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Abstract: This paper proposes a novel method to incorporate unfavorable orientations of discon-
tinuities into machine learning (ML) landslide prediction by using GIS-based kinematic analysis.
Discontinuities, detected from photogrammetric and aerial LiDAR surveys, were included in the
assessment of potential rock slope instability through GIS-based kinematic analysis. Results from the
kinematic analysis, coupled with several commonly used landslide influencing factors, were adopted
as input variables in ML models to predict landslides. In this paper, various ML models, such as
random forest (RF), support vector machine (SVM), multilayer perceptron (MLP) and deep learning
neural network (DLNN) models were evaluated. Results of two validation methods (confusion matrix
and ROC curve) show that the involvement of discontinuity-related variables significantly improved
the landslide predictive capability of these four models. Their addition demonstrated a minimum of
6% and 4% increase in the overall prediction accuracy and the area under curve (AUC), respectively.
In addition, frequency ratio (FR) analysis showed good consistency between landslide probability
that was characterized by FR values and discontinuity-related variables, indicating a high correlation.
Both results of model validation and FR analysis highlight that inclusion of discontinuities into ML
models can improve landslide prediction accuracy.

Keywords: discontinuity; kinematic analysis; machine learning; deep learning; landslide prediction;
remote sensing

1. Introduction

Landslides have drawn world-wide attention due to their potentially devastating
impact on human safety and infrastructure. It has been reported that the total land area
over the world subjected to landslides is about 3.7 million square kilometers, affecting a
population of nearly 300 million [1]. In addition, the relatively high-risk areas (top three
deciles) cover about 820,000 square kilometers with an estimated population of 66 million.
In recent decades, examples of catastrophic landslide events have been recorded in different
regions globally. In 2011, multiple rapid deep-seated landslides resulted in the obstruction
of river valleys by landslide-formed dams, being in danger of dam breach, upstream
inundation, and downstream flooding [2]. In 2014, the Gold Basin landslide occurred in
the USA, damaging 49 houses down the slope and causing 43 fatalities [3]. A catastrophic
high-elevation and long-runout landslide occurred in China, causing the death of 51 people
and the destruction and burial of 21 houses in 2019 [4].

Commonly, landslide analysis is carried out to evaluate the stability of a specific slope
by exploring the potential failure mechanism and risk associated with a collapse. Following
this, remedial measures can be employed to strengthen or provide reinforcement to the
unstable slope [5]. With the development of computer science, state-of-the-art machine
learning methods have been established that mathematically simulate the relationships
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between landslides and their influencing factors. Among these statistical methods, con-
ventional machine learning (ML) algorithms have been intensively used during recent
years. For example, support vector machine (SVM) [6–8], decision tree analysis [9], ran-
dom forest [9,10], and logistic regression [11,12] have been adopted to produce landslide
susceptibility maps with high prediction accuracies. Recent developments in deep learn-
ing algorithms have also provided a basis for landslide analysis [13–15] that offer better
performance and higher accuracy on landslide prediction to conventional ML algorithms.

Encouraging results from these papers indicate that ML methods can provide accurate
landslide predictions, and have highlighted specific influencing factors of landslides devel-
oped in natural slopes (soil and rock). These factors are normally associated with geometric
conditions (e.g., aspect, curvature, slope, cliff height) [8,16], geological conditions (e.g.,
lithology, faults) [11,17], hydrogeological conditions (e.g., rainfall, drainage) [9,16], topo-
graphic conditions (e.g., land cover/land use, vegetation) [13,18,19], etc. However, local
discontinuities (such as joints, fractures and bedding planes), especially their orientations,
have rarely been considered in ML landslide analyses even though many publications
have highlighted that unfavorable orientations of discontinuities may cause rock slope
failures [20–24]. Other studies have also emphasized that rock landslides are sensitive to
changes in discontinuity properties. For example, Vatanpour et al. [25] used limit equi-
librium analysis to demonstrate the importance of dip angle of discontinuity planes on
slope stability. Havaej et al. [26] adopted a 3D brittle fracture approach emphasized the
role of brittle fracture in the failure of the Vajont Slide. Vanneshi et al. [27], using a distinct
element method, highlighted the importance of discontinuity orientations on potential
toppling failure. In addition, conventional slope stability analysis methods, such as kine-
matic analysis and limit equilibrium, are based on inclusion of properties of discontinuities
(orientation, strength, and roughness, etc.), highlighting their importance.

In this context, a novel application of unfavorably orientated discontinuities into ML
landslide prediction is proposed by using GIS-derived kinematic analysis. Discontinuities,
detected from remote sensing surveys obtained in areas prone to rock slope instability, were
incorporated into GIS-based kinematic analysis. Results from the kinematic analysis were
taken as additional input variables to improve the accuracy of ML landslide prediction
algorithms. In addition, FR analysis was implemented to quantitatively investigate the
potential relationship between the discontinuity-related variables and landslide occurrence.

The following paper highlights the benefit of point clouds in the extraction of ge-
ological discontinuities, through which GIS-based kinematic analysis is performed to
assess the potential of rock slope failures, while also providing a novel application of the
discontinuities to improve the accuracy of ML-based landslide prediction.

