ, ܺ) = 	min௬ሬԦ∈ଡ଼ Ԧݕ‖	 − Ԧ‖ (18)

In the equation, the closest point in ܺ that yields the minimum distance is repre-
sented by ݕԦ and ݀(Ԧ, (Ԧݕ = ,Ԧ)݀ ܺ) that ݕԦ ∈ ܺ. The closest point (from Ԧ to ܺ) is calcu-
lated for each point in ܲ [5]. 

One of the fundamental issues in the ICP algorithm is 3D coordinate transformation. 
Before the ICP registration, the coarse alignment of the point clouds has involved the co-
ordinate transformation process as well. Therefore, the coarse registration of the point 
clouds involves the estimation of the 3D Helmert transformation parameters including 
three translations, three rotation angles and a scale factor, in combining process [42]. As 
different from transformation process in the coarse alignment, the number of estimated 
parameters in the ICP fine registration part is only six including translation and rotations. 
Because the scale factor is estimated in coarse registration once, it is excluded out of esti-
mated parameters in ICP iterations. Depending on the obtained accuracy of the estimated 
3D transformation, the registration process is classified as either coarse or fine registration 
[43]. Coarse registration provides a rough alignment of the point clouds and may be suf-
ficient as depending on the purpose of the study. However, in applications where higher 
accuracy is required, fine registration is needed, and fining process begins after an initial 
alignment of the point clouds with coarse registration [44]. 

The seven-parameters Helmert similarity transformation is commonly applied in 
registration of the point clouds. The conjugate keypoints, which have been detected, iden-
tified and matched for the point clouds (conjugate keypoints for the first and second point 
clouds ݍ  ,  that ݅=1,2…	݉) in the coarse registration section, are used for estimating 
seven transformation parameters (ߜ௫ ,௬ߜ , ௭ߜ  ௫ߙ , ௬ߙ , ௭ߙ , ݏ , ). 3D Helmert similarity 
transformation is formulated as given in Equation (19): 

 ܺଶܻଶܼଶ = ߜ௫ߜ௬ߜ௭ + .ݏ ,ଵߙ)ܴ ,ଶߙ .(ଷߙ  ܺଵܻଵܼଵ  (19)

Figure 11. Iterative closest point (ICP) algorithm steps.

The iterative closest point (ICP) algorithm can be used with various geometric data in-
cluding point sets, polylines, implicit and parametric curves, triangulated faceted surfaces.
In principle, the ICP algorithm handles these geometrical representations by evaluating
the closest points in two datasets. In the formulation of the algorithm, P means a “data”
(target) shape, which is moved (registered) to be in best alignment with X as a “model”
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(source) shape [5]. The distance “d” between an individual data point
→
p of P and a model

X is shown in Equation (18).

d(
→
p , X) = min

→
y∈X
‖→y −→p‖ (18)

In the equation, the closest point in X that yields the minimum distance is represented
by
→
y and d(

→
p ,
→
y ) = d(

→
p , X) that

→
y ∈ X. The closest point (from

→
p to X) is calculated for

each point in P [5].
One of the fundamental issues in the ICP algorithm is 3D coordinate transformation.

Before the ICP registration, the coarse alignment of the point clouds has involved the coor-
dinate transformation process as well. Therefore, the coarse registration of the point clouds
involves the estimation of the 3D Helmert transformation parameters including three
translations, three rotation angles and a scale factor, in combining process [42]. As different
from transformation process in the coarse alignment, the number of estimated parameters
in the ICP fine registration part is only six including translation and rotations. Because
the scale factor is estimated in coarse registration once, it is excluded out of estimated
parameters in ICP iterations. Depending on the obtained accuracy of the estimated 3D
transformation, the registration process is classified as either coarse or fine registration [43].
Coarse registration provides a rough alignment of the point clouds and may be sufficient
as depending on the purpose of the study. However, in applications where higher accuracy
is required, fine registration is needed, and fining process begins after an initial alignment
of the point clouds with coarse registration [44].

The seven-parameters Helmert similarity transformation is commonly applied in reg-
istration of the point clouds. The conjugate keypoints, which have been detected, identified
and matched for the point clouds (conjugate keypoints for the first and second point clouds
qi, pi that i = 1,2 . . . m) in the coarse registration section, are used for estimating seven
transformation parameters (δx, δy, δz, αx, αy, αz, s). 3D Helmert similarity transformation is
formulated as given in Equation (19): X2

i
Y2

i
Z2

i

 =

 δx
δy
δz

+ s.R(α1, α2, α3).

 X1
i

Y1
i

Z1
i

 (19)

In the equation, the Cartesian coordinates of a conjugate keypoint in the first and
second point cloud are qi (X1

i , Y1
i , Z1

i ), and pi (X2
i , Y2

i , Z2
i ), respectively. The rotation

parameters are evaluated in an orthogonal rotation matrix R(αx, αy, αz) and added to the
translation parameters T(δx, δy, δz) after multiplying with a scale factor (s) [45].

Seven transformation parameters given in Equation (19) are estimated using known
coordinates of at least three conjugate keypoints in both point clouds, and in case of avail-
ability of more common keypoints, the transformation parameters can also be calculated
with least squares adjustment by adopting the given condition in Equation (20) [46]:[

vT Pv
]
= min. (20)

where, v is the residual matrix and P is the weight matrix of the observables contributed to
estimating the parameter in mathematical model of the least squares adjustment procedure.

