
 International Journal of

Geo-Information

Article

Modeling the Distribution of Human Mobility Metrics with
Online Car-Hailing Data—An Empirical Study in Xi’an, China

Chaoyang Shi 1 , Qingquan Li 2, Shiwei Lu 3,4,* and Xiping Yang 5

����������
�������

Citation: Shi, C.; Li, Q.; Lu, S.; Yang,

X. Modeling the Distribution of

Human Mobility Metrics with Online

Car-Hailing Data—An Empirical

Study in Xi’an, China. ISPRS Int. J.

Geo-Inf. 2021, 10, 268. https://

doi.org/10.3390/ijgi10040268

Academic Editor: Wolfgang Kainz

Received: 27 February 2021

Accepted: 14 April 2021

Published: 17 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China; cyshi@hust.edu.cn

2 Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University,
Shenzhen 518060, China; liqq@szu.edu.cn

3 School of Architecture and Urban Planning, Huazhong University of Science and Technology,
Wuhan 430074, China

4 Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources,
Shenzhen 518034, China

5 School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China; xpyang@snnu.edu.cn
* Correspondence: lusw@hust.edu.cn

Abstract: Modeling the distribution of daily and hourly human mobility metrics is beneficial for
studying underlying human travel patterns. In previous studies, some probability distribution
functions were employed in order to establish a base for human mobility research. However, the
selection of the most suitable distribution is still a challenging task. In this paper, we focus on
modeling the distributions of travel distance, travel time, and travel speed. The daily and hourly
trip data are fitted with several candidate distributions, and the best one is selected based on the
Bayesian information criterion. A case study with online car-hailing data in Xi’an, China, is presented
to demonstrate and evaluate the model fit. The results indicate that travel distance and travel time
of daily and hourly human mobility tend to follow Gamma distribution, and travel speed can be
approximated by Burr distribution. These results can contribute to a better understanding of online
car-hailing travel patterns and establish a base for human mobility research.

Keywords: mobility metrics; distribution fitting; Gamma distribution; Burr distribution; online
car-hailing

1. Introduction

The modeling of human mobility is an emergent research area. Studying the regularity
and characteristics of human spatiotemporal mobility is of great significance in many fields,
such as urban planning [1,2], traffic forecasting [3], and epidemic prevention [4,5].

When modeling human mobility, it is common to consider the probability distribution
function (PDF) of its metrics (e.g., travel distance, travel time, and travel speed). It is
generally accepted that daily and hourly human mobility metrics have a representative
distribution [6]. Modeling the distributions of these metrics is fundamental, necessary,
and beneficial for studying underlying travel patterns and establishing a base for human
mobility research.

Recently, with the rapid development of information and communication technique
(ICT) and location-based service (LBS) applications, online car-hailing equipped with
Global Positioning System (GPS) plays an increasingly important role in people’s daily
travel activities. As an important data source, online car-hailing platforms (e.g., Uber, Lyft,
and Didi Chuxing) generate a large amount of accurate location data. Unlike traditional
survey data, cell phone datasets, wireless network traces, and taxi locations data, online
car-hailing data are characterized by high-quality, high-resolution and a large-scale, which
reflect the detailed spatiotemporal trajectory and actual origin and destination of people’s
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travels. Therefore, online car-hailing has established a rich and solid data foundation
for distribution modeling, thus bringing new opportunities and challenges to further
understand people’s travel behavior and intra-urban mobility.

To our knowledge, previous studies have proposed quite a few patterns of human
mobility, such as levy flight model [7,8], power law distribution [9–13], exponential dis-
tribution [14–18], lognormal distribution [19–22], Weibull distribution [23], Pareto dis-
tribution [24], and Gamma distribution [22]. Brockmann et al. observed that human
travel distance exhibits a power law distribution by analyzing the statistical properties
of bank notes’ circulation, and human travel trajectories may be approximated as Lévy
flights (heavy tailed random walk) [7]. This observation was confirmed by Rhee et al.
using Global Positioning System (GPS) traces collected from volunteers, showing a non-
negligible probability of high displacement trips and a long pause-time between trips [8].
Despite the randomness indicated by Lévy flight models, a power law with an exponential
cutoff can be used to approximate the displacement distribution of human trajectories
obtained from mobile phone datasets [9,11], GPS traces [12] and online location-based
social networks [13]. However, Kang et al., Jiang et al., and Liang et al. pointed out that
an exponential distribution can be used to approximate taxis’ travel displacement and
travel time, instead of power law [14–18]. Furthermore, by analyzing a taxi-trace dataset,
Wang et al. found that displacement tends to follow exponential distribution, and travel
time is approximated by lognormal distribution [19].

Although the findings mentioned above provide a beneficial reference on mining
human mobility, they mostly focus on a single model, which may not fit all data well.
Zheng et al. found that a fusion function, based on exponential power law and a truncated
Pareto distribution, represents travel time distribution best [24]. Bazzani et al. studied the
GPS data of private cars in Florence, Italy, and found that the single-trip length follows an
exponential behavior in short distance scale but favors a power law distribution for trips
longer than 30km [18]. Csáji et al. and Zhang et al. found that exponential distribution
is not appropriate for travel distances, and log-normal distribution provides reasonable
fits [20,21]. Plötz et al. used Weibull, Gamma, and lognormal distributions to fit individual
daily driving distances, and found that Weibull and lognormal most often perform better
than Gamma, and the Weibull distribution fits most data but not all [23]. Kou and Cai
analyzed the distributions of travel distance and travel time, and found that both of them
follow a lognormal distribution in larger bike sharing systems, while the distribution for
smaller systems varies among Weibull, Gamma, and lognormal [22].

