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Abstract: A city is a complex system that never sleeps; it constantly changes, and its internal mobility
(people, vehicles, goods, information, etc.) continues to accelerate and intensify. These changes
and mobility vary in terms of the attributes of the city, such as space, time and cultural affiliation,
which characterise to some extent how the city functions. Traditional urban studies have successfully
modelled the ‘low-frequency city’ and have provided solutions such as urban planning and highway
design for long-term urban development. Nevertheless, the existing urban studies and theories are
insufficient to model the dynamics of a city’s intense mobility and rapid changes, so they cannot
tackle short-term urban problems such as traffic congestion, real-time transport scheduling and
resource management. The advent of information and communication technology and big data
presents opportunities to model cities with unprecedented resolution. Since 2018, a paradigm shift
from modelling the ‘low-frequency city’ to the so-called ‘high-frequency city’ has been introduced,
but hardly any research investigated methods to estimate a city’s frequency. This work aims to
propose a framework for the identification and analysis of indicators to model and better understand
the concept of a high-frequency city in a systematic manner. The methodology for this work was
based on a content analysis-based review, taking into account specific criteria to ensure the selection
of indicator sets that are consistent with the concept of the frequency of cities. Twenty-two indicators
in five groups were selected as indicators for a high-frequency city, and a framework was proposed to
assess frequency at both the intra-city and inter-city levels. This work would serve as a pilot study to
further illuminate the ways that urban policy and operations can be adjusted to improve the quality
of city life in the context of a smart city.

Keywords: high-frequency city; urban mobility; big data; spatial network; urbanisation

1. Introduction

A city is a complex system centred on people, resources and services. It includes
residential buildings, industrial and commercial areas, schools, hospitals and other places
and urban systems that interact with each other and become more vital because of human
mobility. Ibn Khaldun (1332–1406), considered the founder of sociology, economics, histori-
ography and demography [1], wrote in his best-known book, Muqaddimah or Prolegomena
(‘Introduction’ in English), that cities resemble humans, in that they are born, grow, age,
and die in an integrated life cycle. When political, economic, or other events occur during
the city’s life cycle, the city must be restructured to restore its viability. Ibn Khaldun wrote
that only cities that can be restructured will endure and flourish, and those whose functions
cannot be restructured will die or perish. Undoubtedly, the perspective of Ibn Khaldun
coincides with the proposal of Professor Michael Batty [2], a famous British urban planner
and geographer, that

“In fact, the city is many times more complex than a single organism in that it is a
collective of many pulses all firing at different rates but that are ultimately coordinated
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by our own human life cycles and rhythms. This we might think of as the ‘high-frequency
city,’ in contrast to our traditional model of cities whose dynamics evolve and change
over much longer time scales and at lower frequencies.”

Cities today are in a continuous state of growth and of successive responses to internal
changes in the relationships among their various components and to the external influences
imposed upon them. More than half of the world’s population lives in cities, and that
proportion will increase to approximately 70% by the middle of the century [3]. Therefore,
we should promote harmony with these changes and influences to allow cities to continue
to thrive in the era of urbanisation by modelling the ‘high-frequency cities.’ The city
represents a system of diverse functions, and the number and scope of such functions
vary from city to city. From a short-term perspective, urban functions may change hourly
because they support a variety of human activities 24 h a day [4]. An understanding of
the dynamics of these functions would be beneficial to address current urban planning
challenges, such as providing better public transit services, managing traffic congestion and
making our cities smarter and more sustainable. Human activities play a significant role in
the study of urban dynamics. For example, urban dynamics demonstrate human mobility
and activities through time and space, as reflected in spatial interaction and changes in the
urban structure over time [5,6].

In recent years, the main challenges in urban studies have been to understand human
mobility and activities and their impact on urban dynamics and to infer urban functions
at a high spatiotemporal resolution. Most studies in the field of urban planning and man-
agement have dealt with low-frequency cities, whose structure remains stable over years,
decades and even centuries. Rapid urbanisation and the 24-h nature of most megacities
have made today’s megacities more active, and urban mobility undergoes periodic and
more frequent changes in the short term. Moreover, today’s megacities face various chal-
lenges in terms of short-term management and control. Traditional urban studies have
successfully modelled the ‘low-frequency city’ and have provided solutions such as urban
planning and road design for long-term urban development, such as the classical models
of urban structures shown in Section 2. However, existing urban studies and theories
are insufficient to model the dynamics of cities’ intense mobility and rapid changes and
are thus unable to tackle short-term urban problems such as traffic congestion, real-time
transport scheduling and resource management.

The dominance of computers and smartphones in most aspects of our daily lives
and the emergence of the Internet of Things as an integral part of the fabric of the city
itself have removed many obstacles to researchers’ and urban planners’ ability to plan
and improve the city in the short term. Moreover, various types of flows, such as people,
vehicles, freight, materials, goods, money and information, can be monitored at a high time
resolution. These data have inspired us to change our thinking towards the high-frequency
city. We note that the general idea of a high-frequency city was coined by Batty [2,7].
Although this idea was introduced more than two years ago, no explicit definition or
indicators for modelling the frequency of a city have been established. In this article, we
develop a framework for the estimation of a comprehensive index to assess the level of
frequency at both intra-city and inter-city levels.

The remainder of this paper is organised as follows. Section 2 introduces the concept
of a high-frequency city. Section 3 illustrates the methodology for selecting indicators
that fit the concept of a high-frequency city and the proposed methodological framework
for analysing the selected indicators to assess cities based on their frequencies. Section 4
then presents a set of 22 indicators selected for modelling the frequency of a city. Finally,
Section 5 summarises this paper.

2. The Concept of a High-Frequency City

Since the early 20th century, urban planners and geographers have shown interest
in the ‘nature of cities’, especially in terms of their growth in space and attraction to
populations [8]. Researchers with an interest in urban studies thus began to propose
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models and answer questions about the urban structure. Ibn Khaldun pointed out in
Muqaddimah that the first cities did not emerge suddenly and quickly but experienced
several stages in their development. This pattern of development has also been observed
over decades in the evolution of urban structures and its transition from monocentric to
polycentric models; for example, the structure of Beijing city [9]. In the early 20th century,
the conditions of transport and the urban environment made it possible for workers to
afford accommodation near the city centre to reduce their daily transport costs. As a result,
Burgess introduced the concentric zone model for a typical industrial city (e.g., Chicago) in
1925 [10], as shown in Figure 1A. In the 1930s, the cost of bus tickets became affordable
for workers, and accessibility to the central business districts improved along transport
routes [11]. In addition, some areas of cities became hubs for specific activities, and the
growth and expansion of cities took the form of sectors based on socioeconomic groups. In
1939, Hoyt modified the concentric zone model to a sector model, as shown in Figure 1B,
to describe the structure of cities. With the increasing number of car owners, the human
movement has become more dynamic than ever and has allowed the specialisation of
regional centres and the distribution of sources and services. Based on these developments,
in 1945, Harris and Ullman proposed a multiple-nuclei model as the primary description
of a polycentric city with a dominant central business district [11], as shown in Figure 1C.
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However, these classical models are inadequate for today’s urban challenges because
they are based on traditional types of data, do not account for the changes that occur
in cities and are observed in the short term; thus, they only apply to what is called low-
frequency cities. Cities are always in flux, and these dynamics are the pulse of the city. The
dominant factor in these dynamics is the pattern of urban mobility. In addition, various
political, social, religious and technical factors influence mobility and its frequency. An
example of the impact of political decisions on free movement is the issue of the United
Kingdom leaving the European Union (Brexit). This decision will inevitably affect the free
movement of people, goods, services and capital between the United Kingdom and the
European Union. The development of human-to-human communication technologies is
changing lifestyles and mobility, as has happened with the advent of mobile phones and
may continue to change in the future with the availability of satellite-based Internet and
its complete coverage of the Earth. Because urban mobility patterns change frequently
within a short time, we must change our thinking about cities from low-frequency to
high-frequency models.
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Today’s cities face many challenges and changing circumstances at a global level,
including urbanisation, traffic congestion, air pollution, noise, multiculturalism and the
emergence of slums in developing cities [13]. These challenges have led researchers and
planners to address residents’ quality of life and meet their needs in two main orientations:
smart cities and sustainable cities. The smart city is based on the use of information and
communications technology in every subsystem of the city [14]. For a sustainable city, the
focus is on preserving the existing resources and capacities of the environment and using
these resources according to standards that do not deplete health or the environment [15].
Previous studies have developed a set of indicators or a composite index to assess transport
performance and urban mobility to achieve the goals of different orientations of a city (e.g.,
smart city, sustainable city, competitive city and liveable city). Some of these previous
studies are listed in Table 1. However, these orientations have shortcomings in the short-
term analysis of a city, according to Batty [7]:

“Despite all the hype about the smart city and the generation of big data from networks
of sensors that are likely to be installed everywhere, none of this has resolved the basic
problem that faces us in our understanding of cities and the means we have to predict
and design their future.”