After estimating the transformation parameters with sufficient accuracy, it will be
possible to transform the coordinates of a target point cloud (qi; i = 1,2 . . . m) into the
source point cloud (pi; i = 1,2 . . . m) successfully. In this step, the crucial issue is to
determine the transformation parameters as precise as possible. In order to increase the
accuracy of the parameters, improving the estimation values step by step iteratively is an
effective and generally applied approach.

Other than the conventional ICP method as introduced by Besl and McKay [5], many
variants of this algorithm have been developed and used. In these variant formulations, the
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performance of the original algorithm was tried to be increased by means of accuracy as well
as the processor efficiency in computations [47]. Zhang [48] enhanced the conventional ICP
technique by replacing the error function with a robust kernel [49]. Chen and Medioni [50]
modified the algorithm with replacing the point-to-point distance with the point-to-tangent
plane definition [51].

3. Results
3.1. Performance of the Keypoint Detection Algorithms

The case study on testing the proposed detection algorithm that we introduced in
this study, were carried out using three different datasets including the building facade,
Aristotle and Stanford bunny sculptures’ point clouds. The datasets have been described
in Section 2.1. In the proposed detection algorithm, the mean curvature of the surface was
calculated. Then, the data was filtered according to the optimum curvature criterion that
considers the changes of calculated curvatures at the points. After that, a voxel-based filter
was applied (see Figure 12).
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The result of filtering the terrestrial laser scanning point cloud data on the building
facade can be seen in Figure 12a with the voxels, and the filtering results of the sculptures,
which were colored according to the curvature values, are given in Figure 12b for the Aris-
totle and Figure 12c for the Stanford bunny. At the initial process, filtering the point cloud
is one of the crucial steps that is applied prior identifying the corresponding keypoints.

In order to provide comparative results on the keypoint detection routines and a
discussion on their role in ICP performance, we applied the intrinsic shape signatures
(ISS) and local surface patch (LSP) methods in the numerical tests using all datasets. The
theoretical background and formulations of these methods have already been described in
Section 2.2.1. In the result of the keypoint detection process using point cloud data of the
Aristotle sculpture, the numbers of detected keypoints for each point clouds are ~60 points
with the ISS algorithm and ~180 points with the LSP algorithm. Figure 13 visualizes the
density and distribution of the detected keypoints with each algorithm. On the other hand,
the number of identified keypoints with the new algorithm is 18 for the Aristotle sculpture.
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Figure 13. Distribution of detected keypoints for the point clouds data of Aristotle sculpture using:
(a) intrinsic shape signatures (ISS) algorithm; (b) local surface patch (LSP) algorithm.

Using the point cloud datasets obtained from the terrestrial laser scanning (TLS) and
mobile laser scanning (MLS) measurements for the building facade, the ISS algorithm
revealed ~34 keypoints in TLS point cloud data and ~88 keypoints in MLS point cloud
data, whereas the LSP algorithm detected ~200 keypoints for each point cloud datasets
obtained from TLS and MLS techniques, respectively. Figure 14 shows the distributions
of the detected keypoints using the ISS and LSP algorithms from two TLS and MLS point
clouds. Using the proposed algorithm, the approximate number of keypoints detected
according to the filtering of calculated curvatures in the TLS and MLS point clouds is 30 for
the building facade (see Figures 12a and 18).
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In the result of keypoint detection process using point cloud data of Stanford bunny
sculpture, the numbers of detected keypoints for each point clouds are ~150 points with
the ISS algorithm and ~350 points with the LSP algorithm. On the other hand, the number
of identified keypoints with proposed algorithm is 14 for the Stanford bunny sculpture (see
Figures 12c and 19).

3.2. Performance Tests of Keypoint Descriptor and Matching Algorithms

In the proposed descriptor algorithm, the angle cosine values between the 3D direction
vectors are calculated, and the cosine similarities among the conjugate geometries are
searched. The significant originality of the registration algorithm, which is introduced and
tested in this article, lays behind its description and matching approach. The theoretical
details of the description and matching part of the algorithm are explained in Section 2.2.2.
In the point cloud data of Aristotle sculpture, five points of 18 keypoints were matched by
the description and matching routine of our algorithm. Figure 15 shows the distribution of
matched keypoints of the Aristotle sculpture.
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Figure 15. Aristotle sculpture: (a) detected keypoints in the 1st point cloud using new algorithm;
(b) distribution of the matched keypoints with the new algorithm; (c) detected keypoints in the 2nd
point cloud using new algorithm.

In addition to the new algorithm, the keypoints, which were matched according to
the keypoint histograms obtained from the PFH descriptor with the help of the ISS and
LSP detectors, were also used in the study. In the result of the ISS+PFH process, six points
of ~60 identified keypoints were matched for Aristotle sculpture point cloud datasets
(Figure 16). Following the LSP+PFH algorithm, eight points of ~180 identified keypoints
were matched for Aristotle sculpture modeling (Figure 17).