2. Study Area Description

This research study is focused on the North Coast of Cornwall, UK. The study area is
a section of coastal rock cliff with a minimum height of 40 m between the Godrevy Point
and Portreath (Figure 1), experiencing a warm temperate climate with an average yearly
temperature of 10 ◦C and an average annual rainfall of 1062 mm. Almost half the annual
rainfall occurs between October and January (approximately 500 mm), with a marked
minimum from April to July. This section of steep coast is known to be prone to landslides
of various sizes [28], with geological structures (such as faults and joints) playing a vital
role in their occurrence [22].
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Figure 1. The study area, which is a section of costal rock cliff located on the north coast of Cornwall, UK.

The geology of the study area is dominated by the Porthtowan Formation (Gramscatho
Group) [29], which comprises alternating beds of strong to moderately strong, medium
to thinly bedded dark grey mudstone, interbedded with strong to moderately strong,
thick to thinly bedded pale grey fine sandstone, which may locally have a silt and mud
component [22,30].

3. Data and Methods
3.1. Landslide Detection and Sampling Strategy

Landslides were detected through a widely used method based on elevation change
during a given time period [31–33]. It was implemented through a comparison of mul-
titemporal LiDAR DEM data with 1 mpixel resolution and ±40 cm positional accuracy
(years 2008 and 2014) collected from an open-source database (Digimap) [34]. Pixels with
more than 5 m decreases in elevation from years 2008 to 2014 were recognized as potential
landslides, with which the detection accuracy of landslides developed in the coastal cliff
and the disturbance of noise points from LiDAR data, to some extent, could be balanced.
Since ground truthing of the detected landslides is difficult to conduct in coastal environ-
ments, an alternative method using visual interpretation of landslide scarps and fresh
exposures in Google Earth was adopted to verify the detections. In total, 17 landslide sites
comprising approximately 10,000 pixels with 1 m resolution were detected as landslides in
the study area (Figure 2). As landslide pixels at the same site possessed properties, such as
bedrock conditions and geometric conditions, in order to reduce sampling bias, 30 pixels
were selected from each landslide site for further analysis.

The same amount of landslide absence data (510 pixels) was collected through random
sampling from stable (non-landslide) ground in the study area (the yellow zone in Figure 2)
to build robust ML models. From the landslide presence and landslide absence data
collected, a 70%:30% training and validation split was applied to the datasets for training
and validation of the ML models.
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Figure 2. The boundary of the study area in which landslides occurred in 2008–2014 is identified.

3.2. Geological Structure Extraction from Remote Sensing Surveys

The high risk involved in accessing steep coastal slopes dramatically increases the
difficulty of undertaking field surveys by means of conventional methods. Therefore, it
was determined that remote sensing techniques were a more appropriate solution to detect
geological structures of a representative slope within the study area (at Hell’s Mouth). In
this study, UAV photogrammetric and aerial LiDAR surveys were combined to provide a
basis for geological structure extraction. The photogrammetric survey was implemented
in an oblique manner to obtain images of the steep and high coastal cliff. Due to its
high performance in terms of accuracy, vegetation penetration and robustness against
geometric distortions, aerial LiDAR provides appropriate detection of geological structures
daylighted on the slope surface.

A Panasonic DMC-GH4 camera on a UAV was used to capture overlapped stereo im-
ages (resolution: 4608 × 3456). From the UAV photogrammetric survey, a point cloud was
constructed using the structure from motion algorithm by using Metashape software [35],
and georeferenced by eight GCPs that were derived from 180 corrected observations using
Trimble R10 RTK GNSS. In addition, another LiDAR point cloud with a 1 m grid resolution
was collected from the Channel Coastal Observatory [36] for complementary use. The
software Split FX was adopted to load the point cloud, through which fracture ‘patches’
were manually identified by fitting collections of triangles that conform to a flatness cri-
terion. Orientations of the fracture traces derived from patches were then extracted [37].
The method used has been explained in many case studies [38,39]. A greater number of
discontinuities could be obtained by defining the discontinuity sets with the combination
of features identified from the two point clouds (Figure 3).

Six discontinuity sets were recognized over the study, as presented in Figure 4 and
Table 1. They mainly followed two trends (NW–SE and NE–SW) and have a potential
contribution to the geological evolution of the area, as the trends of the discontinuity sets
coincide with the predominant trends of the evolution. Bedding (S0) was slightly tilted,
with the highest persistence among the identified discontinuity sets. The joints in S3 have
a dip direction parallel to the bedding, but were highly tilted. Joint sets J2 and J5 were
sub-vertical and have a dip direction sub-orthogonal to each other. Joint set S1, with the
lowest persistence, was sub-parallel to J2. It is likely that J4 and J5 are subsets of the same
features, but were included separately for analysis purposes.
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Figure 3. An example of structure extraction using Split FX based on an UAV photogrammetry-derived point cloud. (A) the
point cloud collected from UAV photogrammetry, (B) Structures extracted from the point cloud.

Figure 4. Stereonet representing 589 discontinuities collected during remote sensing surveys of a
representative section of coast within the study area (Table 1).