Table 1. A list of some previous studies considered in the literature review for the selection of indicators within the period
from 2010 to 2021, arranged in descending order for the year of publication, followed by ascending order for the number of
indicators.

Method, Publication
Year and References Objective of Study Orientation of

the City Type Categories Extent of
Application

# of Indica-
tors/Metrics

# of
Applied

Cities

Sustainability
Assessment of Shared

Automated Electric
Vehicles, 2021 ([16])

Measuring the impacts
of shared automated
electric vehicles on

mobility.

Sustainable City Indicator Set
Social, Environmental,

Economic and
Governance

International 20 -

Mobility Performance
Metrics (MPM), 2020

([17])

Measuring the extent to
which the integrated

public-private mobility
system meets the needs

of passengers, the
performance of the

system while meeting
mobility on demand

(MOD).

Sustainable City Indicator Set

Connectivity, Financial
Management, Planning,
Environmental, Equity,

Safety and Security,
Customer Satisfaction,

Organisational
Excellence and State of

Good Repair

International 63 11

The Deloitte City
Mobility Index (DCMI),

2019 ([18])

Evaluating the
performance of a city’s
mobility network and

its readiness to embrace
the future.

Sustainable City Composite
Index

Performance and
Resilience, Vision and

Leadership, Service and
Inclusion

International 15 57

Smart Mobility
Indicator (SMI), 2019

[19]

Developing an index to
assess the level of
"smart mobility"

solutions implemented
in cities.

Smart City Composite
Index

Technical infrastructure,
Information

infrastructure, Mobility
methods and
Legislation

International 17 -

Urban Mobility
Indicators for Walking
and Public Transport,

2019 ([13])

Investment promotion
in more accessible, safe,
efficient, affordable and

sustainable
infrastructure for

walking and public
transport.

Sustainable and
Liveable City Indicator Set

Comfort and Safety,
Service Demand,

Connecting
Destinations, Support
and Encouragement

European 34 8

Urban Mobility
Performance Indicators,

2019 ([20])

Identifying the most
used urban mobility

metrics.1
Sustainable and

Smart City Indicator Set

Accessibility,
Environmental, Social,

Economic,
Infrastructure,

Integrated Planning,
Health and safety,
Traffic Circulation,

Urban Transportation
System and Smart

Mobility

International 63 -
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Table 1. Cont.

Method, Publication
Year and References Objective of Study Orientation of

the City Type Categories Extent of
Application

# of Indica-
tors/Metrics

# of
Applied

Cities

Transportation
Sustainability Indices

for a Liveable City, 2018
([21])

Developing sustainable
transport indicators for
a liveable city to predict
its future dynamics and
formulate sustainable

urban transport
strategies that take into

account the time
dependency of the

indicators.

Sustainable and
Liveable City Indicator Set Environment, Economic

and Social National 18 1

Mobility Index
Sustainable Urban
(IMUS), 2017 ([22])

Presenting an overview
of different urban

mobility indices and
application of the

Mobility Index
Sustainable Urban

(IMUS) for the public
transport sector. 1

Sustainable City Composite
Index - National 22 1

Sustainable Cities
Mobility Index, 2017

([23])

Comparison of global
mobility systems in
terms of sustainable

urban mobility, which
includes measures for

the social,
environmental and

economic health of the
city.

Sustainable City Composite
Index

People, Planet and
Profit International 23 100

Indicators for
Sustainable and liveable

Transport Planning,
2017 ([24])

Providing guidance on
the use of indicators for
sustainable and liveable

transport planning. 1

Sustainable and
Liveable City Indicator Set

Economic, Social,
Environmental, Good

Governance and
Planning

International 40 -

Citykeys Indicators For
Smart Cities, 2017 ([25])

Monitoring the
evolution of a city
towards an even

smarter city.

Smart City Indicator Set
People, Planet,
Prosperity and

Governance
European 76 -

Sustainable Urban
Mobility Indicators,

2017 ([26])

Providing a literature
review and selection of

urban mobility
indicators for

Thessaloniki city.

Sustainable City Indicator Set

Integration of Land Use,
Accessibility, Mobility,

Promotion of
Non-Motorised Means,
Encouragement Of PT,

Environmental
Concerns, Economic

Welfare and Road Safety

National 80 1

Sustainability Measures
of Urban Public

Transport, 2016 ([27])

Assessing the
sustainability of public

transport systems.
Sustainable City Indicator Set

Environment, Social,
Economic and System

Effectiveness

Middle
East/Asia 15 26

Sustainability
Compound Index (SCI),

2012 ([28])

Assessing and
prioritising

transportation
sustainability strategies

in Taipei city.

Sustainable City Composite
Index

Society, Economy,
Environment, Energy

and Finance
National 10 -

Indicators for
Sustainable Urban

Mobility, 2012 ([29])

Developing a set of
urban mobility

indicators to show the
driving forces behind

the evolution of
transport volumes and

modal split and to
assess the performance

of transport and
environmental policies.

Sustainable City Indicator Set

Population, Economy,
Urban structure,

Transport, Environment
and Policy

National 43 21

Transport Sustainability
Index (TSI), 2011 ([30])

Providing a hybrid
approach based on the
Analytical Hierarchy
Process (AHP) and

Dempster–Shafer theory
to assess the impact of

green transport
measures on the

sustainability of a city.

Sustainable City Composite
Index

Society, Transport,
Environment, Energy

and Economy
International 19 -



ISPRS Int. J. Geo-Inf. 2021, 10, 317 6 of 30

Table 1. Cont.

Method, Publication
Year and References Objective of Study Orientation of

the City Type Categories Extent of
Application

# of Indica-
tors/Metrics

# of
Applied

Cities

Index of Sustainable
Urban Mobility

(I_SUM), 2010 ([31–33])

Evaluating and
comparing the mobility

condition of cities.
Sustainable City Composite

Index

Accessibility,
Environmental, Social,

Political, Transport
Infrastructure,

Non-Motorised Modes,
Integrated Planning,
Urban Circulation
Traffic and Urban

Transport Systems.

National 87 6

1 The document presented examples of applied sustainability indicator set or various sustainability indices in various studies.

As noted above, although the general idea of a high-frequency city was introduced
more than two years ago, no explicit definition or indicators to measure the frequency of a
city have been established. The first dilemma we faced was thus to propose a comprehen-
sive and clear definition of a high-frequency city. A well-known example of ‘frequency’
in daily life is alternating current (AC), which periodically reverses direction (i.e., the
electrons flow is bi-directional) and changes magnitude over time. From this point of view,
a city can be considered as an AC circuit, with individuals, buses, taxis and information as
electrons and origin/destination pairs as the north and south poles. Based on our vision
related to the concept of a high-frequency city, we propose the following comprehensive
definition:

“A high-frequency city is a self-organised city that can regain its pulse, balance its
urban functions and continue to thrive and show resilience by creating an environment
that is conducive for residents to engage in their various activities at various times
while maintaining sustainability as much as possible, which can be observed, modelled
and optimised via analysis of available geo-big data collected through the sensors and
techniques inherent to smart cities with a fine spatiotemporal resolution.”