In the description and matching procedure, which were carried out for building facade
using terrestrial (TLS) and mobile (MLS) laser scanning data, automatic process of the
algorithms (ISS+PFH, LSP+PFH, the proposed algorithm) did not give successful results
to match the conjugate points. This is mainly because of the large discrepancies among
the identified keypoints sets in each point clouds, and therefore the failure of establishing
similarity relations for matching. Unlike the automatic description and matching process,
the semi-automatic way of processing where the saliency points are identified using the
criteria formulated in Section 2.2.1, and selected manually according to their convenience
for similarity, gave result. In this part of the process with the building facade point
clouds, filter and detection procedures were carried out considering mean curvatures at
the points using our detection algorithm. Thereafter the identified keypoints as the output
of the detection algorithm were fed manually into the proposed description and matching
algorithm. Figure 18 shows the conjugate points matched using semi-automatic matching
of the keypoints identified with the new detector (Algorithms 1 and 2).
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In the point cloud data of the Stanford bunny sculpture, five points of 14 keypoints
were matched by the description and matching routine of our algorithm. The second plot
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of Figure 19 shows the distribution of the matched keypoints of the bunny sculpture. In
addition to the new algorithm, the ISS+PFH process was able to match only three points of
the detected ~150 keypoints. On the other hand, the LSP+PFH algorithm did not provide
any matching among the ~350 identified keypoints.
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3.3. Numerical Validations of the Applied Algorithms in Fine Registration with the ICP Method

High accuracy determination of the coordinate transformation parameters between
the point clouds is crucial in combining the datasets for generating a seamless model
of 3D objects. The initial alignment of the point clouds appropriately with pre-defined
transformation parameters in coarse registration phase plays an essential role in the overall
performance of the fine registration using ICP. In this study, we applied the Gauss–Markov
adjustment method in calculation of the transformation parameters using the similarity
relations among the matched points determined in Section 3.2, and we evaluated the
results considering the root mean square errors (RMSE) of the transformation and iteration
numbers of computational convergence.

In the tests, three case study datasets (including the Aristotle sculpture, building
facade, and Stanford bunny sculpture) were used. The numerical validations were carried
out employing three different coarse registration algorithms (ISS+PFH, LSP+PFH, the
new purposed algorithm). In validations using each dataset, the matched keypoints as
the output of each coarse registration algorithm, the fine registrations of the point clouds
datasets have been carried out with the iterative closest point (ICP) method. The success
of the tested coarse registration algorithms including the proposed one was assessed and
compared through the fine registration accuracies by means of the reached RMSE values
in ICP iterations. The iteration numbers that the ICP converged were also considered as
another measure to assess the contribution of the coarse registration algorithms on the
efficiency of the fine registration process.

The first test was carried out using coarsely aligned point clouds with the matched
keypoints for the Aristotle sculpture using the ISS+PFH algorithm. Table 1 shows the
transformation parameters calculated with six conjugate points identified with the ISS+PFH
algorithm and used for the coarse alignment of point clouds. In the same table, the
transformation parameters are given for small and big rotation angles among the axes
of two coordinate systems, which are subject to transformation. When the two sets of
transformation parameters are compared, it is seen that the calculated parameters have
higher accuracy, and thus the RMSE value of the transformation is smaller when the
rotation angles are bigger.
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Table 1. Aristotle sculpture: transformation parameters (x) with their RMSE (mx) in coarse registra-
tion with the ISS+PFH method.

Parameters Gauss-Markov
Small-Rotations x

RMSE
mx

Gauss-Markov
Big-Rotations x

RMSE
mx

mo (cm) 0.2417 0.1746
δx (cm) −5.2107 0.5858 −4.8035 0.2615
δy (cm) −0.1793 0.6005 0.1262 0.2628
δz (cm) 1.3704 0.4864 1.3367 0.2984

s (unitless) 0.0044 0.0033 0.0009 0.0037
αx (rad) 0.0043 0.0048 −0.0057 0.0053
αy (rad) 0.0020 0.0044 0.0018 0.0021
αz (rad) 0.0007 0.0040 −0.0006 0.0029

In Table 1, the RMSE value of the transformation is mo; δx, δy, δz are translation pa-
rameters with their RMSE values (in centimeter), and αx, αy, αz are the rotation parameters
with their RMSE values (in radian), and s is the scale factor with its accuracy.

Figure 20 summarizes the results obtained from the iterative refining of transformation
parameters using ICP for Aristotle sculpture datasets. In the illustrations given in the
figure, the point clouds are given before and after transformation processes using final
transformation parameters of ICP. As seen from the given graphic below the illustrations,
the RMSE value of the ICP converged at 20th iteration, and the accuracy of the ICP
iterations dropped from 7.0 cm to 0.9 cm when the keypoints were matched using the
ISS+PFH algorithm.
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Figure 20. Aristotle sculpture: results obtained from iterative closest point (ICP) algorithm where the
keypoints identified and matched by the ISS+PFH algorithm are used.

The second test was carried out using coarsely aligned point clouds with the matched
keypoints for Aristotle sculpture but this time using LSP+PFH algorithm. Table 2 shows the
transformation parameters calculated with eight conjugate points identified with LSP+PFH
algorithm and used for the coarse alignment of point clouds. According to given statistics in
the table, the transformation parameters calculated for the point clouds having big rotation
angles among the coordinate axes have higher accuracy and thus provide relatively more
precise transformation.
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Table 2. Aristotle sculpture: transformation parameters (x) with their RMSE (mx) in coarse registra-
tion with the LSP+PFH method.

