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Abstract: Semantic segmentation has been widely used in the basic task of extracting information
from images. Despite this progress, there are still two challenges: (1) it is difficult for a single-size
receptive field to acquire sufficiently strong representational features, and (2) the traditional encoder-
decoder structure directly integrates the shallow features with the deep features. However, due to
the small number of network layers that shallow features pass through, the feature representation
ability is weak, and noise information will be introduced to affect the segmentation performance.
In this paper, an Adaptive Multi-Scale Module (AMSM) and Adaptive Fuse Module (AFM) are
proposed to solve these two problems. AMSM adopts the idea of channel and spatial attention and
adaptively fuses three-channel branches by setting branching structures with different void rates,
and flexibly generates weights according to the content of the image. AFM uses deep feature maps
to filter shallow feature maps and obtains the weight of deep and shallow feature maps to filter
noise information in shallow feature maps effectively. Based on these two symmetrical modules, we
have carried out extensive experiments. On the ISPRS Vaihingen dataset, the F1-score and Overall
Accuracy (OA) reached 86.79% and 88.35%, respectively.

Keywords: multi-scale convolutional; computer vision; semantic segmentation; remote sensing;
neural network; ISPRS Vaihingen

1. Introduction

Semantic segmentation of remote sensing images assigns categories to each category in
remote sensing images, thereby completing the pixel-level classification task. Its application
is very extensive, and it is used in fields such as vegetation extraction monitoring [1], urban
planning [2,3] and building extraction [4,5], among others.

In recent years, with the development of deep learning, remote sensing image seg-
mentation algorithms based on deep learning have developed rapidly. The essence of
multi-scale information for target detection with different scales has gradually emerged.
People have also proposed many methods that can be applied to image semantic segmen-
tation. In 2015, Long et al. proposed a Fully Convolutional Network (FCN) [6], which
converts the convolutional layer of the last layer of traditional CNN into a fully connected
layer, and uses an end-to-end deep convolutional neural network to complete semantic
segmentation tasks. After that, Huang et al. proposed the U-Net [7] network, which is
a semantic segmentation model based on encoding and decoding. This model uses skip
connections to connect the features obtained by the decoder with the corresponding feature
maps of the encoder at each level. In this way, the semantic information between different
levels can be fully utilized, and the problem of loss of detailed information can be solved
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well. After this, PSPNet [8] and DeepLab [9] further explored the encoder-decoder structure.
PSPNet uses the spatial pyramid module to aggregate contextual information in different
areas to achieve the ability to obtain global information. Similar to this, DeepLabv3+ [10]
obtains multi-scale feature information through the Hollow Space Convolution Pooling
Pyramid. In the semantic segmentation of high-resolution images, Dense Pyramid Network
(DPN) [11] processes multi-sensor data to extract feature maps of each channel separately.
Recently, in an end-to-end framework, the cluster monitoring network (ClusDet) [12] re-
alized the monitoring of cluster multi-scale targets through the unification of multi-scale
normalized clustering and implicit models.

Although the semantic segmentation of remote sensing images has made considerable
progress, there are still two limitations.

On the one hand, almost all remote sensing images are high-resolution images, in
which the multi-scale phenomenon of objects is very obvious, as shown in Figure 1a.
Therefore, it is difficult for a single-sized receptive field to obtain object features with
sufficient characterization ability. The Atrous Spatial Pyramid Pooling (ASPP) [10] structure
obtains the multi-scale features of the image to a certain extent through the continuous
expansion rate of the atrous convolution [9,10,13,14]. However, this method uses a fixed
weight for each image to fuse the multi-scale features of each branch and cannot be based
on the diversity of image sizes or make adaptive weight adjustments. Therefore, using this
strategy to identify remote sensing images is not the best strategy.
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Figure 1. Some examples of multi-scale semantic segmentation and feature maps of remote sensing images. (a) The
comparison between the ground truth and the segmentation effect of multi-scale objects in Fully Convolutional Network
(FCN) is shown. (b) displays the visualization of deep feature map, in which the marked area is noise. (c) displays the
visualization of shallow images.

On the other hand, the traditional encoder-decoder [15] structure directly merges
the deep feature map and the shallow feature map through ADD or CAT. Although this
method can achieve the fusion of the shallow feature map and the deep feature map to
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a certain extent, this fusion is not selective. Although the shallow network structure has
more detailed information, the number of network layers passed is less, and the number
of convolutions is limited, so the ability to extract features is limited. There will be a lot
of noise in the feature map, which will affect the effect of segmentation. Therefore, it is
very necessary to filter noise information through information selection for shallow feature
maps before feature map fusion.

In order to overcome the above shortcomings, we propose two structures to solve
these problems. Aiming at the first shortcoming, we propose an adaptive multi-scale fusion
module (AMSM). Based on the classic multi-branch feature extraction, we adaptively gener-
ate different fusion weight ratios for each image according to the image scale. For example,
for remote sensing images with obvious large-scale features, large-scale branches use larger
fusion weights. Similarly, smaller branches are given greater weight for integration.

Through the above methods, the AMSM module uses an adaptive way to solve the
multi-scale feature problem of remote sensing images.

Aiming at the second shortcoming, it is considered that although the deep feature
map has lost some detailed information, it has better feature discrimination. Therefore, we
propose the adaptive fuse module (AFM). This module uses deep features to filter shallow
feature maps. After the noise information is filtered out, the feature maps are fused.