3. Methodology

This section is divided into two subsections: The first subsection presents the method-
ology used to create a literature database from which suitable indicators for the concept
of the high-frequency city were extracted. The second subsection illustrates the proposed
framework for the analysis of the selected indicators to assess the frequency of cities.

3.1. Review Methodology

A literature review was conducted in relation to mobility patterns and the concept
of frequency, as well as the evaluation of smart and sustainable cities. The purpose of
this study is to select indicators and propose a methodological framework for the analysis
of these selected indicators in order to evaluate cities in accordance with the concept of
frequency, as explained in Section 2. To select indicators that fit the concept of a high-
frequency city, a content analysis-based review step was conducted, based on two basic
phases: the construction of the literature database and the development of criteria for the
selection of indicators. The literature review was used in the context of mobility patterns
and transport network performance, as well as the review of the frequency concept and
the assessment of mobility in a smart and sustainable city. The phase of the construction of
the literature database is mainly based on the literature search strategy and study selection.
It should be noted that the main database created consists of four sub-databases as follows:

• Database for Smart/Sustainability Assessment: This database has been constructed
on methods, guidelines and procedures dealing with indicators for assessing mobility
in smart and sustainable cities;

• Database for Exploring Human Mobility Pattern: This database has been constructed
on robust existing methods and metrics used for human mobility and urban goods
movement. Although there are indicators that cover the category of mobility in both
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approaches (i.e., sustainable and smart city), each indicator is examined from the
specific concept of each orientation. For example, the goal of mobility indicators in
the sustainable city reflects the extent to which the use of public transit systems is
encouraged in order to maintain the sustainability of resources for future generations,
even if it results in the city becoming inactive. This differs from our concept of the
high-frequency city, where we look for indicators that reflect the extent of mobility
and interaction of people within the city through time and space, as well as the
monitoring frequency of these patterns within the city while respecting the principle
of sustainability as much as possible;

• Database for Reviewing Metrics of the Selected Indicators: This database has been
created to examine most existing metrics, methods and models for calculating the
selected indicators, whether they are based on traditional methods or artificial intelli-
gence methods such as machine learning or deep learning. Moreover, this database
consists of literature related to the selected method in our proposed framework;

• Database for Understanding the Complexity of the City: This database has been
created to understand the complexity of the city, as well as ways to represent this
ever-changing complexity of dynamic systems in the city, such as the use of multilayer
networks.

3.1.1. Literature Search Strategy

In order to create the literature databases, we first considered the relevant articles
we were already aware of. Secondly, academic search engines, such as ‘Google Scholar’
and ‘Research Gate,’ were used. Search engine results were supplemented by reports
from international and regional organisations and networks such as the Organisation for
Economic Co-operation and Development (OECD), the World Business Council for Sus-
tainable Development (WBCSD), International Association from Public Transport /UITP,
Victoria Transport Policy Institute (VTPI), Institute for Environment and Sustainability,
Joint Research Centre and CITYkeys in European Commission.

To construct the first database, the used keywords were ‘sustainable* mobility,’ ‘sus-
tainable mobility indicator,*’ ‘sustainable city assessment,’ ‘sustainable city,’ ‘urban mobility
indicator,*’ Index of sustainable urban mobility,’ ‘smart mobility,’ ‘smart mobility indica-
tor,*’ ‘smart city assessment’ and ‘transport performance.’ In order to construct the second
database, we used the following keywords: ‘mobility pattern,’ ‘travel pattern,’ ‘mobility
behaviour,’ ‘travel behaviour,’ ‘human behaviour,’ ‘human movement,’ ‘goods movement
pattern’ and ‘freight activity.’ As for creating the third database, we relied on some of
the studies found in the previous database. We also collected additional research using
keywords related to the selected indicators. To create the last database, the keywords
used were ‘complex city,’ ‘city as systems,’ ‘self-organising cities’ and ‘multilayer network
analysis.’ Furthermore, we checked the list of references in the selected articles and reports.

3.1.2. Studies Selection

The criteria developed for selecting appropriate articles and reports for our final
literature database lists are as follows:

• Relevant: The purpose of the selected articles compatible with the purpose of the
database in which it is to be included. For example, the articles and reports included
in the first database provide a set of indicators to assess sustainability or smart city;

• External validity: The framework or methods of the article can be applied in various
cities around the world;

• Expertise: The selected article is peer-reviewed, and the reports have been prepared by
experts in reliable international organisations and international academic institutions.

In addition, the content of the selected article or report should relate in some way to
the context of urban studies and mobility or be applied as much as possible to mobility
assessment. Our final main literature database lists 336 documents, distributed as follows:
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260 journal articles, 26 conference papers, 17 books and book chapters, 31 reports and 2
theses. The share of each sub-database of these documents is shown in Table 2.

Table 2. The distribution of included documents in the literature databases.

Journal Articles Conference
Papers

Books/Book
Chapters Reports Theses Total

Database for Smart/Sustainability
Assessment 34 4 1 18 0 57

Database for Exploring Human
Mobility Pattern 56 8 0 0 0 64

Database for Reviewing metrics of
the Selected Indicators 96 8 3 9 1 117

Database for Understanding the
Complexity of the City 74 6 13 4 1 98

Total 260 26 17 31 2 336

We created a keywords co-occurrence network using VOSviewer 1.6.16 software. The
keywords were created using the unique terms from the titles and abstracts of the included
documents. We used the binary counting method for counting the number of occurrences
for each term, and the minimum number of occurrences of a term was set to 5. Out of 8088
terms, 407 met the threshold. For each of the 407 terms, a relevance score was calculated.
Based on this score, the most relevant terms were selected by selecting the 60% most
relevant terms (default choice). In this way, the 244 most relevant terms are displayed in the
density visualisation map (Figure 2). The density visualisation map of the co-occurrence
of the 244 most relevant terms contained four clusters. The density of a term reflects the
number of relevant keywords in the different documents where both were found. The
distance between two terms gives an indication of the interdependence of the two terms.

3.1.3. Which Criteria, for Which Indicators?

Based on the intentions stated above regarding the consideration of a city as having
greater complexity than a single organism and as having many impulses and expressing
dynamic processes, attempts should be made to use big data and extensible open data to
understand the frequency of the cities. Thus, several requirements have been suggested
for the selection of efficient and applicable indicators for modelling high-frequency cities.
In particular, these indicators should address key risk factors, should be compatible with
the available data and should be sufficiently clear in the presentation to be used by all
stakeholders. An extensive literature review was conducted based on the first and second
sub-databases to identify indicators and metrics used in urban studies. To select the
appropriate indicators, the following criteria were used, which were mentioned in various
studies (e.g., [34,35]) and consistent with our study objective:

• Measurable with reasonable precision, depending on available data and high-frequency
observations;

• Easy to understand and substantial;
• Benchmarkable (i.e., the indicator must reveal the performance of alternatives);
• Scalable (i.e., the indicator must be suitable for different spatiotemporal resolutions);
• Specific (i.e., the indicator must evaluate the exact mobility aspects).

3.2. Proposed Framework for Modelling High-Frequency Cities

This subsection discusses our proposed framework, including the development of a
mechanism to compare and analyse high-frequency cities. This has particular relevance
because no study has attempted to identify indicators to evaluate a city’s frequency. A
methodological approach must therefore be proposed to identify indicators to evaluate
high-frequency cities. As demonstrated in Figure 3, our proposed framework consists of
two phases: pre-processing and high-frequency city analysis.
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3.2.1. Pre-Processing

This phase includes defining the indicators based on the available data sources and
pre-processing the data sources.

Defining the Indicators

To determine a city’s frequency, it is imperative to consider indicators that include
different analytical dimensions, such as the environmental, socio-economic and mobil-
ity dimensions. Although most of the indicators reflecting the frequency of cities are
associated with mobility, they are somehow linked to environmental and socio-economic
dimensions. Each indicator has an economic or social benefit to the individual or to society
as a whole. The indicators related to mobility are relevant in the context of daily human
travel behaviour. The selection of indicators depends on a review of the literature in urban
research and the quality of their fit with the concept of a high-frequency city in this study.
After reviewing numerous journal articles and reports from organisations and departments
involved in urban studies, the most suitable indicators compatible with mobility big data
were selected. In this study, we classified the indicators into five categories, namely human
mobility, public transit systems (PTSs), road network (i.e., vehicular movement), urban
goods movement (UGM) and land use.