Parameters Gauss-Markov
Small-Rotations x

RMSE
mx

Gauss-Markov
Big-Rotations x

RMSE
mx

mo (cm) 0.6500 0.3389
δx (cm) −1.7221 2.2380 −1.8282 0.7134
δy (cm) −0.8964 2.1862 −3.1901 0.6788
δz (cm) −2.1867 1.8046 2.5650 0.5924

s (unitless) 0.0030 0.0107 0.0373 0.0068
αx (rad) 0.0247 0.0156 0.0642 0.0094
αy (rad) 0.0220 0.0143 0.0285 0.0042
αz (rad) 0.0145 0.0133 0.0319 0.0052

Figure 21 shows the graphical illustrations of point clouds before and after fine
registration with ICP, and the decreasing RMSE values of the transformation with the
increased number of iterations in the graphic below the figure. Considering this graphic, it
is seen that the RMSE value of the ICP converged in 30th iteration and the accuracy of the
transformation decreased from ~6.0 cm to ~1.0 cm using the LSP+PFH matching algorithm.
When compared with the ICP results of point clouds, which have been roughly aligned
using the ISS+PFH algorithm, the obtained final accuracy in the result of second test is
worse, and the convergence of iterations took longer time. In summary, the ICP process
after both the ISS+PFH and LSP+PFH gave similar accuracies around ~1.0 cm.
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In the last test with Aristotle sculpture data, fine registration of point clouds, which
were aligned using the new proposed algorithm, was carried out with the ICP method.
Table 3 gives the transformation parameters calculated with five conjugate points identified
with the new algorithm and used for the coarse alignment of point clouds. According to
given statistics in the table, the accuracy of the transformation between the point clouds
using the conjugate points by the new algorithm was higher than the accuracies obtained
in previous two tests. Additionally, similar to the previous tests, higher accuracy transfor-
mation parameters were obtained with the bigger rotation angles.
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Table 3. Aristotle sculpture: transformation parameters (x) with their RMSE (mx) in coarse registra-
tion with the new algorithm.

Parameters Gauss-Markov
Small-Rotations x

RMSE
mx

Gauss-Markov
Big-Rotations x

RMSE
mx

mo (cm) 0.0930 0.0550
δx (cm) 4.4310 0.2810 4.2760 0.1070
δy (cm) −0.0490 0.3330 −0.2050 0.1070
δz (cm) −1.3570 0.3060 −1.2490 0.1030

s (unitless) −0.0020 0.0010 0.0011 0.0010
αx (rad) −0.0020 0.0020 0.0060 0.0010
αy (rad) −0.0020 0.0010 −0.0040 0.0010
αz (rad) −0.0040 0.0020 −0.0030 0.0010

In Figure 22, the ICP method performance after the coarse registration with the
new algorithm is demonstrated with visual graphics of the point clouds before and after
matching. The RMSE value of the ICP converged in 10th iteration, which means a significant
improvement in performance of registration algorithm compared to other tested algorithms
in previous tests. The accuracy statistic of iterations dropped ~0.29 cm while it was not
better than ~0.90 cm for the other algorithms.
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Figure 22. Aristotle sculpture: results obtained from iterative closest point (ICP) algorithm where the
keypoints identified and matched by the new algorithm are used.

The ICP method was applied to the building facade data as well. In the coarse
registration process, the TLS and MLS point clouds keypoints and semi-automatically
identified conjugate points using the new algorithm were used. In the evaluation of
the building facade datasets, the automatic evaluation of the ISS+PFH and LSP+PFH
algorithms have not been successfully applied in coarse registration because there were
no keypoints successfully matched. Therefore, the keypoints for coarse alignment of the
point clouds were identified manually from the saliency points such as window corners
(see Figure 18) and introduced to the semi-automatic matching process with the PFH
algorithm. However, this trial was also not successful for matching with the PFH algorithm.
Different patterns, characteristics and resolutions of two-point clouds data acquired from
terrestrial and mobile platforms using different sensors possibly caused this inconsistency,
and therefore the automatic and semi-automatic processes were failed in matching the
keypoints. The only solution for matching the keypoints of the building facade dataset
was applying semi-automatic matching with the new suggested method. In this solution,
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the keypoints were identified manually from the saliency points, and put into the new
matching algorithm.

In Table 4, the transformation parameters between the TLS and MLS point clouds
in the coarse registration process using the semi-automatically identified common points
using the new algorithm were given. In Figure 23, the ICP method performance for the
building facade datasets was shown. According to given graphics, the RMSE value of the
ICP converged in 50th iteration, and it dropped ~0.02 m.

Table 4. Building facade: transformation parameters (x) with their RMSE (mx) in coarse registration
with the new algorithm.

Parameters Gauss-Markov
Small-Rotations x

RMSE
mx

Gauss-Markov
Big-Rotations x

RMSE
mx

mo (m) 0.0207 0.0143
δx (m) −0.1355 0.0166 −0.1245 0.0090
δy (m) 0.0186 0.0241 0.0152 0.0091
δz (m) −0.2893 0.0162 −0.3021 0.0097

s (unitless) -0.0016 0.0041 −0.0063 0.0032
αx (rad) −0.0017 0.0057 −0.0082 0.0044
αy (rad) −0.0023 0.0042 −0.0013 0.0010
αz (rad) −0.0002 0.0064 −0.0021 0.0012
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Figure 23. Building facade: results obtained from iterative closest point (ICP) algorithm where the
TLS and MLS point clouds’ keypoints identified and matched by the new algorithm are used.

The ICP method was also applied using the Stanford bunny dataset as well. Into the
process, the coarsely aligned point clouds with five keypoints, which were matched using
the new algorithm, were inserted. Table 5 shows the calculated transformation parameters
in the result of coarse alignment. In Figure 24, the ICP method performance after the coarse
registration with the new algorithm is demonstrated with visual graphics of the bunny
point clouds before and after matching. The RMSE value dropped ~0.29 cm at the 15th
iteration of the ICP.
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Table 5. Stanford bunny sculpture: transformation parameters (x) with their RMSE (mx) in coarse
registration with the new algorithm.