Through the above ideas, the AFM can solve the noise problem in the shallow features
of remote sensing images well.

In summary, the main contributions of this paper are as follows:

(1) A novel multi-scale fusion module—ASMS (Adaptive Multi-Scale Module) module
is proposed, which can adaptively fuse multi-scale features from different branches
according to the size characteristics of remote sensing images and has a better seg-
mentation effect in the data sets with complex and variable object sizes.

(2) We designed an AFM (Adaptive Fuse Module) that can filter and extract shallow
information of remote sensing images. This module can combine the shallow and
deep feature information effectively. After obtaining the weights of shallow and deep
layers, these weights are multiplied by the original weight of the feature map to
emphasize the useful information in the shallow feature map and suppress useless
noise. So that the deep feature map can obtain more accurate detailed information.

(3) A new type of network structure-Adaptive Weighted Network (AWNet) is proposed,
which is a network structure embedded with AMSM and AFM. AWNet achieved one
of the best accuracies on the ISPRS Vaigingen data set, reaching an overall accuracy
of 88.35%.

2. Related work

In this part, we introduce the development of semantic segmentation structure and
attention mechanism [16] in order to better discuss our work.

2.1. Semantic Segmentation

In recent years, with the development of deep learning and the computing power of
graphics processing units, semantic segmentation has also made considerable progress. In
2015, FCN replaced the fully connected layer of the classic classification network with a
convolutional layer and achieved the end-to-end training [6], which became the pioneering
work of semantic segmentation.

Later, on this basis, DeepLabv3+ [10], MSCI [17], SPGNet [18], RefineNet [19], and
DFN [20] all adopted encoder-decoder structure for dense prediction. Among them, both
Refinenet and Global Convolutional Networks (GCNS) [21] have successively reached
the most advanced performance. Gradually, the application of semantic segmentation in
multi-scale has also made new progress. In order to deal with various scales and defor-
mations of segmented objects, people use Deformable convolutional networks (DCN) [22]
and the scale-adaptive convolutions (SAC) [23] model to improve the standard convo-
lution operator. Soon after this, CRF-RNN [24] and DPN [25] used the graph model for
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semantic segmentation. In order to capture and match the semantic relationship between
adjacent pixels in the label space, AAF [26], using adversarial learning, achieves this goal.
BiSeNet [27] is applied with real-time semantic segmentation. DenseDecoder [28] built
a functional-level remote jump connection on the cascade architecture for the first time,
which further improved the effect of semantic segmentation. Later, CE2P [29] proposed a
network structure that can achieve both edge detection and computing context embedding,
which is also an efficient and concise framework. Obviously, semantic segmentation has
made significant progress in various fields.

2.2. Attention Module

At present, the attention mechanism has been widely used in computer vision and
natural language processing. The attention mechanism module appeared in people’s vision.
This is a landmark innovative design, which contains three parts: squeeze, stimulation and
attention. For multi-label classification tasks, Hao Guo et al. used attention consistency [30]
to make up for the defects of data augmentation in image classification tasks. This model
adopts a dual-branch structure and uses two heat maps generated by CAM [31] to achieve
the effect of still focusing on the same part after data augmentation. Subsequently, in order
to realize the positioning of the shared objects between the images, Bo Li, et al. set the
update gate and reset gate [32] so as to continuously update the hidden unit to integrate the
information of all images, and then return Parameters to guide the generation of predicted
values for each sample. For multi-task learning, Liu S et al. adapted an attention to each
task as a feature selector [33], making it possible to extract specific features of each task.
Lu, Xiankai et al. proposed a co-attention [34] module, which aligns adjacent frames and
then integrates the information between adjacent frames to achieve unsupervised video
object segmentation. For the target positioning task, although each channel can respond to
a specific object, the noise of a single object is too large. Heliang Zheng, et al. [35] use the
idea of self-attention, regard each channel as a spatial attention map, make it corresponding
to a specified part, and realize the adaptive and unsupervised positioning of the region of
each part of the object.

2.3. Spatial Pyramid Pooling and Atrous Convolution

In the previous CNN structure, the input of the convolutional neural network can
only input pictures of a fixed size, which makes it difficult to meet the needs of modern
computer vision. In order to realize the recognition of multi-scale objects, people proposed
spatial pyramid pooling (SPP) on the basis of a convolutional neural network [26]. The SPP
structure can use different sizes of the same image as input and output the same pooling
feature. Moreover, regardless of the input of any size of the image, the image after SPP can
produce a fixed size of output. Finally, all the segmentation results are merged to obtain
the semantic segmentation result of the original input image.

Later, the concept of parallel sampling was proposed, and an upgraded version of SPP,
ASPP, appeared. In this module, the input image can be sampled in parallel with irregular
convolution. After each channel is sampled and pixels are added, the results obtained
by irregular convolution of each branch are fused to obtain the final prediction result.
ASPP also makes full use of the atrous convolution, effectively expanding the receptive
field without increasing the amount of parameters and merging more context information.
Hollow convolution is a convolution method born in the field of image segmentation. It
proposes the characteristics of the input image through a convolutional neural network,
and expands the receptive field, while merging to reduce the image size. Then, it restores
the image size by upsampling to generate an output image. However, due to the limitations
of the upsampling algorithm, many details will be lost with the merge. This problem is
solved by expanding the receptive field. There is an important parameter (r) in the atrous
convolution. When r = 1, it is a standard convolution process. When r > 1, every (r − 1)
pixels will be sampled once. This idea is similar to that of dilated convolution [13].
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3. Materials and Methods

Inspired by the attention mechanism [30], we proposed the AMSM module and the
AFM module. In this part, we mainly describe the realization of this specific model. First,
we introduced the overall architecture used to test both modules, namely the AWNet
workflow. After that, the network architecture of the AMSM module is introduced. Finally,
the construction principle of the AFM module is explained.