This study aims to model high-frequency cities by analysing the changes that occur
over short periods of time; therefore, its focus is on the selection of short-term and semi-
short-term indicators, the use of which can reduce the dependence on long-term indicators
for monitoring changes. Short-term indicators are those for which changes in values can be
observed within seconds, minutes, hours, days or weeks, semi-short-term indicators are
those for which changes in values can be observed over a longer time (i.e., months), whilst
long-term indicators embrace changes over years and decades.



ISPRS Int. J. Geo-Inf. 2021, 10, 317 10 of 30

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 11 of 31 
 

namely human mobility, public transit systems (PTSs), road network (i.e., vehicular 
movement), urban goods movement (UGM) and land use. 

This study aims to model high-frequency cities by analysing the changes that occur 
over short periods of time; therefore, its focus is on the selection of short-term and semi-
short-term indicators, the use of which can reduce the dependence on long-term indica-
tors for monitoring changes. Short-term indicators are those for which changes in values 
can be observed within seconds, minutes, hours, days or weeks, semi-short-term indica-
tors are those for which changes in values can be observed over a longer time (i.e., 
months), whilst long-term indicators embrace changes over years and decades. 

 
Figure 3. The methodological framework for the evaluation of the high-frequency city. 

Pre-Processing Data Sources 
As the amount and variety of data increase, the associated uncertainty also leads to 

mistrust in the resulting analysis process and the decisions made. As can be seen from the 
proposed framework, we rely on a diversity of sources and a variety of data, so there must 

Figure 3. The methodological framework for the evaluation of the high-frequency city.

Pre-Processing Data Sources

As the amount and variety of data increase, the associated uncertainty also leads to
mistrust in the resulting analysis process and the decisions made. As can be seen from
the proposed framework, we rely on a diversity of sources and a variety of data, so there
must be a pre-processing phase aimed at identifying uncertainties and trying to mitigate
them. In big data analytics, artificial intelligence approaches offer more reliable, faster,
and more scalable findings than traditional data techniques and platforms [36]. In the
previous literature, there are many theories and techniques for dealing with uncertainty,
and the most common approaches are discussed in these studies [36,37]. Figure 4 shows
the common approaches used for measuring the uncertainty in big data.
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To process big data accurately and with certainty of results, mitigating the uncertainty
inherent in such data must be at the forefront of any technique that is to be applied. Hariri
et al. summarised the strategies used for uncertainty mitigation (ibid), as shown in Figure 5.
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3.2.2. High-Frequency City Analysis

The second part includes analysis steps for future empirical analysis. As seen from
the methodological framework, this analysis can be carried out on both the intra-city
and inter-city levels. To assess a city’s frequency at both levels, three main steps are
implemented: addressing aggregation strategies, indicator analysis and assessment and
ranking of alternatives (i.e., spatial units or cities). The following subsections illustrate in
detail the steps of our proposed framework.

Addressing Aggregation Strategies

Given our dependence on diverse source data, as well as the possibility of applying the
proposed framework at intra-city and the inter-city level, we need to address the Modifiable
Areal Unit Problem (MAUP) and the Modifiable Temporal Unit Problem (MTUP) (e.g.,
spatial and temporal aggregation). As can be seen from the proposed framework, both
MAUP and MTUP effects should be addressed at the intra-city level, but only MTUP
effects should be addressed at the inter-city level. This is because MAUP effects arise when
aggregating the available data into different spatial units. The spatial units used for the
intra-city level can be represented by grid cells, traffic analysis zones and spaces between
road networks (i.e., street blocks). For more details about MAUP and MTUP, refer to [38].

Indicator Analysis

In our proposed framework, the indicators can be analysed at both the inter-city and
the intra-city level, and the analyses at both levels involve the same steps. As shown
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by the proposed framework, the indicator analysis phase consists of two parallel boxes,
namely the white box and the black box. The white box refers to the traditional data
analysis techniques and applications of network theory. Scholars in urban research and
transport geography have particular incentives to represent urban spatial interactions as
real networks, especially the flows of people and vehicles. Most urban network analyses
rely on methods developed for social networks. Although most studies of urban networks
have used traditional centrality measures to analyse the networks using only topological
attributes, Senousi et al. considered both topological and geometric attributes to analyse
public transit networks (PTNs) using smart card data (SCD) [39]. Moreover, most urban
systems do not operate in isolation, so it is advisable to use multilayer networks whenever
possible in the analysis of indicators that consider topological and geometric attributes. Škrlj
et al. presented an overview of the tools and software used for analysis and visualisation
of single-layer and multilayer networks [40]. The black box refers to artificial intelligence
techniques, such as deep learning. Deep Learning is an innovative methodology for making
inferences on massive or complex data. The development of deep learning provides a
black box to depict geospatial patterns. Various techniques were applied in urban studies,
such as classical neural networks, convolution neural networks (CNNs) and graph neural
networks (GNNs). With the advent of graph neural networks, an effective method for
dealing with graph-structured data is available [41]. This technique is a promising avenue
for future urban studies, as there are many important real worlds in the form of networks
or graphs.

City Assessment and Ranking

The final phase in the indicator analysis comprises three steps: determining the
weights for the indicators, ranking the alternatives, and calculating the composite index
for the high-frequency city (i.e., High-Frequency City Index (HFCI)). The alternatives
are represented at the intra-city level by spatial units, whilst at the inter-city level, they
are represented by cities. First, the weights of the indicators can be calculated with the
entropy weight method (EWM), a common technique used for weighting in multiple-
criteria decision-making that works with both quantitative and qualitative data. Unlike
subjective fixed-weighting methods, such as the Analytic Hierarchy Process (AHP) and
the Delphi method that were used in previous studies related to sustainability city, EWM
avoids the influence of human bias on the weights of indicators, which reduces human
error and leads to results more consistent with the facts, thus increasing the objectivity
with which a composite indicator is created. In this paper, the EWM is used to estimate the
weights of the indicators as follows.

In the EWM, assuming that the number of indicators is n, and the number of alterna-
tives is m; the estimated value of the ith indicator in the jth spatial unit is denoted as xij.
The first step in this method is to normalise the indicator values to an appropriate scale.
The normalised value of the ith indicator in the jth spatial unit is defined as pij and can be
calculated with the following formula [42]:

pij =
xij√

∑m
j=1 xij

2
, (i = 1, 2, . . . ., n ; j = 1, 2, . . . ., m) (1)

After normalising the indicators’ values, the matrix of normalised indicators is P =[
pij
]

m×n. Using this method, the entropy ei of the ith indicator can be calculated as follows
(ibid):

ei = −h
m

∑
j=1

pij ln
(

pij
)

(2)

The h value in Equation (2) can be estimated by Equation (3):

h =
1

ln(m)
(3)
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where m is the number of spatial units. The entropy weight wi of the ith indicator is then
estimated by the following formula (ibid):

wi =
1− ei

∑n
i=1(1− ei)

(4)

The lower the entropy value ei, the higher the entropy weight wi of the indicator, and
the greater the effect of the ith indicator (and vice versa).

Second, the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS
method) is the most common and direct method of multiple-criteria decision-making. The
TOPSIS method is used when determining the preference order of alternatives, making
it an ideal choice for ranking spatial units or cities. The basic principle of this method is
to identify both sides—positive and negative—of the ideal solution. In other words, the
alternatives are ranked according to two criteria: the shortest distance to the positive ideal
solution and the longest distance to the negative ideal solution. The intent of identifying
a positive ideal solution is to maximise the indicators that lead to benefits and minimise
those that lead to costs (and vice versa for identifying a negative ideal solution) [42]. The
TOPSIS method is applied in this study because it is simple, it facilitates the calculation
process, it can accommodate a large number of alternatives, and it considers the distance
between the two sides of the ideal solution.