To sum up, according to various datasets, many empirical studies have demonstrated
that mobility metrics may be fitted with several meaningful distributions, such as Lévy
flight models, exponential, power-law, lognormal, Gamma, Weibull, and Rayleigh. How-
ever, based on a real large-scale car-hailing trajectory dataset, can a single or mixed model
achieve a good fit for all data? It remains to be further explored. In addition, the above
studies focused on modeling the distribution of the human mobility with simple or overall
data, while ignoring the variability of PDF along with day of week and time of day. Is the
distribution type of mobility metrics in different time granularity different from that of
overall data? If yes, how will it vary, and can it be described by a general distribution?
This has aroused the interest of many scholars. Therefore, our research, based on a real
large-scale car-hailing trajectory dataset, is indispensable, and gains valuable insight into
human mobility patterns.

To fill this gap, this paper aims to model the distribution of human mobility metrics
in different time granularity. Specifically, three metrics (travel distance, travel time, and
travel speed) are introduced to explore massive trajectory data collected in Xi’an, China.
For each mobility metric, several candidate distributions are compared based on model
selection criteria, and the best one is selected. The statistical distributions of daily trip
data are analyzed first, and they show the characteristic of skewed distribution. More
granularly, hourly distributions are further evaluated, and a general distribution for each
mobility metric is determined.
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The remainder of this paper is organized as follows. Section 2 briefly introduces the
online car-hailing dataset and carries out the basic analysis. Section 3 describes the trip
metrics, the fitting distributions, and the method of model selection. Section 4 presents the
result and analysis. Section 5 discusses the findings. Finally, Section 6 provides conclusions
and recommendations for further research.

2. Data Collection and Basic Analysis
2.1. Data Description

The adopted trajectory data were generated by about 18,000 online car-hailing trips in
Xi’an, China, from 1 October 2016 to 30 November 2016. Vehicle trajectories were composed
of high-resolution GPS points, which were recorded every 2–4 s. Accordingly, an online
car-hailing trajectory is a sequence of GPS sampling points with five fields. The vehicle ID
and order ID were desensitized to protect privacy. The “Timestamp” indicated when the
data would be recorded, which was the UTC time. “Latitude” and “Longitude” provided
location information of online car-hailing.

Let Trj
i = (pi,j

1 , pi,j
2 , · · · , pi,j

N) denote the trajectory of the jth trip of vehicle i, where

pi,j
n = (x, y, t)i,j

n is the nth point of the sequence (n = 1, 2, · · · , N). (x, y)i,j
n denotes the

location and ti,j
n the timestamp, respectively. Given a trajectory, ti,j

1 < ti,j
2 < · · · < ti,j

N . For
a vehicle, the origin and destination (OD) locations are the first and last sampling points
of a trip. It makes sense to define pi,j

O = pi,j
1 and pi,j

D = pi,j
N . Hence, each OD trip can be

simplified to be a vector from pi,j
O to pi,j

D .
A road network consists of a set of nodes, directed links, and allowed movements.

Each node is a geographical location representing a network intersection, which can be
either signalized or non-signalized. A link is defined to be the road section from its tail
node to head node. The relative position denotes the ratio of a sampling point relative to
the link start node, which ranges [0, 1]. For example, the value 0, 0.5, and 1 of the relative
position represent the beginning, middle and end of a link.

2.2. Data Precessing

To model the travel distance distribution, the map matching (MM) and the path
inference algorithm proposed by Chen et al. were first used [25]. As shown in Table 1, the
original latitude and longitude were converted into geodetic coordinates, which could be
used directly to calculate the travel displacement. Secondly, the relative position of the
sampling point on the link was also calculated, and the UTC time was converted to the
time of day (0-86400 s). Thirdly, the pick-up and drop-off points were extracted to calculate
the trip metrics (e.g., travel time, travel displacement, travel distance).

Table 1. Data section after processing.

Vehicle ID Order ID Timestamp X-Coordinate Y-Coordinate Link ID Relative Position

1000001 20000001 25,414 491,832.85 3,787,627.44 42915 0.3116
1000001 20000001 25,417 491,848.40 3,787,654.13 42915 0.8538
1000001 20000001 25,420 491,876.34 3,787,700.57 20558 0.5930

Finally, data cleaning is an essential task, because some of the trip records were not
suitable for use in this study. Considering travel costs, few passengers travel by online
car-hailing when travel time and distance are very short or long [26,27]. In addition, travel
speed should be within a reasonable range. Therefore, the following conditions resulted in
exclusion of trip records from the study data: (1) travel distance and displacement between
origin and destination of less than 300m; (2) travel time less than 1min or longer than 2 h;
(3) average travel speed below 5 km/h or in excess of 80km/h [28].

In terms of the total trips of two months, 6,203,848 trips were obtained from 6,584,397
original trips after data cleaning, which means that about 6% of the trips were filtered



ISPRS Int. J. Geo-Inf. 2021, 10, 268 4 of 17

out. From the perspective of daily trips, the average order availability was 94.22%, which
fluctuated between 93.21% and 94.85%. More commonly, the study period was discretized
into 1464 (24*61) 1 h intervals for further analysis of residents’ hourly trips. The hourly
trip quantity ranged from 192 to 8636, as shown in Figure 1. On the whole, the number of
trips during the day was much higher than at night, which is in line with human mobility.
After all, human mobility during the day is more active, important, and meaningful. In
addition, the number of hourly trips between 00:00 and 07:00 may be less than 2000, but it
was sufficient for distribution fitting.
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3. Trip Metrics and Data Fitting
3.1. Trip Metrics

In the existing studies, due to the lack of map matching, travel distance is usually
replaced by displacement or Manhattan distance of the origin and destination. However,
travel distance here refers to the length of the actual path traveled by the OD trip in road-
networks. A path is composed of a series of successive links, and its length is the sum of
length of links included in the OD trip. It is worth noting that the links where the origin
and destination (OD) are located may not be traveled through. Based on the map matching
and path inference results, the travel distance dj

i (TD) is calculated as:

dj
i = (1− ri,j

O ) · di,j
O + ∑M−1

k = 2 di,j
k + ri,j

D · d
i,j
D (1)

where M is the number of links included in the trip. ri,j
O and ri,j

D denote the ratio of trip OD

relative to the link start node, which ranges [0, 1]. di,j
O and di,j

D are the link length where the
trip OD are located.