3.1. Overview

As shown in Figure 2, this network is mainly composed of three parts: ResNet
preprocessing encoder based on residual block; AMSM; and AFM of attention module and
upsampling block. The encoder-decoder structure is one of the most common structures
in segmented networks. It is possible to extract effective global and local information
by extracting high-resolution remote sensing images. In the encoder part, the network
ensures the effective use of semantic and spatial information. First, we output different
levels of semantic information through the Resnet101 [36] network. Then, we used AMSM
stacked in the encoder part as a feature extractor. Each level performs multi-scale feature
extraction on the semantic information of the fixed-dimensional image to ensure that it
can be adaptively fused with the change of the image scale. Then, we used AFM to fully
integrate deep and shallow semantic information. This module is a better feature extractor,
designed to ensure consistent resolution. After the processing was over, the number of
channels of the feature map was reduced to the same number of categories. The decoder
part uses upsampling to restore the feature map to the original image size and output the
final result. Facts have proven that our proposed AWNet, a new network deconstruction
that combines AMSM and AFM, is very effective and practical in processing the spatial
and semantic information of remote sensing images.
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Figure 2. The overall structure of the network. The encoder/decoder framework used in this network is mainly used to test
the segmentation effect of the adaptive multi-scale module and the adaptive fuse module.

At the same time, it is important to consider low-level details while preserving high-
level semantic information in order to achieve more accurate semantic segmentation.
Especially for high-resolution remote sensing images, it has more detailed information than
natural images. In general, deeper networks will get better functionality. However, due to
the disappearance of the gradient, the training results will be unsatisfactory, as shown in
Figure 1. This problem can be solved using residual neural networks, as shown in Figure 3.
The mechanism of residual blocks can be expressed by the following formula:

YL = H(XL) + F(XL, WL) (1)
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XL+1 = f (YL) (2)
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Figure 3. The left part (a) is the schematic diagram of spatial attention and channel attention. The right part (b) is the
schematic diagram of a residual block in the residual network.

Here, XL and XL+1 represent input or output residual blocks, and each residual block
may contain a multi-layer structure. The residual function can be represented by F, which
is obtained by the weight WL and the output XL of the previous layer. Here H(XL) is the
input of a certain layer of neural network. If the expected output, YL, is a complex latent
mapping, such model training is more difficult. The input H(XL) of the neural network of
this layer can be directly used as the initial result of the output of this layer to effectively
improve the training effect. f (x) is the activation function of the linear unit Relu.

3.2. Pretreatment

Before the formal training, we used the pre-trained expanded ResNet-101 [37] to
preprocess the input image to extract semantic features in the global scope. The entire
semantic input stream can be expressed as:

Fs = Sθ(I) (3)

Here I ∈ RH×W×3 represents the original input remote sensing image. W and H
represent the width and height of the input image, respectively. θ respectively represents
the parameters of the semantic input stream. F ∈ R

H
8 ×

W
8 ×2048 represents the semantic

map of the output feature map. Sθ(I) represents the preprocessing process of ResNet
semantic flow under the θ conditions. The independent variable I is the original semantic
input stream.

3.3. Adaptive Multi-Scale Module (AMSM)

Because the ASPP structure directly integrates multiple scales (different atrous rates),
it does not guarantee the adaptive fusion of the branch information, which will lead to
inconsistencies within the class. In order to solve the problem of differences in features cor-
responding to objects with the same label, we designed the AMSM structure to adaptively
optimize features by using the attention mechanism.

Figure 4 shows this structure in detail. It combines a spatial attention module and
channel attention module. In order to fully enhance the characterization effect of the
module, the two modules are combined together. The structure consists of three parallel
structures, and the weights obtained using the spatial attention mechanism are then
multiplied by the output of the parallel structure pixel by pixel. After that, the residual
network module is used to multiply the feature graph pixel by pixel with the weight
generated by multi-channel attention. Finally, the feature map is restored to the size of the
original input image through the Fuse block (composed of 1 × 1 convolutional layer and
3 × 3 convolutional layer in series).
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For the three branches of AMSM, each branch corresponds to a different void rate
so as to obtain different weights according to the size of the remote sensing image. The
input image passes through a spatial attention module. The number of channels output
by this module is three. We assumed that the output Xi (i = 1, 2, 3) is the feature of each
layer, and the output results of the three channels are regarded as the weights of their
respective spaces. Then, we used the spatial attention mechanism to generate the weight
SA weight [37], as shown in the right part of Figure 4. After getting the spatial attention
weight, it was multiplied by each branch to achieve fusion. Figure 5 shows the process
of obtaining spatial attention weights and channel attention weights. The input image
passes through a channel attention module, and the channel attention is used for further
screening, assuming that each layer outputs Yi (i = 1, 2). Then the fusion feature Ni of each
spatial attention channel is

Ni = Xi ·Yi (4)
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Further, the three-layer output is added and fused, and f (X) is the jump connection.

M = Yi(N1 + N2 + N3) + f (X) (5)

Finally, the output results are convolved with the residual structure through two
layers to achieve the effect of reducing the number of channels.