Table 1. Properties of six discontinuity sets identified through remote sensing surveys, including dip
angle, dip direction, and some descriptions associated with the surface conditions obtained from [22].

Joint Set Dip (◦) / Dip Direction (◦) Description

S0 26/114 Bedding. Smooth, undulating, planar.

J1 51/309 Rough, undulating, stepped.

J2 90/322 Smooth, undulating, planar.

J3 74/141 Rough, undulating, planar.

J4 70/264 Smooth, undulating, planar.

J5 84/242 Smooth, undulating, planar.

3.3. Variables Associated with Geometric Conditions, Sea Erosion and Geological Conditions

Given that the case study area was a section of coast, the major influencing factors
leading to spatial variation of the landslides shown in Figure 2 were mainly concerned
with geological conditions, geometric conditions of slopes, and sea erosion conditions.

Aspect, profile and plan curvature, slope, and cliff height, as prominent factors,
have frequently been adopted to assess geometric conditions of slopes [8,9,19,40,41]; in
the context of coastal landslides, distance from sea was adopted to assess sea erosion
conditions [42,43]; the material of the bedrocks has been applied as a representative feature
of geological conditions [13,18,44], since it influences rock mass strength with different
compressive strength and material constant according to the Hoek-Brown criterion [45].
Their relationship with landslides is illustrated in Table 2. These commonly used factors
were brought into ML models as input variables for landslide prediction.
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Table 2. Selected input variables associated with geometric conditions, sea erosion conditions and
geological conditions, and the description of their relationship with landslides.

Category Variable Description

Geometric
conditions

Aspect
Aspect is the dip direction of slopes, and used to analyze effects of
weather/sea conditions (such as wind directions) or unfavorable

orientations of discontinuities

Profile
curvature Two types of curvatures indicate the amount of overburden on a

failure plane (convex terrain of slope surface could result in more
overburden than concave terrainPlan curvature

Slope angle Slope angle indicates the potential for kinematic failures of slopes
together with unfavorable orientated discontinuities

Cliff height As the slope height increases, the shear stress within the toe of the
slope increases due to added weight

Sea erosion
conditions

Distance from
sea

Distance from sea partially characterizes the conditions of sea erosion,
which may cause physical and chemical change of coastal slopes,

such as the removal of mass on the lower part, providing increases in
the shear stress of the slopes and thus decreases in the factor of safety

Geological
condition

Material of
bedrock This component influences the shear strength of a rock mass

The input variables associated with geometric conditions were derived from the
1 m LiDAR DEM data; distance from sea was measured through the distance between a
coastline and slope in a satellite image, which can characterize the sizes of the beaches
between the sea and the slope. The material of the bedrock was obtained from a 1:50,000
scale geological map from the open-source Digimap database [34].

3.4. Variables Associated with Discontinuities

To incorporate discontinuities into ML landslide analysis, kinematic analysis was
applied to estimate places prone to rock slope failures caused by unfavorably orientated
discontinuities. In conventional kinematic analysis, a specific slope with a uniform direction
is considered. However, this causes it to be inapplicable for characterizing large areas in
which the orientations of the slope faces vary considerably [22].

To solve this limitation, GIS-based kinematic analysis similar to that used by Yilmaz
et al. [46] and Francioni et al. [22] was adopted within a GIS framework. In the context
of GIS-based kinematic analysis, structures were determined to assess the potential of
slopes with variable orientations to landslides. Therefore, mathematical representations
of the criteria of kinematic failures are required to substitute the conventional stereonet
analysis. The GIS-based kinematic analysis was executed within ESRI’s ArcGIS platform
and followed rock failure conditions proposed by Hoek and Bray [47].

3.4.1. Planar Sliding Kinematic Analysis

Planar rock slope failure occurs when a mass of rock in a slope slides down and along
a relatively planar failure surface. In conventional kinematic analysis, the criteria for planar
instability are: (1) Dip of failure plane must be greater than angle of friction, so as to exceed
the shear strength of the discontinuity; (2) Dip of failure plane must be less than dip of
slope face, so as to ‘daylight’ in the slope face; (3) Strike of failure plane must strike parallel
to slope crest.

In GIS-based kinematic analysis, a slope prone to planar failure has to meet the re-
quirements associated with the strength, daylighting and orientation conditions as follows
(presented in Figure 5A):

1. The dip of the major discontinuity is greater than the friction angle (30◦ was assumed
for the mixture of sandstone and mudstone [48]).

2. The apparent dip of a slope as seen from the dip direction of the critical discontinuity
plane is greater than the dip of the discontinuity plane to allow the discontinuity to
daylight on the slope face.
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3. The slope must be dipped in the same direction as the critical discontinuity plane (a
lateral limit of 20◦ was assumed).

Figure 5. Graphic representation of GIS-based kinematic stereonet analysis to evaluate the potential of a slope for different
modes of instability, including (A) planar, (B) wedge, (C) direct toppling, and (D) flexural toppling failures.