Travel time is another important metric and is closely tied to travel distance. Travel
time means time elapsed from the origin to destination, and is influenced by real-time traffic
conditions, weather conditions, driver’s driving habits, etc. As an important indicator for
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analyzing human mobility, travel time reflects accessibility and traffic conditions. For a
trajectory of the trip j of vehicle i, travel time tj

i (TT) is defined as:

tj
i = ti,j

N − ti,j
1 = ti,j

D − ti,j
O (2)

To understand the relation between the metrics described above, travel speed is
another important feature. The average travel speed vj

i (TS) is defined as:

vj
i = dj

i/tj
i (3)

3.2. The Fitting Distribution

The fitting function selection is to identify the most appropriate distribution which
is supported by the actual trip data. In the existing literature, exponential, (truncated)
power-law, lognormal, Gamma, Weibull, and Burr distributions are commonly used dis-
tributions for fitting the above trip metrics [6,11,15,19,21,29–32]. However, not all of the
above distributions apply to the data in this study. In order to narrow the range of can-
didate distributions, one day of the two-month data was randomly selected to analyze
the characteristics of trip metrics. Figure 2 shows the frequency distribution histograms
and the cumulative distribution functions (CDF) of travel distance, travel time, and travel
speed, respectively. Based on the shape of these histograms, it can be found that these data
show a significant right skew, which is also proved by the skewness calculation (i.e., 1.05,
1.60, 0.95). In addition, the CDF is very close to one before reaching the maximum. For
example, the probability of travel distance within 15km is as high as 99.96%, and 99.93%
trips have a travel time less than 1h. The excessive kurtosis indicates that the data are too
concentrated, possibly due to the existence of extreme values.
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To further understand the shape of the data in detail, the skewness and kurtosis of the
daily data are shown in Figure 3. The daily skewness is greater than 0.6, ranging from 0.75
to 2.1. This indicates that all data show a right skew, especially travel time data. Meanwhile,
kurtosis greater than three indicates the steepness of the distribution, which proves the
possibility of narrowing the spread range of trip metrics. More commonly, hourly skewness
and kurtosis are, respectively, 1.07 and 5.83, which also indicate that the hourly trip data
are highly likely to conform to the skewed distribution.
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Based on the above analysis, five common skewed distributions—lognormal, Gamma,
Weibull, Burr, and Rayleigh—are selected as candidate distributions to fit the daily and
hourly data. The probability density functions (PDF) of these distributions are defined in
the following formulas. Assuming that the variable x follows a lognormal distribution, its
PDF can be expressed as

f (x) =
1

x · σ
√

2π
· e(

−(ln x−µ)2

2·σ2 ) (4)

where µ and σ denote the mean and standard deviation of the natural logarithm of the
variable x. The mathematical expectation and the variance are respectively E(x) = eµ+σ2/2

and Var(x) = (eσ2 − 1) · e2·µ+σ2
.

The Gamma distribution with shape and scale parameters α and β is

f (x) =
1

βα · Γ(α) · x
α−1 · e−

x
β (5)

where Γ(·) presents the Gamma function, and Γ(1) = 1. The mean and variance are
calculated with E(x) = α · β, Var(x) = α · β2. It should be noted here that the exponential
and χ2 distributions are special cases of the Gamma distribution. For example, when the
shape parameter α is 1, the Gamma distribution is an exponential distribution with the
parameter 1/β.

The Weibull distribution is defined as

f (x) =
k
λ
· ( x

λ
)

k−1
· e−(

x
λ )

k
(6)

where k > 0, λ > 0 are the shape and scale parameters, respectively. The mean and
variance are E(x) = λ · Γ(1 + 1

k ) and Var(x) = λ2 · [Γ(1 + 2
k )− Γ(1 + 1

k )
2
]. The PDF of

3-parameter version of the Burr distribution is

f (x) =
c · k

α
· ( x

α
)

c−1
· (1 + (

x
α
)

c
)
−(k+1)

(7)

where α > 0 is a scaling parameter, c > 0 and k > 0 are shape parameters. The mean and

variance are calculated by E(x) =
α·k·Γ(k− 1

c )·Γ(1+
1
c )

Γ(1+k) and Var(x) =
α2·k·Γ(k− 2

c )·Γ(1+
2
c )

Γ(1+k) −
(E(x))2.

Rayleigh’s PDF has merely one parameter to estimate, making it popular for repre-
senting the distribution of trip metrics due to its simplicity. Its distribution is a special
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case of the Weibull distribution in which the value of the shape parameter is 2. The PDF of
Rayleigh distribution with a parameter α is

f (x) =
x
α2 · e

− x2

2·α2 (8)

The mean and variance are E(x) =
√

π
2 · α and Var(x) = 4−π

2 · α2, respectively. In
the literature, the parameters are optimized by the maximum likelihood estimation (MLE),
and detailed inference can refer to Clauset et al. [33].