It is worth mentioning that AMSM is very simple to use and does not require too
many additional parameters or computations. For various network models, there are
two common embedding methods. One is to add AMSM after each convolution layer
of some network structure. The other is to add AMSM between the two blocks of the
remaining network.

The channel attention module generates channel attention feature maps by using
channel connections between features. Each channel in the feature map is treated as a
feature detector. The focus of the channel attention mechanism is mainly on what is
meaningful in the input image. Channel attention uses two common methods to aggregate
spatial information, namely max pooling and average pooling operations.

The spatial attention is different from the channel attention above, it mainly focuses
on the position information of the input image. It first uses average pooling and maximum
pooling to obtain two different feature descriptions. In the channel dimension, the two
pooled feature descriptions are integrated. Finally, we used the concat operation to generate
the spatial attention map.

3.4. Adaptive Fuse Module (AFM)

The input of AFM is a feature map of semantic information from different convolution
kernel sizes. The architecture of Adaptive Fuse Module is shown in Figure 6, and the
numbers marked in the figure are the size of the convolution kernel in the block. As can be
seen, in this module, we got feature maps with different resolutions from two branches,
namely, deep and shallow feature maps. When the combined feature map is obtained, it is
necessary to ensure that the two branches maintain the same size, so it is necessary to carry
out upsampling after the deep feature map to restore the feature map size. Shallow feature
maps contain useful edge information and details but also annoying noise. Therefore, we
filtered the shallow feature map with the help of deep features, filtering out the unnecessary
noise information and only retaining the required details; we then performed the fusion
operation. The weight generation process is shown in Figure 6a. The Fuse block after
the fusion of the deep and shallow feature maps is three 1 × 1 convolutional layers in
series. It should be noted that these feature maps will be added pixel by pixel instead of
simple merging.

There are many reasons why we chose this method, including the following main
reasons. First, we can ensure that the weights of the two branches can be easily obtained
after data normalization. In addition, the calculation cost can be reduced while the size is
uniform. However, the feature processed in this form is not suitable for calculation and
extraction. Therefore, in order to better aggregate spatial information, we add a convolution
layer after fusion to solve this problem. We no longer use a single branch to calculate the
global semantic information and spatial information. It is proposed to use multi-scale to
collect weights from deep and shallow layers. The final feature map will be the sum of the
feature maps of the two branches, as shown in Figure 6b.
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4. Experiments

To verify the validity of our model, we conducted a series of experiments using
the ISPRS Vaihingen dataset. The data sets are available from http://www2.isprs.org/
commissions/comm3/wg4/2d-sem-label-vaihingen.html (accessed date 25 November
2020). In A, we introduced the dataset and measurement index; in B, we introduced the
preprocessing method of the dataset; and in C, we introduced the specific hyperparameters
used in the experiment.

The ISPRS Vaihingen dataset contains a total of 33 graph blocks, and the dataset can
be split to represent the semantic markup of each graph block. Figure 7 shows the input
image of a sample in the ISPRS dataset and the ground truth corresponding to this image.
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We conducted a lot of experiments on the ISPRS Vaihingen dataset to evaluate the
algorithm model we proposed. The following experiments will be carried out with this as
a sample.

4.1. Experiments Sets

(1) Database Sets
The ISPRS Vaihingen dataset is composed of 33 aerial images, as shown in Table 1.

These images have a spatial resolution of 9 cm and are collected from an area of 1.38 square
kilometers. In this data set, the average size of each picture is 2494*2064 pixels, and
each picture has three bands of green (G), near infrared (NIR), and red (R). It is worth
mentioning that, in order to achieve a generalized template, we did not use DSM data in
the experiments conducted in this article. The data set is divided into training data (ID
1, 3, 11, 13, 15, 17, 21, 26, 28, 30, 32, 34) and verification data (ID 5, 7, 23, 37). Meanwhile,
in our study, all the pixels in the image are divided into six categories, which are white
impermeable surface, blue building, cyan low vegetation, green tree, yellow car, and red
background, as shown in Figure 8.

Table 1. The pixel number of each class in the training set.

Class. Impervious Surfaces Building Low Vegetation Tree Car Clutter/Background

Pixels Number 15,932,837 14,647,182 11,008,085 12,118,796 666,618 510,494ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 11 of 19 
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(2) Evaluation indicators
In order to better evaluate our model, we used F1-score and Overall Accuracy (OA)

as network accuracy evaluation indicators. The two classification indicators are briefly
introduced below.

F1-score is a very important indicator in classification problems. This indicator takes
into account both the precision rate and the recall rate, and uses the percentage of pixels
that predict the correct category as the overall accuracy. Among them, both values are
between 0 and 1. The closer the value is to 1, the higher the accuracy. The two parameters
used to calculate F1-score involve recall and accuracy, which are defined as:

recall(c) =
TP
C
× 100% (6)

precision(c) =
TP
C
× 100 (7)
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Among them, TP represents the number of categories C correctly predicted by the
model. P represents the total number of pixels in the sample predicted by the model as
category C, and C is the total number of pixels in the sample. When it is necessary to
consider both the accuracy rate and the recall rate, the model’s F1-score index can be used
to judge the pros and cons of the model. F1-socre also considers the precision and recall of
the model, which is defined as follows:

F1 =
2× precision(C)× recall(C)

precision(C) + recall(C)
× 100% (8)

Among them, precision represents the accuracy of the model, which is the proportion
of correct results in the total results predicted by the model. Recall is the recall rate of the
model, which is the percentage of correct results predicted by the model in the true value
label of the sample. F1 is the harmonic average of precision and recall. Therefore, F1-score
will only be high when the precision and recall indicators are balanced.