3.4.2. Wedge Sliding Kinematic Analysis

Wedge sliding kinematic analysis is a test for the sliding of the wedge formed by the
intersection of two planes. The wedge block can either slide along the line of intersection
(LOI) or a single plane, depending on their orientations. This can be established by
stereonet analysis in which the primary and secondary critical zones represent different
sliding modes (Figure 5B). The primary critical zone for wedge sliding is the crescent-
shaped area (red zone), in which a wedge slides along the LOI or a single plane. The
secondary critical zone for wedge sliding is the area between the slope plane and a plane
(great circle) inclined at the friction angle (yellow zone), in which LOIs are inclined less
than the friction angle, but sliding takes place on a single joint plane that has a dip vector
greater than the friction angle.

In GIS-based kinematic analysis, a slope prone to wedge instability in the primary
critical zone is required to meet the condition that the apparent dip of a slope as seen
from the dip direction of the critical discontinuity is greater than the LOI plunge, which is
higher than the friction angle (apparent dip > LOI plunge > friction angle). A slope prone
to wedge instability in the secondary critical zone should meet the requirement that the
LOI plunge is located between the apparent dip of a slope plane and the apparent dip of
the friction angle plane (apparent dip of a slope > LOI plunge > apparent dip of friction
angle plane).
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3.4.3. Direct Toppling Kinematic Analysis

Direct toppling is a normal rock instability mechanism in which near vertical inter-
sections dip into the slope and near horizontal base planes undercut the blocks and form
release planes. The key elements of direct toppling analysis are:

1. Two joint sets intersect such that the intersection lines dip into the slope and can form
discrete toppling blocks.

2. A third joint set exists that acts as a release plane or a sliding plane, allowing the
blocks to topple.

As graphically illustrated in the stereonet direct toppling analysis presented in Figure 5C,
the pole of the third joint set falls in the red cone whose angle is equal to the slope angle,
but also the LOI of two joints falls in the red (direct toppling) or yellow zone (oblique
direct toppling).

In GIS-based kinematic analysis, a slope prone to direct toppling instability must
meet the requirements associated with the LOI of two intersecting sets as well as the
sliding joint set. With respect to the joint set as a sliding plane, the slope should satisfy the
following conditions:

1. The dip of the slope is greater than the dip of the discontinuity plane.
2. The slope dips in the same direction as the discontinuity plane (a lateral limit of 20◦

was assumed).

As to the LOI, the conditions for the slope are: The slope dips in the same direction
as the LOI trend (a lateral limit of 20◦ was assumed) (primary critical zone for direct
toppling), or the slope fails to dip in the same direction as the LOI trend, but falls within a
90◦ deviation (secondary critical zone for oblique direct toppling).

For oblique direct toppling, the LOI must fall within the friction cone, which requires
that the LOI plunge needs to be greater than the ‘90◦ — friction angle’.

3.4.4. Flexural Toppling Kinematic Analysis

Flexural toppling failure is one of the specific modes of toppling failure that occurs
due to bending stresses. For flexural toppling, the critical zone for toppling is defined by
the region (see Figure 5D) that falls outside the slip limit plane and inside the lateral limits.
The slip limit plane is not an actual physical plane, although it is derived from the slope
angle and friction angle. The dip angle of the slip limit plane is derived from the ‘slope dip
− friction angle’. The dip direction of the slip limit plane is equal to that of the slope face.

In the context of GIS-based kinematic analysis, a slope prone to flexural toppling
instability must meet the following requirements:

1. The dip of the slope is greater than the friction angle (30◦ was assumed).
2. The apparent dip of the slip limit plane as seen from the dip direction of a critical

discontinuity plane is greater than ‘90◦− dip of the critical discontinuity plane’.
3. The slope dips in the opposite direction to the critical discontinuity plane (a 20◦ lateral

limit was assumed).

In GIS-based kinematic analysis, the apparent dip is used to calculate the distance of
the great circle of the slope plane from the stereonet perimeter in the apparent dip direction
in the stereonet analysis (see Figure 5). Apparent dip is calculated as follows:

α = arctan(sin β× tan δ) (1)

where α is apparent dip; δ is the real dip of the slope plane; β is the angle between the strike
direction of the slope plane and the apparent dip direction.

Mechanisms potentially involved in previous landslides within the study area are
listed in Table 3. It is suggested that failure mechanisms W1/W2/W5, P1/DT1, and
P2/DT2, respectively, were similar failure criteria, causing close results in the kinematic
analysis for each group. To reduce complexity, representative mechanisms (W1, P1 and P2)
were selected from each group, meaning that W2, W5, DT1 and DT2 were not included
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in the kinematic analysis. This means that mechanisms P1 (planar failure associated with
J1), P2 (planar failure associated with J4), W1 (wedge failure associated with J1/J4), W3
(wedge failure associated with J2/J4), W4 (wedge failure associated with J3/J4), and F1
(flexural toppling failure associated with J3) were considered in the GIS-based kinematic
analysis for further landslide prediction.

Table 3. Slope failure criteria associated with different rock instability mechanisms, in which a is
slope apparent dip, d is slope dip direction, δ is slope real dip, and as is the apparent dip of the slip
limit plane for flexural toppling analysis.

