CrimeVec—Exploring Spatial-Temporal Based Vector Representations of Urban Crime Types and Crime-Related Urban Regions
Abstract
:1. Introduction
2. Methodology
2.1. Data Pre-Processing
2.2. Embedding Model for Crime Type Vector Representations
2.2.1. Word2vec Algorithm
2.2.2. Model Training and Crime Type Vector Generation
2.3. Urban Region Vector Space
3. Experiment
3.1. Data
3.2. Experimental Settings
3.3. Evaluation
3.3.1. Crime Type Embeddings
3.3.2. Crime-Related Urban Region Embeddings
Crime Configuration Plots
Urban Region Embeddings
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weisburd, D.; Groff, E.R.; Yang, S.-M. The Criminology of Place: Street Segments and Our Understanding of the Crime Problem; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Andresen, M.A.; Curman, A.S.; Linning, S.J. The trajectories of crime at places: Understanding the patterns of disaggregated crime types. J. Quant. Criminol. 2017, 33, 427–449. [Google Scholar] [CrossRef] [Green Version]
- Chainey, S.; Tompson, L.; Uhlig, S. The utility of hotspot mapping for predicting spatial patterns of crime. Secur. J. 2008, 21, 4–28. [Google Scholar] [CrossRef]
- Hipp, J.R. Block, tract, and levels of aggregation: Neighborhood structure and crime and disorder as a case in point. Am. Sociol. Rev. 2007, 72, 659–680. [Google Scholar] [CrossRef] [Green Version]
- Bernasco, W. Them again? Same-offender involvement in repeat and near repeat burglaries. Eur. J. Criminol. 2008, 5, 411–431. [Google Scholar] [CrossRef] [Green Version]
- Short, M.B.; D’orsogna, M.R.; Brantingham, P.J.; Tita, G.E. Measuring and modeling repeat and near-repeat burglary effects. J. Quant. Criminol. 2009, 25, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Groff, E. Characterizing the spatio-temporal aspects of routine activities and the geographic distribution of street robbery. In Artificial Crime Analysis Systems: Using Computer Simulations and Geographic Information Systems; IGI Global: Hershey, PA, USA, 2008; pp. 226–251. [Google Scholar]
- Irvin-Erickson, Y. Identifying Risky Places for Crime: An Analysis of the Criminogenic Spatiotemporal Influences of Landscape Features on Street Robberies; Rutgers University-Graduate School-Newark: Newark, NJ, USA, 2014. [Google Scholar]
- Groff, E.; Taniguchi, T. Quantifying crime prevention potential of near-repeat burglary. Police Q. 2019, 22, 330–359. [Google Scholar] [CrossRef]
- Johnson, S.D.; Bernasco, W.; Bowers, K.J.; Elffers, H.; Ratcliffe, J.; Rengert, G.; Townsley, M. Space–time patterns of risk: A cross national assessment of residential burglary victimization. J. Quant. Criminol. 2007, 23, 201–219. [Google Scholar] [CrossRef] [Green Version]
- Piza, E.L.; Carter, J.G. Predicting initiator and near repeat events in spatiotemporal crime patterns: An analysis of residential burglary and motor vehicle theft. Justice Q. 2018, 35, 842–870. [Google Scholar] [CrossRef]
- Kurland, J.; Piza, E. The devil you don’t know: A spatial analysis of crime at Newark’s Prudential Center on hockey game days. J. Sport Saf. Secur. 2018, 3, 1. [Google Scholar]
- Ristea, A.; Andresen, M.A.; Leitner, M. Using tweets to understand changes in the spatial crime distribution for hockey events in Vancouver. Can. Geogr. Géographe Can. 2018, 62, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Kounadi, O.; Ristea, A.; Araujo, A.; Leitner, M. A systematic review on spatial crime forecasting. Crime Sci. 2020, 9, 1–22. [Google Scholar] [CrossRef]
- Malleson, N.; Andresen, M.A. Spatio-temporal crime hotspots and the ambient population. Crime Sci. 2015, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Helbich, M.; Jokar Arsanjani, J. Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis. Cartogr. Geogr. Inf. Sci. 2015, 42, 134–148. [Google Scholar] [CrossRef]
- Brantingham, P.J. Crime diversity. Criminology 2016, 54, 553–586. [Google Scholar] [CrossRef]
- Kuang, D.; Brantingham, P.J.; Bertozzi, A.L. Crime topic modeling. Crime Sci. 2017, 6, 1–20. [Google Scholar] [CrossRef]
- Grubesic, T.H.; Mack, E.A. Spatio-temporal interaction of urban crime. J. Quant. Criminol. 2008, 24, 285–306. [Google Scholar] [CrossRef]
- Yue, H.; Zhu, X.; Ye, X.; Guo, W. The local colocation patterns of crime and land-use features in Wuhan, China. Isprs Int. J. Geo Inf. 2017, 6, 307. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Hu, Y.; Wang, S.; Li, X. Local indicator of colocation quotient with a statistical significance test: Examining spatial association of crime and facilities. Prof. Geogr. 2017, 69, 22–31. [Google Scholar] [CrossRef]