Overall Accuracy represents the proportion of samples that are correctly classified in
all samples. This indicator reflects the correctness of the overall classification of the map
and is a rough overall measure.

The overall accuracy is the percentage of pixels with the correct class predicted, and
the accuracy is defined as

Accuracy =
T
A
× 100% (9)

In this formula, T represents the number of pixels that predict the correct category,
and A is the total number of all pixels.

For each category, the average F1 score is achieved by calculating all F1 scores to
achieve a fair evaluation model. It is worth noting that the higher the F1 score, the better
the model evaluation result.

4.2. Data Set Preprocessing

Due to the limited Graphic Processing Unit (GPU) memory, we cut the input image of
the model to a fixed pixel size through a sliding window and, then, input it into our model
to train and verify the images in the dataset. Similar to the current mainstream processing
methods, we used some of the more common data enhancement strategies to achieve data
enhancement, such as Gaussian blur, image rotation, random cropping, horizontal flip,
vertical flip, 90-degree rotation, grid mask, etc. These methods not only play a role in data
enhancement but also prevent the occurrence of over-fitting to a certain extent.

4.3. Implementation

We developed the following training strategy. For the optimizer used, we chose
ADAM’s optimizer and set the parameters of the optimizer according to the suggestions,
setting the initial learning rate as 1e-3. The model was trained on a single NVIDIA Tesla
V100. We set the batch size to 3, trained a total of 50 epochs, and when the verification loss
started to stop reducing, we would stop the training. In order to reduce the vibration of
the model in the later period of training, we adopted the adaptive learning rate decline
strategy. We used U-Net with ResNet-101 as out baseline. Similar to the method used in
similar studies, weighted cross entropy function is used to train the whole model. We
implemented our network using PyTorch, where the learning rate was initialized to 1e-3
when the validation loss was saturated, and we stopped training when the validation
loss function failed to decrease. After setting the above parameters, we trained and
tested AWNet. The training of the model lasted about 50 hours, and the test lasted about
20 minutes.

4.4. Ablation Study for Relation Modules

We evaluated each component of the model, used ResNet-101 as our baseline, and
added AFM and AMSM to enhance the consistency of the model. In order to verify
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the performance of the various models we proposed, we conducted a series of ablation
experiments. The experimental results of different models in the Vaihingen data set are
presented in Table 2.

Table 2. Comparison between the baseline and the baseline with the corresponding model added.

ID Experiment OA
Accuracy Improvement Ratio

Compared with Baseline

1 Baseline 86.92% -
2 Baseline + AMSM 87.84% 0.92%
3 Baseline + AFM 87.51% 0.59%
4 Baseline + AMSM + AFM 88.35% 1.43%

The overall accuracy rate of ResNet101 + AMSM + AFM in ablation experiments is
88.35%, which is better than ResNet, ResNet + AMSM, and ResNet + AFM. As shown in
Figure 9, in the comparison with ground truth, we can see that when only the baseline is
used for segmentation, the adhesion between two similar objects that are close in distance
is more obvious, and there is obvious noise at the edge. After adding AMSM or AFM, the
adhesion phenomenon was reduced, and the independence of the object was improved. See
Figure 9f again. After using AMSM and AFM at the same time, there is almost no adhesion
between the edges between two objects that are close to each other. The noise at the edge
of each object is also significantly reduced, making the boundary of the segmentation
result clearer.
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Figure 9. On the ISPRS Vaihingen data set, six test results for the same baseline fusion of different modules. (a) Original
input image; (b) ground truth; (c) baseline output image; (d) baseline and AMSM output image; (e) baseline and AFM
output image; (f) baseline and fusion of AMSM and AFM. Vaihingen’s label includes six categories: impervious surface
(white), building (blue), low vegetation (cyan), tree (green), car (yellow), and chaos/background (red).
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4.5. Comparing with Existing Works

In order to make a more comprehensive evaluation of our research, we first tested
the model with five landmark networks [6,7,14,15,38], and the test results obtained are
shown in Table 3. The output image is shown in Figure 10. At the same time, we also
compared our model with five existing models based on basic network improvements, in-
cluding FCN with fully connected CRF (FCN-dcrf), spatial propagation CNN (SCNN) [39],
FCN with atrus convolution (extensed FCN) [9], FCN with feature remake (FCN-FR) [40],
convolutional neural network (CNN-FPL) with patch labeling learning through learning
upsampling [41], and VGG16 is the PSPNet of the backbone network [42], and the test
results are shown in Table 4.

Table 3. The results of comparing our network with the landmark classic network.

Model
The F1 Value of Each Class Mean F1

Score OA
Imp Surf Build Low Veg Tree Car

FCN 88.67 92.83 76.32 86.67 74.21 83.74 86.51
U-net 79.05 79.95 68.10 70.50 15.72 62.66 75.60

Deeplab-v3 66.18 83.74 64.52 78.78 36.31 65.91 73.86
SegNet 80.21 85.97 70.36 79.24 26.72 68.50 79.87
DCCN 86.43 92.07 79.36 82.54 66.40 81.36 85.31

AWNet(ours) 90.32 94.11 80.25 87.05 82.22 86.79 88.35
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Figure 10. The output image of our network compared with the classic network. Vaihingen’s label includes six categories:
impervious surface (white), building (blue), low vegetation (cyan), tree (green), car (yellow), and chaos/background (red).
(a) Input image. (b) U-net segmentation results. (c) Segmentation result of DeepLab-v3. (d) The segmentation result of
SegNet. (e) We propose the segmentation result of AWNet. (f) Ground Truth.
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Table 4. The results of a comparison between our network and an improved network based on the classic network.