This method includes eight steps: (1) building the indicators’ value matrix, (2) nor-
malising the indicators’ values, (3) determining the indicators’ weights, (4) constructing
the matrix of the normalised value of the weight, (5) identifying the positive and negative
ideal solution, (6) computing the distance between each alternative and each side of the
ideal solution, (7) computing the relative proximity to an ideal solution and (8) ranking
the alternatives. The first three steps in this method are performed in the previous part by
applying the EWM. The remaining steps in the TOPSIS method are therefore dependent
on values previously calculated with the EWM. The fourth step can then be performed to
compute the normalised value vij of the weight by multiplying the ith indicator’s weight
by a normalised value pij, as demonstrated in the next equation:

vij = wi pij, (i = 1, 2, . . . ., n ; j = 1, 2, . . . ., m) (5)

The ideal solution can then be identified. Here, the positive ideal solution A+ consists
of the best value of each indicator from the normalised weighted matrix V =

[
vij
]

m×n,
and the negative ideal solution A− consists of the worst value based on the normalised
weighted matrix. Equations (6) and (7) illustrate how to calculate A+ and A−.

A+ =
{

v+1 , v+2 , . . . , v+n
}
=

{(
max

j
vij

∣∣∣∣i ∈ I1

)
,
(

min
j

vij

∣∣∣∣i ∈ I2

)}
(6)

A− =
{

v−1 , v−2 , . . . , v−n
}
=

{(
min

j
vij

∣∣∣∣i ∈ I1

)
,
(

max
j

vij

∣∣∣∣i ∈ I2

)}
(7)

where I1 and I2 express the benefit and cost indicators, respectively. The best and worst
values of the ith indicator are represented by v+i and v−i , respectively. The greater the
benefit indicator, or the lower the cost indicator, the more favourable the evaluation results
(and vice versa). The Euclidean distance can be used to compute the separation distance
between each alternative and the positive ideal solution as follows:

S+
j =

√
n

∑
i=1

(
vij − v+i

)2 , (i = 1, 2, . . . ., n ; j = 1, 2, . . . ., m) (8)
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The separation distance between the alternative and the negative ideal solution can be
estimated with the following formula:

S−j =

√
n

∑
i=1

(
vij − v−i

)2 , (i = 1, 2, . . . ., n ; j = 1, 2, . . . ., m) (9)

The relative proximity to the ideal solution can then be estimated as in Equation (10).

Cj =
S−j

S+
j + S−j

,
(

0 ≤ Cj ≤ 1 ; j = 1, 2, . . . ., m
)

(10)

Cj = 1 ⇔ Aj = A+, Cj = 0 ⇔ Aj = A−

The resulting values output by Equation (10) are restricted to the unit interval, Cj ∈
[0, 1], where the larger the value of Cj, the better the alternative. A set of alternatives can
then be ranked based on the descending order of Cj.

Third, our proposed index (HFCI) can be used to provide a comprehensive value
representing the frequency of the city based on a set of selected indicators. HFCI can be
estimated using the following formula:

HFCIj =
I1

∑
i

wi.pij −
I2

∑
i

wi.pij (11)

where HFCIj is the score of frequency of jth spatial unit; pij is the normalised value of
the ith indicator in the jth spatial unit; I1 and I2 express the benefit and cost indicators,
respectively.

After the indicator analysis is implemented, the results of the indicator analysis of
future empirical analysis can be considered and appropriate actions to enhance urban
planning can be recommended.

4. Results: Indicators of High-Frequency City

A content analysis-based review was conducted to identify indicators and metrics
used in urban studies. After reviewing the journal articles and reports in the first two
databases created, a set of indicators was selected using the above criteria. The proposed
set of indicators is divided into five domains or categories: human mobility, PTSs, road
network, UGM and land use. The proposed indicators are relevant to these five categories,
and most are generally related to urban mobility in some way. Figure 6 shows the 22
indicators used to analyse the frequency of the city in a hierarchical structure divided into
the five categories listed above, and the type of frequency of each indicator is illustrated in
terms of its temporal dimension (i.e., short-term or semi-short-term).

4.1. Proposed Indicators for High-Frequency Cities

In this subsection, we review the 22 indicators selected for the screening of high-
frequency cities and provide examples of how these widespread metrics are used to
estimate the indicators in the literature. It must be noted that the list of metrics used to
estimate each indicator presented in this article is not exhaustive.

4.1.1. Human Mobility

This category presents the proposed indicators with relevance to human mobility.
This category includes only short-term indicators.
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Incoming/Outgoing Flows

As illustrated in Section 2, in which the concept of the high-frequency city was
discussed, we liken the flow of vehicles, people, money and even information to the
movement of electrons in an AC circuit due to our belief that these changing flows in
both directions are the lifeblood of cities. In recent years, with the extensive integration of
information and communications technology in cities, many systems have been established
to monitor activity in cities at a very fine temporal resolution. Various technologies have
also been introduced to track human mobility, such as smart cards and global positioning
devices placed in various vehicles to provide information about passengers or traffic flow at
a fine spatiotemporal resolution. The flow of passengers over space and time is affected by
workdays, holidays, cultural events, residential areas, central business districts, workplaces
and other factors such as climate events [43].

A considerable number of studies have attempted to estimate and predict passenger
flow. Yu et al. examined the 24-h fluctuations of the daily average passenger flow and
the intensity of passenger flow of metro lines [43]. They proposed a peak hour coefficient to
determine the degree of crowding of passenger flow at a particular time. With the broad
application of complex network theory in urban transport networks, several researchers
have created passenger flow networks and then analysed their structural properties, such as
flow weight distribution and node throughflow distribution. The relationship between network
centrality and passenger flow has been investigated in various articles (e.g., [39]). In
this sense, we can create a passenger flow multilayer network and analyse the centrality
distribution and community structure.

Density Changes

People are most mobile in cities, which leads to changes in the population density in
space. Hence, tracking population density allows us to explore the extent to which the fre-
quency of the city is changing. In recent years, population density has been estimated using
remote sensing technology or traditional data (e.g., population count data from censuses).
However, the estimation of population density changes based on traditional datasets has
deficiencies in spatiotemporal resolution relative to mobile phone data. Mobile phone data
provide the ability to track population density changes at a high spatial resolution over
various time scales of hours, days, weeks, months or even from year to year. Deville et al.
examined population density dynamics using call detail record data [44].
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Travel Distance

Travel distance is a fundamental factor in modelling human mobility over a given time.
The distance calculation is usually based on data sources. In recent years, an increasing
number of studies of human mobility have used travel time and travel distance measures
to identify the human mobility patterns within a city. Of these measures, the flight length,
jump length and displacement are worthy of mention [45]. It should be remembered that
mobility occurs over a wide range of distances, and as the distance varies, the apparent
speed and the means of transport vary [45]. Furthermore, Shi et al. demonstrated that
younger adults travel longer distances than older adults [46]. This reaffirms the value of a
travel distance indicator for evaluation of high-frequency cities because longer distances
travelled by residents are an obvious indication that most of the population is of young
adult age. Globally, young people are essential human resources for the development and
revitalisation of cities. Therefore, a city whose residents travel long distances is the most
liveable and energetic.

Radius of Gyration

In physics, the radius of gyration (rg) is equivalent to the mass moment of inertia,
but researchers in human mobility have used this metric to characterise an individual’s
distance from the centre of mass of his or her trajectory [47]. We can compute the radius
of gyration for each spatial unit or city for a given period and study the variation in the
values over time. The general formula for rg is as follows:

rg j =

√√√√ 1
nj

nj

∑
i=1

(
rij − rj

)2, i = 1, 2, . . . , nj; j = 1, 2, . . . , m (12)

where rg j is the radius of gyration for a given spatial unit (jth); nj is the number of origins
and destinations of spatial units to and from a given spatial unit; m is the total number of
spatial units; rij are the coordinates for the destinations and origins; rj =

1
nj

∑
nj
i=1 rij is the

centre of mass.