Mechanism Joint Set Dip/DD
(Plunge/Trend) Failure Criteria

Planar
P1 J1 51◦/309◦ a ≥ 51◦, d ∈ (309◦ ± 20◦)

P2 J4 70◦/264◦ a ≥ 70◦, d ∈ (264◦ ± 20◦)

Wedge

W1 J1/J4 49◦/329◦ a ≥ 49◦, d ∈ (329◦ ± 90◦)

W2 J1/J5 50◦/325◦ a ≥ 50◦, d ∈ (325◦ ± 90◦)

W3 J2/J4 67◦/232◦ a ≥ 67◦, d ∈ (232◦ ± 90◦)

W4 J3/J4 56◦/206◦ a ≥ 56◦, d ∈ (206◦ ± 90◦)

W5 J4/J5 54◦/324◦ a ≥ 54◦, d ∈ (324◦ ± 90◦)

Direct
toppling

DT1
(oblique)

Sliding: J1 51◦/309◦ δ ≥ 51◦, d ∈ (309◦ ± 20◦),
d ∈ (351◦ ± 90◦)LOI: J3/J5 72◦/171◦

DT2
(oblique)

Sliding: J4 70◦/264◦ δ ≥ 70◦, d ∈ (264◦ ± 20◦),
d ∈ (351◦ ± 90◦)LOI: J3/J5 72◦/171◦

Flexural
toppling F1 J3 74◦/141◦ a ≥ 16◦, d ∈ (321◦ ± 20◦),

δ ≥ 50◦

Kinematic analysis estimated the possibility of each pixel being prone to landslides
through a binary classification (yes/no), without consideration of their subsequent effects
on local slope stability. To consider local effects, the binary results of the kinematic analy-
sis were converted into density maps (Figure 6). The density was calculated in ArcMap
software by counting the number of points (pixels) that were prone to instability in a
circle with a 50 m radius. The unit was the number of points/square meter. The input
variables provided by GIS-based kinematic analysis were labeled with Planar_J1, Pla-
nar_J4, Wedge_J1/J4, Wedge_J2/J4, Wedge_J3/J4, and Flexural_J3 to represent associated
failure modes.
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Figure 6. Discontinuity-related factors obtained from GIS-based kinematic analysis, showing the density of pixels prone
to kinematic failures, including possible (A) planar failures caused by J1, (B) planar failures caused J4, (C) wedge failures
caused by J1/J4, (D) wedge failures caused J2/J4, (E) wedge failures caused J3/J4, and (F) flexural toppling failures caused
by J3.

3.5. ML Analysis

ML models were used to statistically simulate the relationship of landslides and the
input variables. Models were constructed and trained using the training set. Modeling of
each ML algorithm returned results of variable importance. Variable importance revealed
the significance of each input variable with respect to the dependent variables (0/1 for land-
slide presence/absence). After the models were constructed, their learning and predictive
ability was assessed through the Confusion Matrix and Receiver Operating Characteristic
(ROC) curves. These assessments were implemented using the validation set. Two series
of ML modeling were carried out. The initial series of modeling was based on the seven
commonly used input variables. In addition, a second series of modeling with the inclusion
of the discontinuity-related variables was undertaken to make a comparative study.

The predictive capabilities of the two models were assessed on the basis of the con-
fusion matrix and the ROC curve. The confusion matrix was used to assess model per-
formance with respect to their binary classification capability (prediction of landslide
absence/presence, 0/1), and the ROC curve was used to evaluate their capability with
respect to landslide susceptibility mapping (probability of landslide occurrence).

In this paper, two conventional ML algorithms (RF and SVM) and two neural network
algorithms (MLP and DLNN) were adopted, and modeling was performed in a Python
environment.
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3.5.1. Random Forest

RF, an ensemble algorithm, is comprised of decision trees using bootstrap aggregat-
ing methods [1]. The results from the constitutive decision trees in a random forest are
aggregated to produce a prediction. The predictive ability of an RF model is sensitive to
two parameters: the number of tress (ntree) in the RF and the number of variables for the
selection in each node (mtry) of a decision tree [49]. Thus, in this research RF modeling
was carried out after tuning these two parameters.

3.5.2. Support Vector Machine

SVM has been widely used for classification objectives. The algorithm attempts to
fit a hyperplane in an N-dimensional space (N—the number of variables) that distinctly
classifies the data points. In this case study, landslide prediction parameter tuning was
conducted on the regularization parameter (C) and kernel type used in the algorithm.

3.5.3. Multilayer Perceptron

A multilayer perceptron (MLP) is a class of feedforward artificial neural network
(ANN). Its architecture consists of at least three layers: an input layer, a hidden layer, and
an output layer. Each node in the hidden and output layer produces an output through
a nonlinear activation function with updated weights. The update of weight is adjusted
through a learning algorithm.

The performance of the MLP model is sensitive to the activation function applied to the
nodes that defines their outputs, the number of nodes in the hidden layer, and the selection
of learning patterns for weight optimization [13]. Therefore, these hyperparameters were
tuned to obtain an optimal MLP model.