Model
The F1 Value of Each Class Mean F1

Score OA
Imp Surf Build Low Veg Tree Car

FCN-dCRF 88.8 92.99 76.58 86.78 71.75 83.38 86.65
SCNN 88.21 91.8 77.17 87.23 78.6 84.4 86.43

Dilated FCN 90.19 94.49 77.69 87.24 76.77 85.28 87.7
CNN-FPL - - - - - 83.58 87.83

PSPNet 89.92 94.36 78.19 87.12 72.97 84.51 87.62
Deeplab v3+ 89.92 94.21 78.31 87.01 71.43 84.18 87.51

DANet 89.31 93.99 78.25 86.74 71.26 83.91 87.44
AWNet(ours) 90.32 94.11 80.25 87.05 82.22 86.79 88.35

The numerical results of the Vaihingen data set are shown in Tables 3 and 4. The
results show that whether it is a landmark classic network or an improved network based
on the classic network, our model is superior to other methods in terms of F1 average score
and overall accuracy. Specifically, for example, compared with FCN-dCRF and SCNN,
the average F1 score of our proposed network increased by 1.70% and 1.92%, respectively,
which verified the high performance of the spatial relationship module in our network. It
shows that the integration of AMSM and AFM relationship modules is effective.

Our model has obvious advantages in dealing with small objects. Specifically, the
“car” category is a category that is difficult to handle in the Vaihingen dataset because,
compared with other categories, “car” is a relatively small object. As shown in Table 3
and Figure 11, the number of pixels in other categories is much more than the number of
pixels in the “car” category, and there are large differences in objects between this category.
For example, the diversity of car colors in the image also leads to huge differences within
the category. Our proposed method achieves an accuracy of 82.22% in the car category,
which is significantly higher than other models, which proves the effect of our method on
small targets.

In addition, the qualitative results are shown in Figure 11. For the first line, although
the low-vegetation area contains complex local context information and is easily misidenti-
fied, due to its powerful function, our network can obtain more accurate results, compared
with other methods, to solve the problem of vision blurring [43–45] by using global rela-
tions, and the phenomenon of category misclassification [46] is greatly reduced. In addition,
the edge of our model is clearer and more coherent, which proves that the model has the
function of eliminating outliers, and the noise in the detail information has less impact on
the result.
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enlarged view of our proposed AWNet segmentation result. 
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Figure 11. The edge prediction output of our model and Pyramid Scene Parsing Network (PSPNet). Vaihingen’s label
includes six categories: impervious surface (white), building (blue), low vegetation (cyan), tree (green), car (yellow), and
chaos/background (red). (a) Input image. (b) Ground Truth. (c) A partial enlarged view of the PSPNet segmentation result.
(d) A partial enlarged view of our proposed AWNet segmentation result.

5. Conclusions and Future Work

In this paper, we propose two kinds of effective network modules to solve the noise
and classification problems in remote sensing images. Adaptive Multi-Scale Module
(AMSM) and Adaptive Fuse Module (AFM). Among them, the Adaptive Multi-Scale
Module (AMSM) can adaptively generate spatial weight, which has a better segmentation
effect in the data set with complex and variable object size. The AFM (Adaptive Fuse
Module) module, which can filter and extract shallow information of remote sensing
images, is also designed. This module can effectively remove the noise information in
the shallow layer feature image and make up for the details with better robustness in
the deep layer feature image. Both relationship modules learn the global relationship
information between the target and the feature graph. Verified on the Vaihingen dataset,
we used the network of two relationship modules to better identify smaller targets while
still maintaining good overall accuracy. Moreover, the multi-scale convolutional feature
network of AMSM and AFM is superior to other models in terms of vision and numerical
value. AWNet’s F1 Score reached OA and reached 88.35%. However, our understanding of
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how these two modules deal with segmentation problems in remote sensing images is not
yet in place, and further research is needed.

Author Contributions: Conceptualization, Yifan Liu and Junke Chen; methodology, Yifan Liu,
Qigang Zhu; validation, Yifan Liu, Junke Chen, Gang Lu and Feng Cao; formal analysis, Yifan Liu
and Qigang Zhu; investigation, Yifan Liu, Gang Lu and Feng Cao; data curation, Yifan Liu and
Gang Lu; writing—original draft preparation, Yifan Liu and Junke Chen; writing—review and
editing, Yifan Liu, Junke Chen, Gang Lu, Qigang Zhu and Feng Cao; visualization, Yifan Liu and
Junke Chen; project administration, Yifan Liu; All authors have read and agreed to the published
version of the manuscript.

Funding: This project is funded by the Provincial and School-level Educational Reform Project-
Communication Engineering CDIO Talent Training (Project Number: 310301815) and Excellent
Teaching Team Project (Project Number: 310302202).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in http://www2
.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html (accessed on 25 November 2020).