Distance between Mean Centres (DMC)

The mean centre is the average point, and the coordinates of this point can be cal-
culated from the average of the x- and y-coordinates for certain features. Although few
studies in human mobility have used this metric, it is a core part of our proposed indicator
(i.e., DMC) because it demonstrates the degree of interaction of a given spatial unit with
the remaining spatial units within the city. First, the ingoing mean centre coordinates (X IN

j ,

Y IN
j ) can be computed with Equation (13), where xIN

i and yIN
i are the coordinates of the

centre of the spatial units that inbound to a given spatial unit (jth). Second, the outgoing
mean centre coordinates (XOUT

j , YOUT
j ) can be computed with Equation (14), where xOUT

i
and yOUT

i are the coordinates of the centre of the spatial units that outbound from a given
spatial unit (jth). Finally, the Euclidean distance can be applied to compute the separation
distance between the ingoing and outgoing mean centres (DMCj), as illustrated in Equation
(15). The greater the number of different spatial units that interact with a given spatial unit,
the greater the distance.

X IN
j =

∑
nj
i=1 xIN

i
nj

, Y IN
j =

∑
nj
i=1 yIN

i
nj

, i = 1, 2, . . . , nj; j = 1, 2, . . . , m (13)

XOUT
j =

∑
nj
i=1 xOUT

i
nj

, YOUT
j =

∑
nj
i=1 yOUT

i
nj

, i = 1, 2, . . . , nj; j = 1, 2, . . . , m (14)

DMCj =

√(
X IN

j − XOUT
j

)2
+
(

Y IN
j −YOUT

j

)2
(15)
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4.1.2. Public Transit Systems

PTN Coverage

Public transit (PT) is the portion of the transport modal split. PT is considered
accessible to a wider range of commuters than private transport and, unlike private
transport, is managed by public authorities or transport operators. It is possible to improve
mass mobility and urban quality of life by establishing PTNs within walking distance
of most people. Urbanisation and urban growth have contributed to an increase in the
demand for mobility. When PTN coverage is insufficient to meet demand, waiting times
increase, and delays and congestion occur on PTSs and roads [13].

PTN coverage is one of the underpinnings to quantify PT accessibility and is well
known to transport planners as an important indicator of PT service performance. PTN
coverage has been used in various research papers (e.g., [21]) as an indicator related to the
mobility category for a smart, sustainable and competitive city. Dodson et al. calculated
the spatial coverage of PT services based on population location [48], and they computed
the PT service coverage with consideration of the temporal dimension (e.g., morning peak,
inter-peak, evening peak, off-peak).

Transport System Diversity

Because cities have more economic opportunities than rural regions, urban popu-
lation growth has increased significantly around the world but without the same level
of development in urban transport infrastructure. While the transport needs of various
classes of urban dwellers are changing, the choice of transport options is not sufficiently
diverse in most cities. Litman argued that the diversity of the community and the need to
meet diverse transport demands require that the transport system also be diverse [49]. The
diversity of a transport system lies in providing diverse choices in transport mobility and
accessibility on a 24-h basis by providing different types of transport modes and services.

A transport system’s diversity can be calculated with various metrics, such as the
quality and quantity of travel options, the modal split, the quality of non-motorised
transport and the amount of non-motorised transport [23,31–33,35]. The most common
metric to reflect the diversity of a transport system is the modal split (i.e., modal share),
which is determined by computing the share of trips by each mode and using Shannon
entropy, such as in [15].

Intermodal Connectivity

PTSs usually comprise various modes, and daily commuter trips may include a trans-
fer within the same mode or across modes. Intermodal connectivity gives commuters the
opportunity to use a combination of transport modes [35]. Therefore, to reduce congestion,
it is necessary to plan for inter-city and intra-city PT to discourage the use of private vehi-
cles. Intermodal connectivity not only enables connectivity among mobility subsystems
and facilitates transfer for commuters, but it also improves cities’ vibrancy and liveability
by providing individuals with numerous transport options. For example, a limitation in
connectivity may lead some commuters to stop using PT services [50].

The intermodal connectivity indicator examines the extent of transfer among mobility
subsystems (i.e., the availability of intermodal transfer). The authors of one study [51]
considered the temporal dimension to quantify intermodal connectivity at high-speed rail
stations. They introduced three metrics to quantify connectivity: intermodal time, intermodal
integral time and intermodal entropy. The intermodal time indicates the time required to reach
a specified mode from other modes, and the intermodal integral time expresses the sum
of the intermodal time for all available modes, and the intermodal entropy expresses the
degree to which various modes are unbalanced. Moreover, De Stasio et al. modified the
interconnectivity ratio metric by considering the transfer time, which includes boarding,
alighting and waiting times [52]. They also presented degree centrality and closeness
centrality as metrics to reflect the network’s connectivity. A multilayer network can be
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used to estimate the centrality measurements as metrics for quantifying the connectivity of
PTSs.

PT Reliability

Travel time takes on increasing importance as economic growth continues. The
commuters’ waiting time at PT stops is generally the largest share of the total time cost
of a trip, for which the passengers’ waiting time can sometimes be double the in-vehicle
time [53]. PT reliability reflects the extent to which the transit vehicles adhere to announced
schedules, and the headway between vehicles on the same line remains constant (i.e.,
headway regularity). From the operators’ point of view, greater reliability leads to lower
operating costs and higher revenue, as the likelihood of attracting and retaining additional
commuters increases [54]. The primary cause of poor reliability is headway irregularity,
which also results in longer waiting times and unequal distribution of commuters among
vehicles.

Kathuria et al. presented a methodical review of PT reliability measures [55]. They
categorised the reliability measures into a four-quadrant approach as follows: (1) reliability
measures based on the waiting time, (2) reliability measures based on the headway regu-
larity, (3) reliability measures based on the travel time and (4) reliability measures based
on the transfer time. The metrics for the PT reliability indicators in this article are those
relevant to headway and waiting time.

Resilience to Disaster

The resilience of a PTN indicator is one of its most significant properties because it
reflects the ability of cities in general, and their transport networks in particular, to reorgan-
ise themselves to meet the public’s transport needs to the maximum extent possible and to
restore near-normal system functionality following a disaster. Previous studies conducted
a literature review on measures of PTN resilience from several perspectives [56,57]: (1)
resilience to severe weather events, (2) resilience to long-term climate change, (3) static
resilience, (4) dynamic resilience (cascade failure-based resilience) of single-layer PTNs
and (5) dynamic resilience of multilayer PTNs. The first and second perspectives examine
the impact of climate on PTN performance and resilience. Examination of resilience from
the third, fourth and fifth perspectives has been considered in the wake of terrorist and
cyber-attacks on PT stations and services, such as the London transport network bombings
during the morning rush hour in 2005 and the cyber-attacks in Ukraine in 2015, which
caused the failure of power plant control servers and led to power outages for some
transport network services.

Service reliability, which includes indices such as headway reliability [58] and travel
time uncertainty [59], has been used as an indicator of resilience in many studies. In our
view, travel time and headway are inappropriate metrics to calculate the resilience of PTNs
to extreme events such as natural disasters or terrorist and cyber-attacks because they do
not consider the networks’ topological structure. Many studies have investigated the static
and dynamic resilience of single-layer networks (e.g., [60,61]), and others have investigated
those of multilayer networks (e.g., [62,63]). The indicator most commonly used to measure
resilience is the relative size of the maximum connectivity cluster and the average shortest path
length, which are derived from complex network theory metrics.

Occupancy Rate

The changing demand for PT services throughout the day, week or year has motivated
PT operators to make decisions to adjust to such fluctuations in demand. One such
decision has been to implement more rational scheduling for transport services; this policy
encourages PT operators to continuously update the frequency of services to optimise
the balance between transport supply and passenger demand [64], which is achieved by
determining the occupancy rates of PT vehicles. The occupancy rate refers to the quotient of
the PTN’s real performance per period and per direction and the maximum capacity [57]—
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in other words, the proportion of the maximum active vehicle capacity occupied at a given
time.