3.3. Model Selection

In order to evaluate the fitted model between the actual data and candidate distri-
bution, two fundamentally different methods, null hypothesis tests and model selection
criteria, are frequently used to select appropriate model or the best model [34]. The-
oretically, they can achieve both model fit and complexity. The Kolmogorov–Smirnov
(K–S) test is commonly employed to evaluate the goodness of fit of the candidate distribu-
tions [6,22,29,35]. However, the K–S test is suitable for small samples. When the data are
too large, the critical value for rejection is very small, and the result often rejects the null
hypothesis. The K–S test may reject all the candidate distributions; however, it may also
consider multiple distributions as acceptable. Considering the large quantity of daily and
hourly trips shown in Figure 1, the K–S test is not suitable for this situation.

In addition, the Akaike information criterion (AIC) can provide another decision-
making method [15,16,19]. The AIC score is a function of its maximized log-likelihood
(Li) and the number of estimated parameters (Ki) for each candidate model i, and is
calculated by

AICi = −2 · ln Li + 2 · Ki (9)

Generally, the model with the smallest AIC is preferred. In this study, small sample
unbiased AIC is not considered due to the large number of daily or hourly trips. The num-
ber of hourly trips changes from a few hundred to nearly ten thousand, so it is important
to find the distribution applicable to different periods. Therefore, the Bayesian information
criterion (BIC, also referred to as Schwarz criterion SC) is further used for model selection.
The BIC is structurally similar to the AIC, but includes a penalty term on sample size (N),
and tends to favor simpler models, particularly as the sample size increases.

BICi = −2 · ln Li + Ki · ln N (10)

The BIC is on a relative scale. The BIC difference ∆i = BICi − BICmin (BICmin =
min

i∈{1,2,··· ,n}
{BICi}) allows for an immediate ranking of the n candidate models [36]. The

larger the BIC difference for a model, the less probable that it is the best model. More
specifically, the Akaike weight wi [37] represents the normalization of the relative likelihood
(i.e., e−∆i/2) of the models.

wi =
e−∆i/2

n
∑

j = 1
e−∆j/2

(11)

The Akaike weights are very useful for assessing model selection uncertainty. The
model with the largest Akaike weight should be selected as the best distribution.

3.4. Evaluation of Distribution Fitness

In order to show how close the theoretical and empirical frequency distributions are,
accuracy is evaluated using the following statistical indicators: coefficient of determination
(R2), mean absolute error (MAE), mean absolute percentage error (MAPE), probability
outside the predicted interval (POPI), probability outside the observed interval (POOI),
and POPI-POOI-based criterion (PPC).
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For many transportation applications, it is meaningful to construct an interval at a
given confidence level from the fitting distribution. The accuracy of confidence interval
represents the integrated accuracy of both the predicted mean and STD. In addition,
percentiles are also an effective method of evaluating the accuracy of mean and STD. In
this study, mean absolute error (MAE) and mean absolute percentage error (MAPE) of
percentiles were extended as follows,

MAPE =
100%

n
·

n

∑
i = 1

∣∣∣ptobs
i − pt f it

i

∣∣∣
ptobs

i
(12)

MAE =
1
n
·

n

∑
i = 1

∣∣∣ptobs
i − pt f it

i

∣∣∣ (13)

where n is the number of percentiles, and ptobs
i , pt f it

i are the observed percentiles obtained
from the field survey and fitting distribution. Smaller MAPE and MAE indicate higher
accuracy of the fitting distribution.

Two metrics were adopted to evaluate the accuracy of estimated or predicted dis-
tribution: probability outside the predicted interval (POPI) and probability outside the
observed interval (POOI) [38,39]. The POPI measures the percentage of observed data
outside the predicted confidence interval, while the POOI measures the percentage of
predicted distribution outside the observed confidence interval. Let l f it = Φ−1

f it (α/2)

and u f it = Φ−1
f it (1 − α/2) be the lower and upper bounds of the fitting distribution,

respectively, at confidence level 1− α, where Φ−1
f it (·) is the inverse cumulative distribution

function (CDF) of the fitting distribution. Mathematically, POPI is defined as

POPI = (1−
N

∑
i = 1

ci/N)× 100% (14)

where ci = 1 if sample ∈ [l f it, u f it], otherwise ci = 0. The POPI value ranges from 0 to
1. The smaller POPI indicates capture of larger proportion of observed data, i.e., higher
accuracy of the fitting distribution. As noted by Shi et al. [38,39], this POPI metric is
very useful, but tends to exhibit bias for situations of wide fitting intervals due to large
STD errors.

As an alternative, POOI metric is the percentage of predicted distribution outside the
observed travel time interval. Let lobs and uobs denote the lower and upper bounds of the
observed interval, respectively, at confidence level 1− α. Then

POOI = (1− (Φ f it(uobs)−Φ f it(lobs)))× 100% (15)

Φ f it(·) denotes the CDF of the fitting distribution. POOI also ranges [0, 1], and larger
POOI indicates lower fitting interval accuracy, because a larger proportion is outside
the observed interval. Therefore, the POPI and POOI matrices are complementary for
evaluating the accuracy of the fitting distribution. The closer the two to α, the better
the model fit. The bigger the POPI, the smaller the corresponding POOI. Therefore, a
measure is required to balance the deviation of POPI and POOI from α. With regard
to this argument, the following POPI-POOI-based criterion (PPC) is proposed for the
comprehensive evaluation of POPI and POOI:

PPC =
1
2
· (|POPI − α|+ |POOI − α|)× 100% (16)

Generally, the smallness of PPC is an indication of the goodness of the constructed
confidence interval (simultaneously achieving high model fit).