3.5.4. Deep Learning Neural Network

A deep learning neural network is a class of neural network with considerable depth.
It normally consists of an input layer, several hidden layers, and an output layer. The
configuration rules of DLNN architectures will not be explained here, as these have been
repeatedly presented in many papers [13,17]. In this paper, a DLNN model was used to
implement landslide analysis. In the model, the Rectified Linear Unit (ReLU) activation
function was applied for nodes in hidden layers to produce outputs. As landslide prediction
can be a binary classification, the sigmoid transfer function was used in the output layer to
produce a prediction. The Binary Cross-Entropy loss function was used to estimate the loss
of the model so that the weights of nodes could be updated and optimized to obtain an
optimal model.

During the configuration of a DLNN model, some hyperparameters have a significant
influence on its performance, including (1) the number of hidden layers; (2) the number
of nodes in each layer; (3) the selection of an optimization algorithm; and (4) learning
rate. Thus, these hyperparameters were tuned to obtain an optimal DLNN model for
landslide analysis.

3.6. Frequency Ratio Analysis

FR analysis was carried out to quantitively explore the relationship between landslides
and the input variables associated with kinematic analysis by using the data acquired from
training and validation sets. The analysis assigned a weight coefficient to each class of
analyzed input variables. The weight coefficient expresses the probabilistic relationship of
the class and landslides.

To obtain the RF values (weight coefficient) the following equations were used:

FRi(j) =
ai(j)
bi(j)

(2)

ai(j) =
LSi(j)

LS
(3)
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bi(j) =
Pi(j)

P
(4)

where LSi(j) is the number of pixels containing landslides in a class j of variable i; LS is
the total number of pixels containing landslides; Pi(j) is the total number of pixels of class
i of variable j in the whole area; P is the total number of pixels in the whole area. In this
research, P is 1020 and LS is 510.

4. Results
4.1. Frequency Ratio Analysis

In FR analysis, the analyzed variables related to kinematic analysis were categorized
into three different classes in accordance with their density values. On the basis of the
results of FR analysis (Table 4), a common distribution characteristic for all analyzed
variables was revealed. Good consistency was observed between FR values and class values,
whereby classes with high values possessed high FR values. In addition, quantitatively,
most pixels in class 2 and class 3 are landslides points, but pixels in class 1 are mostly
non-landslides points. Taking Planar_J4 as an example, 479 in 721 pixels in class 1 are
non-landslide points, while 109 in 123 pixels and 159 in 176 pixels in class 2 and class 3,
respectively, are landslide points.

Table 4. The results of FR analysis of the discontinuity-related factors, including Planar_J1, Planar_J4,
Wedge_J1/J4, Wedge_J2/J4, Wedge_J3/J4, and Flexural_J3.

Mechanism Class LSi ai Pi bi FR

Planar_J1
Class 1: [0, 0.05] 156 0.31 573 0.56 0.54

Class 2: (0.05, 0.1] 213 0.42 283 0.28 1.51

Class 3: (0.1, max] 141 0.28 164 0.16 1.72

Planar_J4
Class 1: [0, 0.02] 242 0.47 721 0.71 0.67

Class 2: (0.02, 0.04] 109 0.21 123 0.12 1.77

Class 3: (0.04, max] 159 0.31 176 0.17 1.81

Wedge_J1/J4
Class 1: [0, 0.1] 69 0.14 359 0.35 0.38

Class 2: (0.1, 0.2] 208 0.41 364 0.36 1.14

Class 3: (0.2, max] 233 0.46 297 0.29 1.57

Wedge_J2/J4
Class 1: [0, 0.03] 261 0.51 742 0.73 0.70

Class 2: (0.03, 0.06] 119 0.23 132 0.13 1.80

Class 3: (0.06, max] 130 0.25 146 0.14 1.78

Wedge_J3/J4
Class 1: [0,0.03] 307 0.60 794 0.78 0.77

Class 2: (0.03, 0.06] 93 0.18 101 0.10 1.84

Class 3: (0.06, max] 110 0.22 125 0.12 1.76

Flexural_J3
Class 1: [0, 0.03] 271 0.53 726 0.71 0.75

Class 2: (0.03, 0.06] 188 0.37 233 0.23 1.61

Class 3: (0.06, max] 51 0.10 61 0.06 1.67

4.2. Machine Learning Analysis

Parameter tuning was carried out using several trial and error runs to obtain the most
accurate prediction and to optimize the hyperparameters of the ML models involved in
the initial (without discontinuity-related variables) and second series (with discontinuity-
related variables) of modeling. The parameters in the initial (second) modeling were tuned
as below:

1. For the RF model, ntree was assigned as 500 (500), and mtry was 3 (4).
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2. For the SVM model, the kernel was specified as the radial basis function (‘rbf’), and
the regularization parameter C was assigned as 100 (100).

3. For the MLP model, the activation function was specified as being ‘logistic’ (‘logistic’);
the weight optimization algorithm was specified as ‘lbfgs’ (‘lbfgs’); the regulariza-
tion parameter alpha was assigned as 0.1 (0.1); 10 (9) nodes were contained in the
hidden layer.