Acknowledgments: I sincerely thank Zhang Shuaishuai and Yuan Yulei for answering my questions
patiently and giving me great help during the writing process. In particular, on behalf of all the
authors, I would like to thank Zhang Shuaishuai again for vividly providing me with ideas for
revising the paper and replying to the reviewers’ opinions during the review period. At the same
time, I also sincerely thank other teachers on the Jinan campus of Shandong University of Science
and Technology for their support and encouragement in all aspects, including Han Wei and Han
Bing from the Study Group Department; Chen Fangzhou, Zhang Hongbin, and Zhang Hongbin from
the Department of Electrical Information; and Li Wei, Liu Hao, and Xu Haowen, who has always
encouraged and supported me.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AMSM Adaptive Multi-Scale Module
AFM Adaptive Fuse Module
AWNet Adaptive Weighted Network
ASPP Atrous Spatial Pyramid Pooling
BS BaseLine
RGB Red–Green–Blue
CNN Convolutional Neural Network
OA Overall Accuracy

References
1. Wen, D.; Huang, X.; Liu, H.; Liao, W.; Zhang, L. Semantic Classification of Urban Trees Using Very High Resolution Satellite

Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1413–1424. [CrossRef]
2. Shi, Y.; Qi, Z.; Liu, X.; Niu, N.; Zhang, H. Urban Land Use and Land Cover Classification Using Multisource Remote Sensing

Images and Social Media Data. Remote Sens. 2019, 11, 2719. [CrossRef]
3. Matikainen, L.; Karila, K. Segment-Based Land Cover Mapping of a Suburban Area—Comparison of High-Resolution Remotely

Sensed Datasets Using Classification Trees and Test Field Points. Remote Sens. 2011, 3, 1777–1804. [CrossRef]
4. Xu, S.; Pan, X.; Li, E.; Wu, B.; Bu, S.; Dong, W.; Xiang, S.; Zhang, X. Automatic Building Rooftop Extraction from Aerial Images via

Hierarchical RGB-D Priors. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7369–7387. [CrossRef]
5. Liu, W.; Yang, M.; Xie, M.; Guo, Z.; Li, E.; Zhang, L.; Pei, T.; Wang, D. Accurate Building Extraction from Fused DSM and UAV

Images Using a Chain Fully Convolutional Neural Network. Remote Sens. 2019, 11, 2912. [CrossRef]
6. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
http://doi.org/10.1109/JSTARS.2016.2645798
http://doi.org/10.3390/rs11222719
http://doi.org/10.3390/rs3081777
http://doi.org/10.1109/TGRS.2018.2850972
http://doi.org/10.3390/rs11242912


ISPRS Int. J. Geo-Inf. 2021, 10, 241 17 of 18

7. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the In-
ternational Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015;
pp. 234–241.

8. Zhou, J.; Hao, M.; Zhang, D.; Zou, P.; Zhang, W. Fusion PSPnet Image Segmentation Based Method for Multi-Focus Image Fusion.
IEEE Photon. J. 2019, 11, 1–12. [CrossRef]

9. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional
Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]

10. Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

11. Pan, X.; Gao, L.; Zhang, B.; Yang, F.; Liao, W. High-Resolution Aerial Imagery Semantic Labeling with Dense Pyramid Network.
Sensors 2018, 18, 3774. [CrossRef] [PubMed]

12. Yang, F.; Fan, H.; Chu, P.; Blasch, E.; Ling, H. Clustered Object Detection in Aerial Images. In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 8310–8319.

13. Woo, S.; Kim, D.; Cho, D.; Kweon, I.S. LinkNet: Relational Embedding for Scene Graph. arXiv 2018, arXiv:1811.06410.
14. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017,

arXiv:1706.05587.
15. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.

IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]
16. Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent Models of Visual Attention. arXiv 2014, arXiv:1406.6247.
17. Lin, D.; Ji, Y.; Lischinski, D.; Cohen-Or, D.; Huang, H. Multi-scale Context Intertwining for Semantic Segmentation. In Proceedings

of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.
18. Cheng, B.; Chen, L.-C.; Wei, Y.; Zhu, Y.; Huang, Z.; Xiong, J.; Huang, T.; Hwu, W.-M.; Shi, H.; Uiuc, U. SPGNet: Semantic

Prediction Guidance for Scene Parsing. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 5217–5227.

19. Lin, G.; Milan, A.; Shen, C.; Reid, I. RefineNet: Multi-path refinement networks for high-resolution semantic segmentation. In
Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017;
Volume 2017, pp. 5168–5177.

20. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Learning a Discriminative Feature Network for Semantic Segmentation. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; pp. 1857–1866.

21. Kumar, B.V.; Carneiro, G.; Reid, I. Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by
Minimizing Global Loss Functions. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 5385–5394.

22. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22 October 2017; pp. 764–773.

23. Zhang, R.; Tang, S.; Zhang, Y.; Li, J.; Yan, S. Scale-Adaptive Convolutions for Scene Parsing. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22 October 2017; pp. 2050–2058.

24. Cheng, J.; Sun, Y.; Meng, M.Q.-H. A dense semantic mapping system based on CRF-RNN network. In Proceedings of the 2017
18th International Conference on Advanced Robotics (ICAR), Hong Kong, China, 10–12 July 2017; pp. 589–594.

25. Liu, Z.; Li, X.; Luo, P.; Loy, C.-C.; Tang, X. Semantic Image Segmentation via Deep Parsing Network. In Proceedings of the 2015
IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1377–1385.