Parameters Gauss-Markov
Small-Rotations x

RMSE
mx

Gauss-Markov
Big-Rotations x

RMSE
mx

mo (m) 0.0072 0.0051
δx (m) 0.0218 0.0077 0.0270 0.0066
δy (m) 0.0092 0.0068 −0.0183 0.0058
δz (m) 0.0405 0.0092 0.0426 0.0045

s (unitless) −0.1443 0.0550 0.0990 0.0425
αx (rad) −0.0012 0.0927 −0.0072 0.0596
αy (rad) 0.5441 0.0845 0.6985 0.0687
αz (rad) 0.1349 0.0609 0.0778 0.0579
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Figure 24. Stanford bunny sculpture: the results obtained from iterative closest point (ICP) algorithm
where the keypoints identified and matched by the new algorithm are used.

Because the LSP+PFH method did not provide any conjugate keypoint in result of
matching process using bunny data, the coarse alignment was not possible. The ISS+PFH
method output only three conjugate keypoints, which were not evenly distributed on the
object. Using coarsely aligned point clouds with three conjugate keypoints by the ISS+PFH
method, the ICP algorithm provided an RMSE value of ~0.50 cm at the 15th iteration for
bunny dataset.

4. Discussion

We developed and introduced a new method for automatic keypoint detection, de-
scription, and matching for 3D point cloud coarse registration in this study. The first part
of the new method includes a 3D keypoint detection algorithm, which was formulated
based on similar working principles with the ISS and LSP methods. In the second part, a
3D descriptor (Algorithm 1) and 3D keypoints matching algorithms (Algorithm 2) were
designed and coded. This second part of the designed algorithm is rather different than
its counterparts by means of defining the geometrical configuration among the saliency
points according to the differential numerical combinations (see Section 2.2.2.) as well as
the computational efficiency; hence, it includes original contribution. In order to compare
the new algorithm with commonly used counterparts, we included ISS and LSP detectors
with the PFH descriptor routine in the numerical tests. The transformation between the
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point clouds using the matched points in the algorithms was carried out using the Helmert
similarity transformation method. The fine registration part has been carried out using
the ICP method as formulated in Section 2.2.3. The validation results of three case studies
clarified the superior performance of the new algorithm and its contribution to the fine
registration performance with ICP by means of success in combining two-point clouds
with higher accuracy registration with a smaller number of iterations.

In the numerical tests using point cloud data obtained from shifted perspectives with
ultra HD laser scanning measurements with the same 3D laser scanner for small size
sculptures (the Aristotle and Stanford bunny), automatic keypoint detection, description,
and matching algorithms worked successfully in coarse registration of the point clouds.
However, comparisons of the RMSE values of the transformation in coarse registration
proved the superiority of the new algorithm over its tested counterparts (see the test results
in Section 2.2.3.). Fine registration with the ICP method followed the coarse registration
with the tested detection, description and matching algorithms using the point clouds
data of the sculptures. In the tests with the ICP algorithm, the efficiency achieved in
the iterative improvement of the registration confirmed the superior performance of the
new algorithm in matching the keypoints for automatic registration of the point clouds
datasets. With the ICP method, it could be possible to obtain RMSE of ~0.29 cm within
a reasonable converging time using the new algorithm, whereas the achievable accuracy
with the matched keypoint sets by the ISS+PFH and LSP+PFH was ~1.00 cm for the
Aristotle sculpture and ~0.50 cm for the Stanford bunny (only ISS+PFH is available for
the bunny) at best in the longer convergence time. This result proved the importance
of initial alignment with the coarse registration process for generating improved models
from the employed point clouds measured with a shift. In literature, it is possible to find
similar research studies on investigating the performance of automatic keypoint detection
algorithms and their effects on generation of 3D models. Among these studies, Yew and
Lee [52] recently carried out research with the ISS+FPFH and ISS+3DFeat-Net algorithms
and found conclusions, which confirm our results, regarding the performance.

Another experiment with the tested algorithms was carried out with the point cloud
datasets of a building facade, obtained from the outdoor measurements using two different
laser scanners mounted on a stationary tripod on a ground station and a mobile land
vehicle. However, automatic description and matching algorithms of the point clouds
keypoints with each detector did not give successful results and failed in the registration.
An important reason for the failure of automatic registration process is the differences
among the resolution and qualities of two-point cloud data because they were obtained
using different laser scanners on stationary and mobile platforms. Semi-automatic selection
and evaluation of the keypoints from the building facade data compensated the problem.
Consequently, matching the keypoints for the transformation in coarse registration was
carried out with manually fed keypoints to the semi-automatized algorithm. In ICP tests
with building facade data, the initially aligned point clouds using the new algorithm
provided applicable results by means of final RMSE value of the ICP (~2.0 cm) within a
reasonable converging iteration number, and hence its competence in combining the point
clouds obtained by the measurements from different platforms has been proven.

There are strengths and weaknesses of the proposed algorithm in practice. The
proposed method provides smaller RMSE values in lower iteration numbers than the
ISS+PFH and LSP+PFH algorithms. It provides better performance in the description and
in matching the keypoints. Although the number of detected keypoints with the proposed
algorithm is even less than the other coarse registration algorithms, fine registration of
the point clouds, which were coarsely aligned point clouds with the proposed algorithm,
provided smaller RMSE values in the ICP method. This method is superior to the ISS+PFH
and LSP+PFH methods especially in the coarse registration of point clouds with different
resolutions obtained from different laser scanners.