ISPRS Int. J. Geo-Inf. 2021, 10, 268 9 of 17

4. Results of the Best-Fit Distribution

This section reports the fitting results of the trip metrics using the candidate skewed
distributions. The best-fit distributions of daily trip metrics are first shown. Then, we
further analyze the best-fit results of hourly trip metrics, such as travel distance, travel
time, and travel speed. Finally, we attempt to identify a general distribution for each trip
metric, and to estimate its parameters.

4.1. Best-Fit Distribution of Daily Trip Metrics

Figure 4 shows the best-fit distributions of daily trip metrics for 61 days. Overall, only
two of the candidate distributions, Gamma and Burr distributions (represented by blue
and red), are suitable for fitting these trip metrics. Gamma distribution performs best for
travel distance, and can uniformly fit all daily data, as shown in blue in Figure 4. However,
Gamma distribution does not fit all travel time or speed data well. In total, 47.54% (29 out
of 61) of travel time data and 63.93% (39 out of 61) of travel speed data follow the Burr
distribution (depicted in red).

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 9 of 16 
 

 

However, Gamma distribution does not fit all travel time or speed data well. In total, 
47.54% (29 out of 61) of travel time data and 63.93% (39 out of 61) of travel speed data 
follow the Burr distribution (depicted in red). 

The fitting results for weekdays and weekends in Figure 4 are distinguished by two 
different markers (dot and star). For travel distance, data on weekday and weekend can 
be well fitted with the same distribution. However, for travel time data at weekends, a 
third of them are subject to Gamma distribution, the rest to Burr distribution, and the 
weekend’s speed data are the opposite. Meanwhile, only 37.21% (16 out of 43) of travel 
speed data on weekdays obey Gamma distribution, which further decreases to 13.64% (3 
out of 22) on November weekdays. 

 
Figure 4. Best-fit distribution of daily trip metrics for 61 days. 

The above analysis also shows that, due to uniform and simple fitting distribution, 
travel distance is more straightforward for analyzing residents' mobility patterns. In 
comparison, travel time and speed are relatively complex metrics due to uncertain dis-
tribution types.  

In addition, the mean BIC weights of travel distance, travel time, and travel speed 
are 1, 0.9996, and 0.9960, respectively, which indicate low uncertainty of fitting results. 
The smallest BIC weight occurs in the travel speed data on October 13, and the fitting 
distributions and the detailed parameters are shown in Figure 5. It can be found from the 
figure that the Burr distribution is the most consistent with the speed data, followed by 
the Gamma distribution. It is noteworthy that the Burr distribution is more complex than 
the gamma distribution. The likelihood of achieving a better fit of the more complex 
model is significantly greater than that of the simpler model, but the model fit and com-
plexity should be considered comprehensively. 

Figure 4. Best-fit distribution of daily trip metrics for 61 days.

The fitting results for weekdays and weekends in Figure 4 are distinguished by two
different markers (dot and star). For travel distance, data on weekday and weekend can be
well fitted with the same distribution. However, for travel time data at weekends, a third
of them are subject to Gamma distribution, the rest to Burr distribution, and the weekend’s
speed data are the opposite. Meanwhile, only 37.21% (16 out of 43) of travel speed data on
weekdays obey Gamma distribution, which further decreases to 13.64% (3 out of 22) on
November weekdays.

The above analysis also shows that, due to uniform and simple fitting distribu-
tion, travel distance is more straightforward for analyzing residents’ mobility patterns.
In comparison, travel time and speed are relatively complex metrics due to uncertain
distribution types.

In addition, the mean BIC weights of travel distance, travel time, and travel speed
are 1, 0.9996, and 0.9960, respectively, which indicate low uncertainty of fitting results.
The smallest BIC weight occurs in the travel speed data on October 13, and the fitting
distributions and the detailed parameters are shown in Figure 5. It can be found from the
figure that the Burr distribution is the most consistent with the speed data, followed by the
Gamma distribution. It is noteworthy that the Burr distribution is more complex than the
Gamma distribution. The likelihood of achieving a better fit of the more complex model
is significantly greater than that of the simpler model, but the model fit and complexity
should be considered comprehensively.



ISPRS Int. J. Geo-Inf. 2021, 10, 268 10 of 17

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 5. Fitted distributions for the observed travel speed data on October 13. 

Table 2 shows more parameters in the model selection. The observed mean and 
standard variation (STD) are very similar to several estimates. The commonly used 
evaluation indices, such as the mean absolute percent error (MAPE) and the root mean 
square error (RMSE), are also difficult when it comes to identifying the dominant dis-
tribution. Furthermore, the log-likelihood of Burr distribution is slightly bigger than that 
of Gamma distribution, which quantitatively proves that the Burr distribution has a bet-
ter model fit. When the BIC takes model complexity into account, the gap narrows to 2 
( 499118 499116 2Δ = − = ), which means that the benefit of improved model fit outweighs 
the cost of added model complexity. This tiny advantage is clearly distinguished in the 
BIC weight, which makes the model selection more explicit. It can be determined that the 
best-fit model is Burr distribution. 

Table 2. Model selection for travel speed data on October 13 ( 19.78, 7.48μ σ= = km/h). 

Distribution Log-Likelihood ( iL ) BIC The BIC weight Mean STD 
Lognormal -249789 499601 0 19.83 7.83 

Gamma -249548 499118 0.2412 19.78 7.34 
Weibull -253174 506369 0 19.78 7.74 

Burr -249541 499116 0.7588 19.81 7.73 
Rayleigh -259304 518620 0 18.75 9.80 

4.2. Best-Fit Distribution of Hourly Travel Distance 
In order to further investigate the hourly distributions of trip metrics, the study pe-

riod is discretized into 1464 (24*61) 1 h intervals. Figure 6 shows the best-fit distributions 
of hourly travel distance. The best-fit distributions are distinguished by five different 
markers, of which the Gamma distribution accounts for 93.10%—far higher than the 
other four distributions. Between 07:00 and 24:00, the proportion of Gamma distribution 
rises to 99.32%, which further demonstrates the advantage of Gamma distribution in fit-
ting travel distance data. During the times 00:00–07:00, the optimal distribution varies 
with hours and days, and is chaotically represented in five different markers. Only 
77.99% of the data still obey Gamma distribution, while 14.52% for Weibull distribution, 
6.79% for Rayleigh distribution, and less than 1% for lognormal distribution. This may be 
due to the small sample size at night. 