- He, Z.; Deng, M.; Xie, Z.; Wu, L.; Chen, Z.; Pei, T. Discovering the joint influence of urban facilities on crime occurrence using spatial co-location pattern mining. Cities 2020, 99, 102612. [Google Scholar] [CrossRef]
- Pope, M.; Song, W. Spatial relationship and colocation of crimes in Jefferson County, Kentucky. Pap. Appl. Geogr. 2015, 1, 243–250. [Google Scholar] [CrossRef]
- Block, R.L.; Block, C.R. Space, place and crime: Hot spot areas and hot places of liquor-related crime. Crime Place 1995, 4, 145–184. [Google Scholar]
- Farrell, G. Crime concentration theory. Crime Prev. Community Saf. 2015, 17, 233–248. [Google Scholar] [CrossRef]
- Weisburd, D. The law of crime concentration and the criminology of place. Criminology 2015, 53, 133–157. [Google Scholar] [CrossRef]
- Bengio, Y.; Ducharme, R.; Vincent, P.; Janvin, C. A neural probabilistic language model. J. Mach. Learn. Res. 2003, 3, 1137–1155. [Google Scholar]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed representations of words and phrases and their compositionality. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Pennington, J.; Socher, R.; Manning, C.D. Glove: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543. [Google Scholar]
- Liu, X.; Andris, C.; Rahimi, S. Place niche and its regional variability: Measuring spatial context patterns for points of interest with representation learning. Comput. Environ. Urban. Syst. 2019, 75, 146–160. [Google Scholar] [CrossRef]
- Qiu, P.; Gao, J.; Yu, L.; Lu, F. Knowledge embedding with geospatial distance restriction for geographic knowledge graph completion. Isprs Int. J. Geo-Inf. 2019, 8, 254. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Li, X.; Liu, X.; Liu, P.; Liang, Z.; Zhang, J.; Mai, K. Sensing spatial distribution of urban land use by integrating points-of-interest and Google word2vec model. Int. J. Geogr. Inf. Sci. 2017, 31, 825–848. [Google Scholar] [CrossRef]
- Zhai, W.; Bai, X.; Shi, Y.; Han, Y.; Peng, Z.-R.; Gu, C. Beyond word2vec: An approach for urban functional region extraction and identification by combining place2vec and pois. Comput. Environ. Urban. Syst. 2019, 74, 1–12. [Google Scholar] [CrossRef]
- Liu, K.; Yin, L.; Lu, F.; Mou, N. Visualizing and exploring poi configurations of urban regions on poi-type semantic space. Cities 2020, 99, 102610. [Google Scholar] [CrossRef]
- Yan, B.; Janowicz, K.; Mai, G.; Gao, S. From Itdl to Place2vec: Reasoning About Place Type Similarity and Relatedness by Learning Embeddings from Augmented Spatial Contexts. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Redondo Beach, CA, USA, 7–10 November 2017; pp. 1–10. [Google Scholar]
- Crivellari, A.; Beinat, E. From motion activity to geo-embeddings: Generating and exploring vector representations of locations, traces and visitors through large-scale mobility data. Isprs Int. J. Geo Inf. 2019, 8, 134. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Meng, L.; Tang, C.; Zhao, Y.; Guo, Z.; Hu, M.; Chen, W. Visual abstraction of large scale geospatial origin-destination movement data. Ieee Trans. Vis. Comput. Graph. 2018, 25, 43–53. [Google Scholar] [CrossRef]
- Kutuzov, A.; Kopotev, M.; Sviridenko, T.; Ivanova, L. Clustering comparable corpora of Russian and Ukrainian academic texts: Word embeddings and semantic fingerprints. arXiv 2016, arXiv:1604.05372. [Google Scholar]
- Wieting, J.; Bansal, M.; Gimpel, K.; Livescu, K. Towards universal paraphrastic sentence embeddings. arXiv 2015, arXiv:1301.3781. [Google Scholar]
- O’Brien, D.T.; Winship, C. The gains of greater granularity: The presence and persistence of problem properties in urban neighborhoods. J. Quant. Criminol. 2017, 33, 649–674. [Google Scholar] [CrossRef]
- Sommer, A.J.; Lee, M.; Bind, M.-A.C. Comparing apples to apples: An environmental criminology analysis of the effects of heat and rain on violent crimes in Boston. Palgrave Commun. 2018, 4, 1–10. [Google Scholar] [CrossRef]
- O’Brien, D.T.; Phillips, N.E.; Sheini, S.; de Benedictis-Kessner, J.; Ristea, A.; Tucker, R. Geographical Infrastructure for the City of Boston v. 2019; Harvard Dataverse: Cambridge, MA, USA, 2019. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1301.3781. [Google Scholar]