4. For the DLNN model, a Keras sequential model with 3 (3) hidden layers was con-
figured. Each layer contained 64 (128) neurons. The optimizer used in this model
was ‘Adadelta’ for the adaptive learning rate. An EarlyStopping callback was used in
conjunction with model training to save optimal epoch the batch size of 1 to prevent
overfitting.

The assessment results of classification capability using the confusion matrix are
presented in Figure 7. From the perspective of ‘vertical comparison’, the integration of
discontinuity-related input variables significantly reduces cases of the misclassification
of landslide absence (0) as well as landslide presence (1). This is also reflected by the
increase in overall classification accuracy, from 85% to 93% for DLNN modeling, from 87%
to 96% for MLP modeling, from 87% to 94% for RF modeling, and from 88% to 94% for
SVM modeling.

Figure 7. Confusion matrices showing the assessment results of binary classification capability of the four models involved
in the initial (without considering discontinuities) and second (including discontinuities) series of ML modeling.

The assessment results of LSM capability by ROC curves are presented in Figure 8.
Comparative analysis of the curves from the two modeling series shows that with respect
to each model, the curve obtained from the initial modeling overrides that from the second
modeling. This distribution characteristic is confirmed by the higher AUC values obtained
for the initial modeling.
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Figure 8. The assessment of the ML model performance by ROC curves with and without the involvement of discontinuity-
related factors: (A) DLNN models, (B) MLP models, (C) RF models, and (D) SVM models.

The ML analysis provides a variable importance analysis, as shown in Figure 9. The
importance indicates the importance of each variable to landslide prediction in the initial
modeling. For all four of the models selected, the discontinuity-related input variable
Wedge_J2/J4, obtained from GIS-based kinematic analysis, exclusively takes the highest
importance among the 13 variables.

Figure 9. The results of variable importance, showing the importance of each of the influencing factors in landslide prediction.
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5. Validation and Discussion

In this research, discontinuities were introduced into ML-based landslide prediction
as a controlling factor of rock mass instability by using the method of GIS-based kinematic
analysis. The analysis assessed the potential of slopes to be prone to kinematic instabilities,
including planar, wedge, direct toppling, and flexural toppling instability modes. GIS-
based kinematic analysis is likely to provide effective clues to future landslide occurrence.
Figure 10 highlights six regions prone to wedge failures caused by J2/J4, which coincide
with locations of previous landslides occurring in the study area. The highlighted landslides
have a similar direction, dipping toward W or WNW. Some other landslides in slopes
dipping towards N or NNW in the middle of the study area are proposed to be influenced
by planar sliding kinematic analysis associated with J1 and wedge sliding kinematic
analysis associated with J1/J4 (see Figure 6).

Figure 10. The comparison of locations of landslide sites of slope prone to wedge failures caused by J2/J4, highlighting the
coincidence of the results of the kinematic analysis with real landslide sites.

In addition, there was a catastrophic landslide in 2011 in the study area with an
estimated volume of 100,000 m3 (Hell’s Mouth landslide) [22]. By using the data in 2008,
the GIS-based kinematic analysis effectively indicates the risk of possible kinematic failures
at this location (Figure 11). The analysis is a result of binary classification that indicates
the unstable condition of the slope toe and the stable condition of the slope crown. If the
binary results (0/1) were to be applied as input variables in machine learning models,
they would provide misleading information at the slope crown, where instability occurred.
However, density mapping, transformed from binary classification, solved this problem by
accounting for the unstable points in a 50 m circle range, considering that toe removal may
trigger the development of instability at the slope crown (namely local effects).

The result of FR analysis provided evidence to support the effects of the GIS-based
kinematic analysis. The results showed that high FR values only appear in the classes with
high density (class 2 and 3), with respect to variables obtained from kinematic analysis.
In addition, quantitively, most pixels in class 2 and 3 are landslides points, and most
pixels in class 1 are non-landslide points. These distribution characteristics indicate that
discontinuity-related factors with high density are likely to be an indicator of landslide
occurrence.

With the inclusion of discontinuity-related variables, the landslide prediction accuracy
of the four ML models improved dramatically, which is supported by the results of the two
validation methods (Figures 7 and 8). The increase in prediction accuracy was due to the
decrease in the misclassification rate of landslide absence cases as well landslide presence
cases. The contrasting predictive capability highlights that these discontinuity-related
variables are essential for landslide prediction. The results of variable importance analysis,
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showing that the factor Wedge_J2/J4 is the most important variable in ML landslide
analysis, also supports the above conclusion.

Figure 11. Results of GIS-based kinematic analysis and their comparison with a catastrophic landslide at Hell’s Mouth, (A)
the extent of the Hell’s Mouth landslide, (B) potential planar failures caused by J1, (C) potential planar failures caused by
J4, (D) potential wedge failures caused by J1/J4, (E) potential wedge failures caused by J2/J4, (F) potential wedge failures
caused by J3/J4, (G) potential flexural toppling failures caused by J3.

However, the results of the kinematic analysis cannot be used as a standalone criterion
for landslide prediction, since it only considers the influences of unfavorable orienta-
tions of discontinuities. Without consideration of some other factors, such as rock mass
strength and sea erosion conditions, kinematic analysis is likely to overestimate the extent
of slopes prone to coastal rock landslides in this study. This overestimation is reflected in
Figure 10, where some stable slopes are misclassed as unstable ones. From this perspec-
tive, in ML modeling, variables associated with bedrock, geometric conditions and sea
erosion conditions potentially act as limiting conditions to refine landslide prediction by
kinematic analysis.