The purpose of this indicator is to calculate the average load factor for all means
of urban transport. Although this indicator has been mentioned in the evaluation of
sustainable cities (e.g., [24,27,35]), it can also be used to evaluate high-frequency cities
because it reflects the variability over time in the number of people per operating vehicle.
Several organisations use this indicator, including the European Environment Agency,
the United States Department of Transportation, the World Bank and the Public-Private
Infrastructure Advisory Facility. The first two organisations proposed the load factor metric,
although the first limited its use to freight only and then discontinued this metric in
2017 [65,66]. The last two organisations proposed the passengers per vehicle per day metric,
which can be estimated by the total number of passengers transported over a specified
time, divided by the total number of active vehicles over the same period and divided
again by the number of days during the period [67].

Active Vehicles

This indicator corresponds to the occupancy rate indicator but is intended to calculate
the total number of vehicles that make at least one trip during a specific day [68]. It
reflects the daily activity of vehicles within the city. This indicator can be applied alone or
embedded with the passengers per vehicle per day metric as a sub-indicator that follows the
occupancy rate indicator.

4.1.3. Road Network
Traffic Flow

Traffic flow expresses the number of vehicles that pass over certain points or segments
per unit of time. Traffic flow data have been collected in recent years using diverse
traffic sensing devices, the most common of which are traffic surveillance cameras, radio
frequency identification detectors and loop detectors. However, most of these sensing
devices have a deficient spatiotemporal resolution because they are placed at specific
points and are sparsely distributed throughout the road network. The advent of position
sensors such as global positioning systems in smartphones and in vehicles has allowed
the collection of massive amounts of traffic flow data. With the rapid development of
artificial intelligence algorithms, various deep learning methods have been used to predict
traffic flow at a fine spatiotemporal resolution. Wang et al. estimated the traffic flow in
large road networks by integrating the licence plate recognition data and the taxi GPS
trajectory data [69]. With the broad application of complex network theory in the urban
transportation network, Liu et al. created a taxi flow network and analysed the structure of
the city based on the created network [70].

Travel Time Uncertainty

Users and operators of PTSs appreciate travel time and its uncertainty because they
are core indicators of service performance. To facilitate real-time management, operators of
PTs require reliable estimates of travel time [71] and the variability of travel time. In an
investigation of travel time, Bates et al. claimed that in most cases, a decrease in variability
is more likely to be appreciated by commuters than a decrease in the average travel time
required for daily trips [72]. A decrease in variability reduces commuters’ discomfort and
stress as a result of confusion over departure times and route choices.

Travel time variability takes various forms, including vehicle-to-vehicle, period-to-
period and day-to-day variability, among which day-to-day variability is the most com-
monly studied [71]. Numerous metrics have been used in recent years to estimate variability
in travel time. In 2006, the United States Federal Highway Administration proposed four
reliability measures, namely [73] the 95th or other percentile travel time, the buffer index, the
planning time index and the frequency of congestion. The coefficient of variation is the most
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popular metric in transport studies, in which it is used to quantify accessibility when
considering travel time uncertainty [74].

Traffic Congestion

Whilst transport has contributed enormously to the social, economic and political
growth of cities, it also leads to adverse consequences such as congestion, delays and
accidents. In several cities around the world, the problems of traffic congestion and
delays have reached unprecedented levels and have become major impediments to the
free flow of traffic. These problems have arisen from the ineffective use of road space and
the increasing number of vehicles on the road network due to the demand for human
mobility [75]. Researchers and transport experts have proposed various metrics and
techniques for accurate estimation of traffic congestion; however, no single metric has been
universally accepted for the calculation of traffic congestion in cities or on roads. Various
metrics are implemented in various countries and even at the provincial level within an
individual country [76]. Afrin and Yodo classified the congestion metrics into six classes
based on the benchmarks used to develop them [76], as shown in Figure 7.
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Road Safety

Rapid urbanisation and the increase in the number of motor vehicles worldwide have
led to an increase in traffic collisions, resulting in deaths and serious injuries. According
to the World Health Organization (WHO)’s ‘Global status report of road safety 2018,’
more than 1.3 million traffic fatalities occur worldwide each year. In addition, the WHO
highlighted that each year, approximately 12 million people worldwide suffer road traffic
injuries [77]. Although road safety does not reflect the level of mobility as directly as other
indicators, it exerts an indirect effect on human mobility and increases the quality of life in
the city. Unfortunately, traffic accidents result in road traffic interruptions, which create
gridlock on the road network. Furthermore, traffic accidents are among the major causes
of death worldwide among people between 15 and 29 years of age [77]. This age group is
more dynamic and active and has a direct impact on both inter-city and intra-city mobility
function. Young adults, therefore, make cities more vibrant and flexible for redevelopment.

In recent decades, researchers and policy-makers have developed metrics to evaluate
road safety performance, including the mortality rate, which is given as fatalities per 100,000
population, fatalities per billion vehicle-kilometres and fatalities per 10,000 registered
vehicles. Al-Haji proposed the road safety development index [78], which refers to the level of
road safety in a particular country and can be used to compare countries at a specific time.
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4.1.4. Urban Goods Movement

The UGM expresses the movement of goods or things rather than persons. According
to Woudsma [79], UGM results from the reciprocal relationship between ‘elements’ and
‘actors,’ in which the elements represent the physical aspects of the transport system and the
actors represent the people or organisations that make decisions regarding the movement
of goods, as illustrated in Figure 8. It should be noted that the movement of goods is
necessary for various activities in the urban environment, both economic and social. Few
studies have examined the dynamics of UGM patterns and how they differ from human
mobility and traffic flow patterns. The indicators used in the study of UGMs follow the
same concepts as those in human mobility. This section reviews the three most common
indicators in the literature related to UGM.
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Freight Traffic Volume

This indicator reflects the number of freight vehicles (e.g., trucks or vans) on the road
and is given as the number of trips or online orders in a specified period. The consumption
of goods depends on the density of the urban population; the greater the density of the
population and the more vibrant and energetic a city is, the greater the demand for goods.
This leads to more frequent movement of goods, which automatically affects the dynamics
of UGM patterns. This indicator has been used in most previous studies (e.g., [80]).

Vehicle-Kilometres Travelled

This indicator can be estimated by summing the kilometres travelled by all trucks
within a particular period. This indicator is also known as displacement, and it is used in
some studies to determine the pattern of UGM (e.g., [81]).

Network Properties

Several network properties can be used to explore the dynamic properties of UGM
after translation of the commodity movement characteristics into a network, especially
graph density, number of nodes, number of edges, average degree and average strength [81].
This indicator is suitable for use in analyses at the inter-city level.
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4.1.5. Land Use

All indicators in this category depend on data that can be observed in the semi-short-
term.

Transport Land Consumption

The transport sector manages human mobility and the transport of goods and supplies
the transport infrastructure. The volume of transport depends on the supply of transport
(e.g., transport infrastructure) and the demand for transport. Therefore, the land dedicated
to transport infrastructure, which includes both direct use (e.g., motorways and railways)
and indirect use (e.g., car parks), is a key factor in the generation of transport activity in
terms of the infrastructure induced by human mobility [82]. This notion is in line with the
view of Ashby, who introduced the concept of ‘self-organisation’ in 1947, stating that each
subsystem can adapt to the conditions formed by the remaining subsystems.

Various metrics have been used in urban studies to represent transport land con-
sumption (e.g., [13,82]). The most straightforward metric is the surface area devoted to
transport infrastructure. This metric shows the extent of the decision-makers’ interest in
transport infrastructure, which facilitates human movement and affects transport condi-
tions. This metric should be scaled when used to compare cities or spatial units. Values
can be scaled in various ways, including calculation of the per capita land area dedicated
to transport or the ratio of land area dedicated to transport to the total land area used
for public infrastructure [21]. Some studies have also used the length of the transport
network, which is also scaled by dividing it by the area, resulting in a so-called ‘network
density’ [82], or by dividing it by the population density, resulting in a so-called ‘network
length per capita.’ Some studies have considered the time dimension, reflecting the actual
area of infrastructure used multiplied by the actual time of use [83].