Because the description and matching algorithm of the proposed method is based on
the combination method, and because the distance and angle values are calculated for all
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point combinations in the subset, large amounts of keypoint combinations are examined,
and this makes the description and matching process longer and increases the memory
and processor burden in the computer system. The relatively cumbersome and limited
capabilities of the platform on which the algorithm computation codes were written create
another disadvantage in practice for the proposed method.

The proposed algorithm is based on the point-based process. Especially while work-
ing with large datasets, not finding the conjugate points and/or mismatching problems
constitutes another disadvantage of the new algorithm. In such cases, semi-automatic
operation (with manual selection of the saliency points to be matched) of the algorithm is
suggested and provides accurate results.

Regarding the large-scale experiment using the proposed algorithm, the method
works semi-automatically. Our proposed algorithm needs to be enhanced in the detection
of the keypoints of large-scale datasets if we want to apply it automatically in large-scale
experiments. Depending on our experiences, this weakness is also valid for other coarse
registration algorithms as well (e.g., ISS+PFH, LSP+PFH).

5. Conclusions

The new algorithm developed and tested in this study is promising for the resultant
accuracy of the obtained products as well as the computational efficiency. However,
there are still further developments, which are needed to search for especially while
combining the point clouds data with changing accuracies and resolutions obtained from
different platforms and/or larger areas. Improving the algorithms by employing intelligent
techniques having the handling capability of stochastic information of the datasets can
lead to the expected improvements in results. In order to aimed progress, in future work,
we plan to focus on integrating deep learning features into our algorithms with variance
estimation modules. By means of improving computational efficiency and optimization in
use of the computer processors, we aim to move the automatic matching algorithm that
we designed to another programming platform with parallel processing capability. By
developing the automatic keypoint detection and selection algorithm, we plan to expand
the research for evaluating the large-scale point cloud datasets.
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is acknowledged for the discussions on optimal design and development of program codes for the
new algorithm and numerical assessments. Riegl WMX 450 mobile mapping system was provided by
Koyuncu 3D Lidar Map and Engineering Company to this study. The point cloud data and keypoints
were visualized using CloudCompare Software. Automatic matching algorithms were coded using
Matlab Software, and the other algorithms were used from PCL (Point Cloud Library) that was coded
in C++ programing language. We are grateful to Jakob Wilm and Martin Kjer of the Danish Technical
University for the ICP algorithm used in this study [53]. The Stanford bunny data has been used
from the Stanford Computer Graphics Laboratory 3D Scanning Repository.



ISPRS Int. J. Geo-Inf. 2021, 10, 204 27 of 28

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fangning, H.; Ayman, H. A closed-form solution for coarse registration of point clouds using linear features. J. Surv. Eng. 2016,

142, 04016006. [CrossRef]
2. Vosselman, G.; Maas, H.G. Airborne and Terrestrial Laser Scanning; CRC Press: Beacon Raton, FL, USA, 2010; pp. 1–318.
3. Buenoa, M.; González-Jorgea, H.; Martínez-Sánchezac, J.; Lorenzo, H. Automatic point cloud coarse registration using geometric

keypoint descriptors for indoor scenes. Autom. Constr. 2017, 81, 134–148. [CrossRef]
4. Yoshimura, R.; Date, H.; Kanai, S.; Honma, R.; Oda, K.; Ikeda, T. Automatic registration of MLS point clouds and SfM meshes of

urban area. Geo-Spat. Inf. Sci. 2016, 19, 171–181. [CrossRef]
5. Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Sensor Fusion IV: Control Paradigms and Data Structures;

International Society for Optics and Photonics: Bellingham, WA, USA, 1992.
6. Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3-D

Digital Imaging and Modeling, Quebec, QC, Canada, 28 May–1 June 2001.
7. Aoki, Y.; Goforth, H.; Srivatsan, R.A.; Lucey, S. PointNetLK: Robust & efficient point cloud registration using pointnet. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 7163–7172.

8. Habib, A.F.; Alruzouq, R.I. Line-based modified iterated Hough transform for automatic registration of multi-source imagery.
Photogramm. Rec. 2004, 19, 5–21. [CrossRef]

9. Chen, S.; Nan, L.; Xia, R.; Zhao, J.; Wonka, P. PLADE: A Plane-Based Descriptor for Point Cloud Registration with Small Overlap.
IEEE Trans. Geosci. Remote Sens. 2019, 58, 2530–2540. [CrossRef]

10. Habib, A.; Detchev, I.; Bang, K. A comparative analysis of two approaches for multiple-surface registration of irregular point
clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 1–6.

11. Hassaballah, M.; Abdelmgeid, A.A.; Alshazly, H.A. Image features detection, description and matching. In Image Feature Detectors
and Descriptors; Awad, A., Hassaballah, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 11–45.

12. Xu, Y.; Boerner, R.; Yao, W.; Hoegner, L.; Stilla, U. Pairwise coarse registration of point clouds in urban scenes using voxel-based
4-planes congruent sets. ISPRS J. Photogramm. Remote Sens. 2019, 151, 106–123. [CrossRef]

13. Aiger, D.; Mitra, N.J.; Cohen-Or, D. 4-points congruent sets for robust pairwise surface registration. ACM Trans. Graphics 2008, 27,
1–10. [CrossRef]

14. Rusu, R.B.; Blodow, N.; Beetz, M. Fast point feature histograms (FPFH) for 3D registration. In Proceedings of the 2009 IEEE
International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009.

15. Tombari, F.; Salti, S.; Di Stefano, L. Unique Signatures of Histograms for Local Surface Description. In European Conference on
Computer Vision; Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer: Berlin, Germany, 2010.