Figure 5. Fitted distributions for the observed travel speed data on October 13.

Table 2 shows more parameters in the model selection. The observed mean and
standard variation (STD) are very similar to several estimates. The commonly used
evaluation indices, such as the mean absolute percent error (MAPE) and the root mean
square error (RMSE), are also difficult when it comes to identifying the dominant distri-
bution. Furthermore, the log-likelihood of Burr distribution is slightly bigger than that
of Gamma distribution, which quantitatively proves that the Burr distribution has a bet-
ter model fit. When the BIC takes model complexity into account, the gap narrows to
2 (∆ = 499, 118− 499, 116 = 2), which means that the benefit of improved model fit
outweighs the cost of added model complexity. This tiny advantage is clearly distinguished
in the BIC weight, which makes the model selection more explicit. It can be determined
that the best-fit model is Burr distribution.

Table 2. Model selection for travel speed data on October 13 (µ = 19.78, σ = 7.48 km/h).

Distribution Log-Likelihood (Li) BIC The BIC weight Mean STD

Lognormal −249,789 499,601 0 19.83 7.83
Gamma −249,548 499,118 0.2412 19.78 7.34
Weibull −253,174 506,369 0 19.78 7.74

Burr −249,541 499,116 0.7588 19.81 7.73
Rayleigh −259,304 518,620 0 18.75 9.80

4.2. Best-Fit Distribution of Hourly Travel Distance

In order to further investigate the hourly distributions of trip metrics, the study period
is discretized into 1464 (24*61) 1 h intervals. Figure 6 shows the best-fit distributions of
hourly travel distance. The best-fit distributions are distinguished by five different markers,
of which the Gamma distribution accounts for 93.10%—far higher than the other four
distributions. Between 07:00 and 24:00, the proportion of Gamma distribution rises to
99.32%, which further demonstrates the advantage of Gamma distribution in fitting travel
distance data. During the times 00:00–07:00, the optimal distribution varies with hours
and days, and is chaotically represented in five different markers. Only 77.99% of the data
still obey Gamma distribution, while 14.52% for Weibull distribution, 6.79% for Rayleigh
distribution, and less than 1% for lognormal distribution. This may be due to the small
sample size at night.
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In addition, the BIC weights represented in different colors range from 0.38 to 1. The
darker the color, the smaller the BIC weight. It can be seen from Table 3 that most of
the BIC weights between 07:00 and 24:00 are very close to 1. Their mean BIC weight is
0.9986, indicating the high reliability in the model selection. However, the mean BIC weight
from 00:00 to 7:00 is 0.8540, which indicates that there is some uncertainty in the fitting
results. More specifically, the mean BIC weights of the lognormal, Weibull, and Rayleigh
distributions are 0.8362, 0.7094, and 0.7210, respectively. The high uncertainty may be
caused by small sample size, because fewer people travel at night. Meanwhile, lower
weights also mean that the best and suboptimal fitting distributions may both be applicable
to the data. In conclusion, Gamma distribution may also be applicable to all the travel
distance data.

Table 3. Statistics of best-fit distributions for travel distance.

Period Index Mean Lognormal Gamma Weibull Burr Rayleigh

00:00–24:00
Percentage 0.20% 93.10% 4.44% 0.27% 1.98%
BIC weight 0.9564 0.8362 0.9736 0.7207 0.7281 0.7210

00:00–07:00
Percentage 0.70% 77.99% 14.52% 0 6.79%
BIC weight 0.8540 0.8362 0.8927 0.7094 0 0.7210

07:00–24:00
Percentage 0 99.32% 0.29% 0.39% 0
BIC weight 0.9986 0 0.9998 0.9539 0.7281 0

4.3. Best-Fit Distribution of Hourly Travel Time

Figure 7 shows the best-fit distributions of hourly travel time, which are distinguished
by different markers. As shown by the black circles and red squares, Gamma and Burr
distributions are the dominant distribution types, with proportions of 76.23% and 20.56%,
respectively. In Table 4, larger BIC weights (0.9430 and 0.8982) of these two distributions
show a significant advantage over other three distributions when fitting 96.79% of the data.
Meanwhile, the fitting results have higher reliability.

On the other hand, the other three distributions, shown by blue dots, green triangles,
and red stars in Figure 7, account for less than 4%, and appear mainly at night (02:00–7:00).
At the same time, their average BIC weights are only 0.7515, 0.6296, and 0.7853, respectively.
These lower BIC weights indicate the higher uncertainty of the Lognormal, Weibull, and
Rayleigh distributions in fitting the data, which are likely to be replaced by Gamma or
Burr distribution.
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Table 4. Statistics of best-fit distributions for travel time.