26. Ke, T.W.; Hwang, J.J.; Liu, Z.; Yu, S.X. Adaptive affinity field for semantic segmentation. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

27. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. BiSeNet: Bilateral Segmentation Network for Real-Time Semantic Segmentation.
Trans. Petri Nets Other Models Concurr. 2018, 334–349. [CrossRef]

28. Ruan, T.; Liu, T.; Huang, Z.; Wei, Y.; Wei, S.; Zhao, Y. Devil in the Details: Towards Accurate Single and Multiple Human Parsing.
Proc. Conf. AAAI Artif. Intell. 2019, 33, 4814–4821. [CrossRef]

29. Bilinski, P.; Prisacariu, V. Dense Decoder Shortcut Connections for Single-Pass Semantic Segmentation. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6596–6605.

30. Guo, H.; Zheng, K.; Fan, X.; Yu, H.; Wang, S. Visual Attention Consistency Under Image Transforms for Multi-Label Image Classi-
fication. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, 16–20 June 2019; pp. 729–739.

31. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice,
Italy, 22–29 October 2017; pp. 618–626.

32. Li, B.; Sun, Z.; Li, Q.; Wu, Y.; Anqi, H. Group-Wise Deep Object Co-Segmentation with Co-Attention Recurrent Neural Network. In
Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Long Beach, CA, USA, 16–20 June 2019;
pp. 8518–8527.

http://doi.org/10.1109/JPHOT.2019.2950949
http://doi.org/10.1109/TPAMI.2017.2699184
http://doi.org/10.3390/s18113774
http://www.ncbi.nlm.nih.gov/pubmed/30400591
http://doi.org/10.1109/TPAMI.2016.2644615
http://doi.org/10.1007/978-3-030-01261-8_20
http://doi.org/10.1609/aaai.v33i01.33014814


ISPRS Int. J. Geo-Inf. 2021, 10, 241 18 of 18

33. Liu, S.; Johns, E.; Davison, A.J. End-To-End Multi-Task Learning with Attention. In Proceedings of the 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 1871–1880.

34. Lu, X.; Wang, W.; Ma, C.; Shen, J.; Shao, L.; Porikli, F. See More, Know More: Unsupervised Video Object Segmentation with
Co-Attention Siamese Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 3618–3627.

35. Zheng, H.; Fu, J.; Zha, Z.-J.; Luo, J. Looking for the Devil in the Details: Learning Trilinear Attention Sampling Network for
Fine-Grained Image Recognition. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 5007–5016.

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385.
37. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the Lecture Notes in

Computer Science; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2018; pp. 3–19.
38. Nassar, A.S.; Lefèvre, S.; Wegner, J.D. Multi-View Instance Matching with Learned Geometric Soft-Constraints. ISPRS Int. J.

Geo-Inf. 2020, 9, 687. [CrossRef]
39. Pan, X.; Shi, J.; Luo, P.; Wang, X.; Tang, X. Spatial as Deep: Spatial CNN for Traffic Scene Understanding. In Proceedings of the

AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.
40. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. High-Resolution Aerial Image Labeling with Convolutional Neural Networks.

IEEE Trans. Geosci. Remote Sens. 2017, 55, 7092–7103. [CrossRef]
41. Volpi, M.; Tuia, D. Dense Semantic Labeling of Subdecimeter Resolution Images with Convolutional Neural Networks. IEEE

Trans. Geosci. Remote Sens. 2017, 55, 881–893. [CrossRef]
42. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1063–6919.
43. Zhou, K.; Xie, Y.; Gao, Z.; Miao, F.; Zhang, L. FuNet: A Novel Road Extraction Network with Fusion of Location Data and Remote

Sensing Imagery. ISPRS Int. J. Geo-Inf. 2021, 10, 39. [CrossRef]
44. Song, A.; Kim, Y. Semantic Segmentation of Remote-Sensing Imagery Using Heterogeneous Big Data: International Society for

Photogrammetry and Remote Sensing Potsdam and Cityscape Datasets. ISPRS Int. J. Geo-Inf. 2020, 9, 601. [CrossRef]
45. Liu, Y.F. Research on video emotion analysis algorithm based on deep learning. In Basic & Clinical Pharmacology & Toxicology;

Wiley: Hoboken, NJ, USA, 2021; pp. 183–184.
46. Kan, K.; Yang, Z.; Lyu, P.; Zheng, Y.; Shene, L. Numerical Study of Turbulent Flow past a Rotating Axial-Flow Pump Based on a

Level-set Immersed Boundary Method. Renew. Energy 2021, 168, 960–971. [CrossRef]

http://doi.org/10.3390/ijgi9110687
http://doi.org/10.1109/TGRS.2017.2740362
http://doi.org/10.1109/TGRS.2016.2616585
http://doi.org/10.3390/ijgi10010039
http://doi.org/10.3390/ijgi9100601
http://doi.org/10.1016/j.renene.2020.12.103

	Introduction 
	Related work 
	Semantic Segmentation 
	Attention Module 
	Spatial Pyramid Pooling and Atrous Convolution 

	Materials and Methods 
	Overview 
	Pretreatment 
	Adaptive Multi-Scale Module (AMSM) 
	Adaptive Fuse Module (AFM) 

	Experiments 
	Experiments Sets 
	Data Set Preprocessing 
	Implementation 
	Ablation Study for Relation Modules 
	Comparing with Existing Works 

	Conclusions and Future Work 
	References