- Mnih, A.; Kavukcuoglu, K. Learning word embeddings efficiently with noise-contrastive estimation. Adv. Neural Inf. Process. Syst. 2013, 26, 2265–2273. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-sne. J. Mach. Learn. Res. 2008, 9, 11. [Google Scholar]
Top Categories | Lower-Level Types |
---|---|
Drug Violation | Drugs—sale/manufacturing Drugs—class A trafficking over 18 g Drugs—sick assist—heroin … |
Larceny | Larceny theft from building Larceny shoplifting Larceny pickpocket … |
Motor Vehicle Accident Response | M/V—leaving scene—personal injury M/V accident—police vehicle M/V—leaving scene—property damage … |
Violations | VAL—operating without license VAL—operating after revision/suspension VAL—operating unregistered/uninsured car … |
… | … |
Disturbing the Peace | Cosine Similarity |
---|---|
Liquor law violation | 0.705 |
Drugs—possession class D | 0.625 |
Disorderly conduct | 0.609 |
Other offense | 0.589 |
Liquor—drinking in public | 0.574 |
Drugs—possession class D—intent to distribute | 0.543 |
Demonstration/riot | 0.517 |
Affray | 0.516 |
Evading fare | 0.507 |
Harassment | 0.5 |
VAL—Operating Unregistered/Uninsured Car | Cosine Similarity |
VAL—violation of auto law—other | 0.745 |
M/V accident involving pedestrian—injury | 0.687 |
VAL—operating without license | 0.653 |
Operating under the influence alcohol | 0.642 |
Stolen property—buying/receiving/possessing | 0.633 |
M/V accident—involving bicycle—no injury | 0.615 |
M/V accident—property damage | 0.601 |
Drugs—possession class D—intent to distribute | 0.596 |
Fugitive from justice | 0.58 |
M/V accident—personal injury | 0.574 |
Weapon—Firearm—Carrying/possessing, etc. | Cosine Similarity |
Weapon—other—other violation | 0.645 |
Weapon—other—carrying/possessing, etc. | 0.628 |
Drugs—possession class B—intent to distribute | 0.597 |
Weapon—firearm—other violation | 0.596 |
VAL—violation of auto law—other | 0.587 |
Murder, non-negligent manslaughter | 0.573 |
VAL—operating unregistered/uninsured car | 0.564 |
Assault—aggravated—battery | 0.563 |
Ballistics evidence/found | 0.561 |
Drugs—possession class A—intent to distribute | 0.546 |
Drugs—Class B Trafficking over 18 Grams | Cosine Similarity |
Drugs—possession class A—intent to distribute | 0.657 |
Drugs—possession class B—intent to distribute | 0.629 |
Weapon—other—other violation | 0.566 |
Drugs—class A trafficking over 18 g | 0.544 |
Ballistics evidence/found | 0.524 |
Drugs—possession class B—cocaine, etc. | 0.511 |
Weapon—firearm—other violation | 0.509 |
Obscene materials—pornography | 0.502 |
Search warrant | 0.499 |
Weapon—firearm—carrying/possessing, etc. | 0.492 |
Beacon Hill | Cosine Similarity | City Point | Cosine Similarity | Jeffrey Point/Airport | Cosine Similarity |
---|---|---|---|---|---|
Morning vs. Afternoon | 0.899 | Morning vs. Afternoon | 0.94 | Morning vs. Afternoon | 0.912 |
Afternoon vs. Evening | 0.99 | Afternoon vs. Evening | 0.989 | Afternoon vs. Evening | 0.985 |
Evening vs. Night | 0.984 | Evening vs. Night | 0.968 | Evening vs. Night | 0.969 |
Night vs. Morning | 0.878 | Night vs. Morning | 0.871 | Night vs. Morning | 0.875 |
Morning vs. Evening | 0.878 | Morning vs. Evening | 0.955 | Morning vs. Evening | 0.886 |
Afternoon vs. Night | 0.976 | Afternoon vs. Night | 0.964 | Afternoon vs. Night | 0.974 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crivellari, A.; Ristea, A. CrimeVec—Exploring Spatial-Temporal Based Vector Representations of Urban Crime Types and Crime-Related Urban Regions. ISPRS Int. J. Geo-Inf. 2021, 10, 210. https://doi.org/10.3390/ijgi10040210
Crivellari A, Ristea A. CrimeVec—Exploring Spatial-Temporal Based Vector Representations of Urban Crime Types and Crime-Related Urban Regions. ISPRS International Journal of Geo-Information. 2021; 10(4):210. https://doi.org/10.3390/ijgi10040210
Chicago/Turabian StyleCrivellari, Alessandro, and Alina Ristea. 2021. "CrimeVec—Exploring Spatial-Temporal Based Vector Representations of Urban Crime Types and Crime-Related Urban Regions" ISPRS International Journal of Geo-Information 10, no. 4: 210. https://doi.org/10.3390/ijgi10040210
APA StyleCrivellari, A., & Ristea, A. (2021). CrimeVec—Exploring Spatial-Temporal Based Vector Representations of Urban Crime Types and Crime-Related Urban Regions. ISPRS International Journal of Geo-Information, 10(4), 210. https://doi.org/10.3390/ijgi10040210