16. Yang, B.; Dong, Z.; Liang, F.; Liu, Y. Automatic registration of large-scale urban scene point clouds based on semantic feature
points. ISPRS J. Photogramm. Remote Sens. 2016, 113, 43–58. [CrossRef]

17. Ge, X. Automatic markerless registration of point clouds with semantic-keypointbased 4-points congruent sets. ISPRS J.
Photogramm. Remote Sens. 2017, 130, 344–357. [CrossRef]

18. Huang, R.; Xu, Y.; Yao, W.; Hoegner, L.; Stilla, U. Robust global registration of point clouds by closed-form solution in the
frequency domain. ISPRS J. Photogramm. Remote Sens. 2021, 171, 310–329. [CrossRef]

19. Förstner, W. A framework for low level feature extraction. In European Conference on Computer Vision; Eklundh, J.O., Ed.; Springer:
Berlin, Germany, 1994.

20. Sipiran, I.; Bustos, B. Harris 3D: A robust extension of the Harris operator for interest point detection on 3D meshes. Vis. Comput.
2011, 27, 963–976. [CrossRef]

21. Chen, H.; Bhanu, B. 3D free-form object recognition in range images using local surface patches. Pattern Recognit. Lett 2007, 28,
1252–1262. [CrossRef]

22. Steder, B.; Rusu, R.B.; Konolige, K.; Burgard, W. Point feature extraction on 3D range scans taking into account object boundaries.
In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011.

23. Lowe, G. SIFT-the scale invariant feature transform. Int. J. Comput. Vis. 2004, 2, 91–110. [CrossRef]
24. Rusu, R.B.; Cousins, S. 3D is here: Point cloud library (PCL). In Proceedings of the 2011 IEEE International Conference on Robotics

and Automation, Shanghai, China, 9–13 May 2011.
25. Zhong, Y. Intrinsic shape signatures: A shape descriptor for 3D object recognition. In Proceedings of the 2009 IEEE 12th

International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 27 September–4 October 2009.
26. Habib, A.; Ghanma, M.; Morgan, M.; Al-Ruzouq, R. Photogrammetric and lidar data registration using linear features. Photogram.

Eng. Remote Sens. 2005, 71, 699–707. [CrossRef]
27. Yang, B.; Zang, Y. Automated registration of dense terrestrial laser-scanning point clouds using curves. ISPRS J. Photogram.

Remote Sens. 2014, 95, 109–121. [CrossRef]
28. Ge, X.; Wunderlich, T. Surface-based matching of 3D point clouds with variable coordinates in source and target system. ISPRS J.

Photogram. Remote Sens. 2016, 111, 1–12. [CrossRef]

http://doi.org/10.1061/(ASCE)SU.1943-5428.0000174
http://doi.org/10.1016/j.autcon.2017.06.016
http://doi.org/10.1080/10095020.2016.1212517
http://doi.org/10.1111/j.0031-868X.2003.00254.x
http://doi.org/10.1109/TGRS.2019.2952086
http://doi.org/10.1016/j.isprsjprs.2019.02.015
http://doi.org/10.1145/1360612.1360684
http://doi.org/10.1016/j.isprsjprs.2015.12.005
http://doi.org/10.1016/j.isprsjprs.2017.06.011
http://doi.org/10.1016/j.isprsjprs.2020.11.014
http://doi.org/10.1007/s00371-011-0610-y
http://doi.org/10.1016/j.patrec.2007.02.009
http://doi.org/10.1023/B:VISI.0000029664.99615.94
http://doi.org/10.14358/PERS.71.6.699
http://doi.org/10.1016/j.isprsjprs.2014.05.012
http://doi.org/10.1016/j.isprsjprs.2015.11.001


ISPRS Int. J. Geo-Inf. 2021, 10, 204 28 of 28

29. Magnusson, M.; Lilienthal, A.; Duckett, T. Scan registration for autonomous mining vehicles using 3D-NDT. J. Field Robot. 2007,
24, 803–827. [CrossRef]

30. Huang, R.; Ye, Z.; Boerner, R.; Yao, W.; Xu, Y.; Stilla, U. Fast pairwise coarse registration between point clouds of construction sites
using 2D projection based phase correlation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 1015–1020. [CrossRef]

31. Nextengine-Next Engine 3D Laser Scanner Ultra HD Handbook. Available online: https://www.nextengine.com/assets/pdf/
scanner-techspecs-uhd.pdf (accessed on 1 December 2020).

32. Leica, Leica ScanStation C10–the All-in-One Laser Scanner for Any Application. Available online: http://w3.leica-geosystems.
com/downloads123/hds/hds/scanstationc10/brochures-datasheet/leica_scanstation_c10_ds_en.pdf (accessed on 1 Decem-
ber 2020).

33. Riegl, Riegl VMX-450 Compact Mobile Laser Scanning System Data Sheet. Available online: http://www.riegl.com/uploads/tx_
pxpriegldownloads/DataSheet_VMX-450_2015-03-19.pdf (accessed on 1 December 2020).

34. Tombari, F.; Salti, S.; Di Stefano, L. Performance evaluation of 3D keypoint detectors. Int. J. Comput. Vis. 2013, 102, 198–220.
[CrossRef]

35. Pauly, M.; Gross, M.; Kobbelt, L.P. Efficient simplification of point-sampled surfaces. In Proceedings of the IEEE Visualization.
VIS 2002, Boston, MA, USA, 27 October–1 November 2002.