Period Index Mean Lognormal Gamma Weibull Burr Rayleigh

00:00-24:00
Percentage 0.68% 76.23% 0.55% 20.56% 1.98%
BIC weight 0.9283 0.7515 0.9430 0.7446 0.8982 0.7853

02:00-07:00
Percentage 2.34% 71.43% 1.17% 18.27% 6.79%
BIC weight 0.8525 0.7515 0.8800 0.6296 0.8669 0.7853

National Day
holiday

Percentage 0 82.74% 0.60% 13.69% 2.98%
BIC weight 0.9459 0 0.9541 0.5342 0.9352 0.7854

During the National Day holiday, 82.74% of travel time data follow Gamma distribu-
tion with a mean BIC weight of 0.9541. However, only 13.69% obey the Burr distribution,
with an average BIC weight of 0.9352. This means that travel time data for the National
Day holiday are more inclined to the Gamma distribution than the Burr distribution.

4.4. Best-Fit Distribution of Hourly Travel Speed

Figure 8 shows the fitting results of hourly travel speed. The best-fit distributions
are distinguished by rhombus, circle, square, and star. On the whole, Burr distribution
accounts for 85.11% (1246 out of 1464) of the best-fit distributions, with a mean BIC weight
of 0.9830, showing an absolute advantage and high reliability. Similarly, the lognormal
and Gamma distributions have higher BIC weights but lower ratios. In contrast, the fitting
results for only 6 1 h intervals (0.41%) are consistent with Weibull distribution, with an
average BIC weight of 0.7007. This means that Weibull distribution is not suitable for
speed data.

In addition, some clustering features can be found in non-dominant best-fit distribu-
tions. For example, 77.94% (53 out of 68) of the lognormal distributions occurs during the
daily evening peak, with a mean BIC weight of 0.9986. About 40% of the Gamma distri-
butions exists during the National Day holiday, with a mean BIC of 0.9246. In conclusion,
Burr distribution is dominant in fitting travel speed data.



ISPRS Int. J. Geo-Inf. 2021, 10, 268 13 of 17

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 8. The fitting distributions of daily travel speed. 

4.5. General Distribution Selection 
Based on the above analysis, the Gamma distribution is dominated in the fitting of 

travel distance and travel time, while the Burr distribution is more suitable for travel 
speed. Trips following other distributions only makes up a very small portion of the total 
trips. Now, it may be questioned whether it is possible to fit all the corresponding data 
with the dominant distribution separately? If so, how much worse will the fit be? To 
answer this question, the K–S test, the BIC difference, mean absolute error (MAE), and 
mean absolute percentage error (MAPE) are analyzed separately.  

As shown in Table 5, among the trip metrics, 101, 348, and 218 out of 1,464 1 h in-
tervals are, respectively, replaced by Gamma or Burr distribution. For travel distance, the 
K–S test considers both the alternative distribution (Gamma) and the best-fit distribution 
as acceptable, respectively, for about 90% (93 or 90 out of 101) of the data. Meanwhile, the 
alternative distribution performs better for travel time because more data (76%) pass the 
K–S test. However, for the travel speed metric, the opposite is true, which needs to be 
further explained by other indicators. Moreover, selection of the more complex model 
indicates that the benefit of improved model fit outweighs the cost of added model 
complexity. 

For the first two trip metrics, the BIC difference between the alternative distribution 
and the best-fit distribution is relatively small, both being less than 10. However, the BIC 
difference for travel speed is slightly larger, possibly due to the different magnitude of 
the BIC values between the metrics. The ratio ( minBICΔ ) of BIC difference to the BIC of 
the best-fit distribution is less than 0.5%, which also indicates that there is no significant 
difference between the two distributions from model selection based on the BIC. In ad-
dition, the MAPE and MAE of the fitted distribution and sample distribution at the 10th, 
50th, and 90th percentiles are calculated by comprehensively considering the mean and 
variance. A MAPE of less than 4% further demonstrates the feasibility of fitting all data 
with a dominant distribution. 

Table 5. Fitting indicators of alternative distributions for three trip metrics. 

Indicators Travel Distance Travel Time Travel Speed 

Alternative distribution 
Type Gamma Gamma Burr 

Number 101 348 218 

K–S test 
Best-fit 90 (89%) 46 (13%) 137 (63%) 

Alternative 93 (92%) 264 (76%) 0 

The BIC difference minalternativeBIC BIC−  4.92 9.88 47.13 
minBICΔ  0.20% 0.10% 0.15% 

Figure 8. The fitting distributions of daily travel speed.

4.5. General Distribution Selection

Based on the above analysis, the Gamma distribution is dominated in the fitting of
travel distance and travel time, while the Burr distribution is more suitable for travel speed.
Trips following other distributions only makes up a very small portion of the total trips.
Now, it may be questioned whether it is possible to fit all the corresponding data with the
dominant distribution separately? If so, how much worse will the fit be? To answer this
question, the K–S test, the BIC difference, mean absolute error (MAE), and mean absolute
percentage error (MAPE) are analyzed separately.

As shown in Table 5, among the trip metrics, 101, 348, and 218 out of 1,464 1 h intervals
are, respectively, replaced by Gamma or Burr distribution. For travel distance, the K–S
test considers both the alternative distribution (Gamma) and the best-fit distribution as
acceptable, respectively, for about 90% (93 or 90 out of 101) of the data. Meanwhile, the
alternative distribution performs better for travel time because more data (76%) pass the K–
S test. However, for the travel speed metric, the opposite is true, which needs to be further
explained by other indicators. Moreover, selection of the more complex model indicates
that the benefit of improved model fit outweighs the cost of added model complexity.

Table 5. Fitting indicators of alternative distributions for three trip metrics.