Although less important than discontinuity-related variables in ML modeling, the
variables related to bedrock, geometric conditions and sea erosion conditions may facilitate
the occurrence of landslides and contribute to the landslide prediction. For example, the
distance from the sea shows reasonable importance for landslide prediction, potentially
indicating that different distances from the sea could result in various stability conditions.
Slopes with less distance from the sea likely have more opportunity to interact with
the sea and waves; therefore, they are more likely to be prone to sea erosion. It has
been evidenced that the formation of a gully at Hell’s Mouth was pre-conditioned by
erosion-induced sea caves, on which discontinuities could be daylighted and stress from
overburden concentrated. Finally, a gully formed as a result of these conditions (Figure 12).
Another important variable is the material of the bedrock. The bedrock map shows that
the Porthtowan Formation is more prone to landslides (Figure 13), potentially due to
the conditions of the rocks (metamudstone and mudstone/mudstone and sandstone) in
the Porthtowan Formation being conducive to landslides with respect to the geometrical
arrangement of outcrops, strength, weathering, grain size, etc. However, individual
variables/factors would not solely trigger landslides, but rather would interact with each
other to reduce the strength of rock masses, consequently resulting in instability.
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Figure 12. Two images showing the development of a gully at Hell’s Mouth: (A) initial stage of
the gully pre-conditioned by sea erosion at its toe and two persistent faults constraining the lateral
surfaces of the gully, (B) final formation of the gully.

Figure 13. The component of bedrock over the study area, which is dominated by the Porthtowan Formation, with a small
portion of the Mylor Slate Formation in the east.

This paper provides guidelines for the generalization of the proposed method to other
regions in order to perform extensive rock slope stability surveys. This can be implemented
by incorporating local discontinuity information into machine learning modeling, including
the detection of local discontinuities using remote sensing techniques, the processing of the
discontinuity data through GIS-based kinematic analysis for the assessment of slopes prone
to different modes of instability, the digitalization of the results of GIS-based kinematic
analysis from binary classification to continuous values that are more applicable to ML
models, and the combined use of discontinuity-related variables and other appropriate
landslide preconditioning factors to train ML models and predict landslides.

It is noteworthy that even without the involvement of discontinuity-related factors,
the prediction accuracy of ML models based on the seven common factors was still rather
high, achieving approximately 87% of ACC and 0.94 of AUC. This is likely caused by the
high sampling density of 30 pixels being selected from each landslide site. The 30 pixels
from same site will potentially have had similar characteristics, such as similar bedrock
material. The 70%:30% strategy for splitting the acquired data for model construction
and model validation means that the validation data, to some extent, will resemble the
training data, which could cause the high prediction accuracy. However, the involvement
of discontinuity-related variables was still able to improve the prediction accuracy to a
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higher level, which demonstrates the reliable application of these variables in ML-based
landslide prediction.

6. Conclusions

Discontinuities, and especially their orientations, have rarely been considered in ML
landslide prediction. In this context, this paper proposes a novel application of unfavorably
orientated discontinuities in ML landslide analysis. Six discontinuity sets were detected
within the study area through photogrammetric and aerial LiDAR surveys. These structural
features were applied to assess the potential of slopes to be prone to different modes of rock
instability (planar, wedge, direct toppling, and flexural topping) by GIS-based kinematic
analysis. In order to consider local effects, the binary results of the kinematic analysis were
transformed into density maps for subsequent FR analysis and ML analysis. Six density
maps were obtained based on the results of GIS-based kinematic analysis associated with
different rock instability mechanisms, including planar sliding controlled by J1 and J4,
wedge sliding controlled by J1/J4, J2/J4 and J3/J4, and flexural topping controlled by J3.
These density variables, as well as some commonly used landslide influencing factors,
were then considered as input variables in ML models to predict landslides.

To validate the results of the GIS-based kinematic analysis, comparisons were made
with previous landslide sites. The comparison results indicate that the slopes prone to
kinematic failures presented in Figures 10 and 11 were identified as the sites of previous
landslides. This highlights the reliable application of GIS-based kinematic analysis in
landslide prediction.

Good consistency was observed, through FR analysis, between landslide probability,
which was characterized by FR values, and discontinuity-related variables, showing that
classes with higher values possessed higher FR values. The coincidence with respect to
their distribution characteristics indicates a close correlation between them.

The results of model assessment on the basis of confusion matrix and ROC curves
showed that the inclusion of discontinuity-related input variables significantly improved
the prediction accuracy of the four ML models. In addition, variable importance analysis
revealed that discontinuity-related variables took the highest importance in landslide
prediction in the four ML models.

The above findings highlight the reliable application of GIS-based kinematic analysis
for assessing slopes prone to landslides. In addition, the novel application of unfavorably
orientated discontinuities in ML models using GIS-based kinematic analysis improves
landslide prediction.
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