36. Qin, H.; Guan, G.; Yu, Y.; Zhong, L. A voxel-based filtering algorithm for mobile LiDAR data. Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci. 2018, 42, 1433–1438. [CrossRef]

37. Rusu, R.B.; Marton, Z.C.; Blodow, N.; Beetz, M. Persistent point feature histograms for 3D point clouds. In Proceeding of the 10th
International Conference International Autonomous Systems (IAS-10), Baden, Germany, 23–25 July 2008; pp. 119–128.

38. Hänsch, R.; Weber, T.; Hellwich, O. Comparison of 3D interest point detectors and descriptors for point cloud fusion. ISPRS Ann.
Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 1–57. [CrossRef]

39. Novak, D.; Schindler, K. Approximate registration of point clouds with large scale differences. ISPRS Ann. Photogramm. Remote
Sens Spat. Inf. Sci. 2013, 1, 211–216. [CrossRef]

40. Theiler, P.W.; Wegner, J.D.; Schindler, K. Markerless point cloud registration with keypoint-based 4-points congruent sets. ISPRS
Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 1, 283–288. [CrossRef]

41. Gressin, A.; Mallet, C.; David, N. Improving 3D lidar point cloud registration using optimal neighborhood knowledge. In
Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia,
25 August–1 September 2012; pp. 111–116.

42. Al-Durgham, K.; Habib, A. Association-matrix-based sample consensus approach for automated registration of terrestrial laser
scans using linear features. Photogramm. Eng. Remote Sens. 2014, 80, 1029–1039. [CrossRef]

43. Matabosch, C.; Salvi, J.; Fofi, D.; Meriaudeau, F. Range image registration for industrial inspection. In Proceedings of the
Machine Vision Applications in Industrial Inspection XIII, International Society for Optics and Photonics, San Jose, CA, USA, 24
February 2005.

44. Al-Rawabdeh, A.; He, F.; Moussa, A.; El-Sheimy, N.; Habib, A. Using an unmanned aerial vehicle-based digital imaging system
to derive a 3D point cloud for landslide scarp recognition. Remote Sens. 2016, 8, 95. [CrossRef]

45. Watson, G. Computing helmert transformations. J. Comput. Appl. Math. 2006, 197, 387–394. [CrossRef]
46. Ghilani, C.D. Adjustment Computations: Spatial Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2017.
47. Boukebbab, S.; Gheribi, H.; Linares, J.M. A procedure for total knee alignment prosthesis using the ICP algorithm in the aim to

implant it in the biomechanical engineering. Vibroeng. Proc. 2016, 9, 44–49.
48. Zhang, Z. On local matching of free-form curves. In BMVC92; Hogg, D., Boyle, R., Eds.; Springer: London, UK, 1992; pp. 347–356.

[CrossRef]
49. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C, 2nd ed.; Cambridge University Press: London,

UK, 2002; pp. 59–70.
50. Chen, Y.; Medioni, G. Object modelling by registration of multiple range images. Image Vis. Comput. 1992, 10, 145–155. [CrossRef]
51. Fitzgibbon, A.W. Robust registration of 2D and 3D point sets. Image Vis. Comput. 2003, 21, 1145–1153. [CrossRef]
52. Yew, Z.J.; Lee, G.H. 3dfeat-net: Weakly supervised local 3D features for point cloud registration. In Proceedings of the European

Conference on Computer Vision, Munich, Germany, 8–14 September 2018.
53. Kjer, H.M.; Wilm, J. Evaluation of Surface Registration Algorithms for PET Motion Correction. Bachelor′s Thesis, Technical

University of Denmark, Lyngby, Denmark, 2010.

http://doi.org/10.1002/rob.20204
http://doi.org/10.5194/isprs-archives-XLII-2-W13-1015-2019
https://www.nextengine.com/assets/pdf/scanner-techspecs-uhd.pdf
https://www.nextengine.com/assets/pdf/scanner-techspecs-uhd.pdf
http://w3.leica-geosystems.com/downloads123/hds/hds/scanstationc10/brochures-datasheet/leica_scanstation_c10_ds_en.pdf
http://w3.leica-geosystems.com/downloads123/hds/hds/scanstationc10/brochures-datasheet/leica_scanstation_c10_ds_en.pdf
http://www.riegl.com/uploads/tx_pxpriegldownloads/DataSheet_VMX-450_2015-03-19.pdf
http://www.riegl.com/uploads/tx_pxpriegldownloads/DataSheet_VMX-450_2015-03-19.pdf
http://doi.org/10.1007/s11263-012-0545-4
http://doi.org/10.5194/isprs-archives-XLII-3-1433-2018
http://doi.org/10.5194/isprsannals-II-3-57-2014
http://doi.org/10.5194/isprsannals-II-5-W2-211-2013
http://doi.org/10.5194/isprsannals-II-5-W2-283-2013
http://doi.org/10.14358/PERS.80.11.1029
http://doi.org/10.3390/rs8020095
http://doi.org/10.1016/j.cam.2005.06.047
http://doi.org/10.1007/978-1-4471-3201-1_36
http://doi.org/10.1016/0262-8856(92)90066-C
http://doi.org/10.1016/j.imavis.2003.09.004

	Introduction 
	Materials and Methods 
	Datasets Used in the Tests 
	Methodology 
	Keypoint Detection 
	Keypoint Description and Matching 
	Iterative Closest Point (ICP) Algorithm 


	Results 
	Performance of the Keypoint Detection Algorithms 
	Performance Tests of Keypoint Descriptor and Matching Algorithms 
	Numerical Validations of the Applied Algorithms in Fine Registration with the ICP Method 

	Discussion 
	Conclusions 
	References