Indicators Travel Distance Travel Time Travel Speed

Alternative
distribution

Type Gamma Gamma Burr
Number 101 348 218

K–S test
Best-fit 90 (89%) 46 (13%) 137 (63%)

Alternative 93 (92%) 264 (76%) 0
The BIC

difference
BICalternative − BICmin 4.92 9.88 47.13

∆/BICmin 0.20% 0.10% 0.15%
MAPE (10th, 50th, 90th) 2.35% 2.51% 0.96%
MAE (10th, 50th, 90th) 0.10 0.24 0.17

For the first two trip metrics, the BIC difference between the alternative distribution
and the best-fit distribution is relatively small, both being less than 10. However, the BIC
difference for travel speed is slightly larger, possibly due to the different magnitude of
the BIC values between the metrics. The ratio (∆/BICmin) of BIC difference to the BIC of
the best-fit distribution is less than 0.5%, which also indicates that there is no significant
difference between the two distributions from model selection based on the BIC. In addition,
the MAPE and MAE of the fitted distribution and sample distribution at the 10th, 50th,
and 90th percentiles are calculated by comprehensively considering the mean and variance.
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A MAPE of less than 4% further demonstrates the feasibility of fitting all data with a
dominant distribution.

5. Discussion

Based on the analysis in the previous section, the direct statistics (i.e., travel distance,
and travel time) of hourly trips all follow Gamma distribution, while the indirect statistic
(i.e., travel speed) obeys Burr distribution. Table 6 lists the average indicators of the trip
metrics, which reflects the performance of the Gamma and Burr distributions. The bigger
the R2 is, the better the goodness-of-fit is. Alternatively, smaller MAE, MAPE, and PPC
also indicate a better goodness-of-fit. Three key percentiles, 10th, 50th, and 90th, were
adopted to calculate the MAE and MAPE. The confidence level is equal to 80% (i.e.,α = 0.2,
90%− 10% = 80%) was adopted to construct the confidence interval.

Table 6. Evaluation of general distribution for three trip metrics.

Indicators Travel Distance Travel Time Travel Speed

General distribution Gamma Gamma Burr
R2 0.9859 0.9915 0.9864

MAPE (10th, 50th, 90th) 1.66% 2.15% 0.89%
MAE (10th, 50th, 90th) 0.0537 0.1887 0.2097

POPI 20.85% 20.00% 20.12%
POOI 19.21% 19.95% 19.86%
PPC 4.31% 2.54% 3.11%

According to Table 6, the mean R2 values of three trip metrics exceed 0.98, and even
reach 0.9915 for travel time. This shows that the fitting distribution has a strong ability to
interpret data, and this model is also good at fitting data. In general, a higher R2 indicates
a stronger interpretation ability of the fitting model to the data; that is, a better fitting effect.
Meanwhile, the MAPE and MAE indicators further prove this. The MAE of travel distance
is less than 0.1km, lower than 0.2 min for travel time, and about 0.21 km/h for travel speed.
Less than 3% of MAPEs further illustrate that the fitting distribution is quite consistent
with the observed data.

The mean POPIs are slightly worse than the target (20%), which indicates that less
than 80% of observation data are covered by the fitted confidence interval. Higher POPI
means lower POOI. As mentioned earlier, the fitting distributions work best when both
POPI and POOI are close to the target value (20%). The PPC values, 4.31%, 2.54%, and
3.11%, respectively, show a low deviation degree of POPI and POOI, which also declares
that the fitting distributions of three trip metrics have good accuracy. In summary, these
results indicate that the Gamma distribution fits direct trip metrics, such as travel distance
and travel time, well, while the Burr distribution fits travel speed better.

6. Conclusions

This study models the distributions of human mobility metrics based on actual tra-
jectory datasets, including about 18,000 online car-hailing rides, collected in Xi’an, China.
Three trip metrics—travel distance, travel time, and travel speed—are highlighted in order
to establish a base for human mobility research. Results of this study provided several new
insights on relationships within human mobility.

First, the mobility metrics tend to right-skewed distribution rather than normal dis-
tribution based on online car-hailing trajectory data. By analyzing the daily and hourly
trip data, five of the most widespread right-skewed distributions (i.e., Lognormal, Gamma,
Weibull, Burr, and Rayleigh) in the scientific literature were selected as candidate dis-
tributions. By leveraging the Bayesian information criterion (BIC), we comprehensively
analyzed the goodness of fit and complexity of the candidate distributions for each met-
ric, thus acquiring the best fitting distribution and suitable parameters. The empirical
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results based on online car-hailing trajectory dataset in Xi’an, China, have provided strong
evidence that the mobility metrics obey the right-skewed distribution.

Second, the distribution types of mobility metrics vary, along with day of week and
time of day, which means that a single distribution cannot fit all the daily and hourly data
well. Initially, the Gamma distribution performs best among all alternative distributions for
travel distance and can uniformly fit all daily data. Then, the Gamma or Burr distribution
can only achieve a good fit in part of the daily travel time or speed data. For the hourly
data, the best-fit distributions vary among alternative distributions, especially at night. The
Gamma distribution most often performs better than the other four distributions for both
travel distance and travel time, while the Burr distribution performs best for travel speed.

Third, although uncertain distribution types exist in the daily and hourly data, a
dominant distribution exists in each mobility metric. For example, the Gamma distribution
can fit more than 90% of hourly travel distance data, and the Burr distribution can achieve
a fit for 85% of hourly travel speed data. Further analysis shows that it is feasible to fit all
hourly data with a dominant distribution, respectively.

It is expected that the findings from this study can promote understanding about intra-
urban human mobility and lay a solid foundation for human mobility research. However,
we do note several limitations of this research. Firstly, the candidate distributions are
limited to five commonly used skewed distributions, and more may need to be considered.
Secondly, only the distribution of daily and hourly trip data is fitted and analyzed; the
more fine-grained distribution (e.g., 30 min, 15 min) is also of interest, which still needs
further study. Last but not the least, distribution may vary with the different datasets;
multi-source data need to be taken into account to confirm the conclusions.
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