Land-Use Mix (LUM)

Land use and transport form our cities. Land use refers to the ways that individuals
use land and resources for certain purposes, such as for residential purposes, commercial
activities and recreation. The relationship between land use and the transport system is
essentially reciprocal (i.e., it has a cyclical nature), as shown in Figure 9. Land use is a
catalyst for human mobility and activities. Accordingly, an increase in the intensity of
land use generally increases transport demand in terms of facilities and infrastructure
investment, thereby improving accessibility [84]. This improved accessibility is a catalyst
for increasing land values and land development and thus trip generation. This cycle
of reciprocity is thus repeated because once land-use activities increase, the demand for
transport increases [85]. Mixed land use, which typically involves a synthesis of residential,
recreational and commercial activities, is considered to strengthen urban vitality and offer
several socio-economic benefits [86].

LUM indicator has been used in several studies to explain urban vitality, walkability,
sustainability and transport planning [15,82,87]. Several studies of transport have reported
that multifunctional land use has a positive correlation with the frequency of non-motorised
trips and a negative correlation with the frequency of motorised trips (e.g., [88]). Song et al.
provided a systematic overview of the mathematical formulae and conceptual foundations
of the prevailing methods of LUM [89] in which they categorised the methods into four
groups: the Percentage and Exposure Index; all varieties of the Atkinson Index; the Balance,
Entropy and Herfindahl–Hirschman indices; and the Dissimilarity and Gini indices. The most
applicable is the entropy method because it allows consideration of more land-use classes.
The entropy formula is as follows:

LUM =
−1(∑m

j=1 pj ln(pj))

ln(m)
(16)
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where LUM is the score of the land-use mix; pj is the percentage of jth land use in the
region; m is the number of land-use classes. The value of LUM ranges from 1 to 0; a
value of 1 reflects the maximum potential mix, and a value of 0 indicates that the region is
monofunctional.

Due to technological advancements and the availability of mobility big data, such as
mobile phone data and point-of-interest data, several researchers have used such data to
reveal the land-use mix at a fine spatiotemporal resolution (e.g., [4]).
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Vitality

With the global growth of cities since the 20th century, major cities have experienced
flourishing economies and cultural expansion. However, this unprecedented urbanisation
has led to many problems in major cities, including urban sprawl, housing vacancies and
the imbalance of urban functions [90]. These problems pose a challenge to the development
of the ‘high-frequency city’ theory as the diversity of the urban fabric decreases and urban
vitality deteriorates. To optimise the urban fabric, it is vital to determine urban vitality
in large cities. The principle of urban vitality is inseparable from the intensity of human
activities in public spaces [91], so urban vitality has also been used to establish planning
principles to strike an equilibrium between human activity and the built environment.
In general, the two most common models used to quantify the built environment are
three-dimensional and five-dimensional, as shown in Figure 10. More details about the
dimensions embedded in these models can be found in the literature [92].

The numerous published studies on the estimation of vitality have applied various
perspectives and data sources. Jacobs defined urban vitality as street life on a 24-h basis [86].
Lynch argued that a vital city is one that effectively addresses the needs of its residents
within a safe environment [93]. Braun and Malizia proposed the Urban Form Index to
reflect neighbourhood vitality based on five variables: Inter-circulation systems, External
traffic systems, Density, Land-use mix and Accessibility [94]. Yue and Zhu investigated the
relationship between vitality and street network centrality in both walking and driving
modes [95]. They indicated that street network centrality (e.g., closeness, straightness and
betweenness) has a significant influence on urban vitality. In this sense, and with our belief
that transport systems do not function separately, we can adopt the concept of multilayer
networks for the estimation of the vitality indicator.
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4.2. Impact of COVID-19 and Driverless Mobility on the Frequency of the City

In mid-March 2020, the World Health Organization (WHO) declared COVID -19 a
global pandemic in light of the rapid spread of the epidemic across states and countries.
The epidemic continues to have many negative and catastrophic effects on social and
economic aspects in various sectors, including travel and mobility, making it the first
global health disruption with immediate and devastating implications on various sectors
at this scale in 100 years [96]. Given that transport systems play an essential role in
controlling or spreading the epidemic because they serve in some ways as vectors for
the transmission of infectious diseases between different places, some governments have
taken seriously the guidance from WHO to adopt isolationist policies by reducing the
mobility of transport systems. Many countries have imposed lockdowns as well as states
of emergency, banning unnecessary movement and restricting participation in various
activities, imposing restrictions on social distancing to maintain public health and contain
the spread of coronavirus [97]. In addition, many governments, such as Hong Kong,
have passed resolutions and decrees eliminating the need for daily travel, such as closing
recreational facilities and stores that do not sell food and medicine and banning public
gatherings. To meet the needs of isolation, many universities, schools and companies have
switched to virtual environments for learning and working remotely. Some people also
impose self-restrictions by limiting their travel and having less interaction with others to
reduce the risk of infection.

All of the above COVID-19 pandemic precautions, restrictions and regulations have
direct and serious impacts on mobility behaviour and, in turn, affect the frequency of the
city. On the one hand, the frequencies and magnitudes of most indicators related to mobility
could be changed, such as (passenger flow, density changes, distance and travel time, etc.).
This has been observed in some studies where trips to schools, universities and offices
have dropped to almost zero [98]. Travel times have also decreased significantly under
epidemiological conditions, regardless of age group and gender [96]. It is expected that
the vitality might be decreased. Fear of contagion during the epidemic period makes the
use of public transport and shared mobility less preferred by road users than transport by
car, especially by those who do not want to use active modes of transport such as walking
and cycling. In fairness, it should be noted that it is uncertain whether the persistence of
this epidemic will permanently discourage people from using public transport and shared
mobility, or whether travel patterns will revert to what they were before the epidemic,
or whether people will adapt to the epidemic. If people continue to avoid using public
transport and increase their dependence on private transport, we would exacerbate the
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problem of traffic congestion, which will have a negative impact on mobility behaviour in
general.

On the other hand, urbanisation may be one of the main casualties of the COVID-19
epidemic, as it has led to greater distances between people and lower density in cities to
reduce the risk of infection. Although urbanisation and economic growth are mutually
dependent, the attraction of cities to people depends not only on economic opportunities
but also on urban lifestyles. With the spread of the epidemic and many restrictions on
freedom of movement imposed by governments, especially in cities with high population
densities, the lifestyle in cities has become similar to that in rural areas. Some governments
have called for a radical restructuring of cities so that residents can reach their basic and
cultural services within a 15-min walk of any home [99]. In addition, many companies have
switched to teleworking, which can actually influence urbanisation and decentralisation,
and life in rural areas can become more attractive, provided that the digital infrastructure
is improved.

Moreover, driverless mobility could also shape the frequency of the cities. There are
signs that a new mobility paradigm is emerging through new technologies and innova-
tions such as automated vehicles, be it personal cars, driverless car-sharing and driverless
shuttles [16]. Recent technological developments in the field of automation can revolu-
tionise the possibility of intertwining automated vehicle systems, especially for driverless
car-sharing and driverless shuttles, facilitate access to vehicles, reduce congestion, support
safe transport, be reliable, provide the freedom and convenience of mobility and contribute
to a more efficient transport system compared to conventional vehicles [100]. It will also
allow both elderly and disabled people greater mobility and access to the places they want
at any time. All these perceptions may, in one way or another, radically affect the pattern
of future mobility and thus the frequency of the city.

4.3. Limitations

As a pilot study, some limitations might exist and affect the assessment of the high-
frequency cities. First, the indicators selected in this study to assess the frequency of
cities relate to mobility patterns, different transport systems and urban planning. Other
indicators that might influence mobility patterns and thus frequency were not considered,
such as indicators related to socio-economic (e.g., age and income), political, technical
and other factors. In future work, more indicators could be included. Second, since this
study aims to introduce the concept of high-frequency cities, select appropriate indicators
to assess the frequency of cities, and propose a framework for analysing the selected
indicators, a validation step was not included in the proposed framework. In our future
empirical analysis, we will be careful to perform a validation procedure.

As discussed earlier, this study introduced a conceptual research framework for
assessing the high-frequency cities based on a diversity of data sources. Below are some of
the potential limitations in future work, which will be solved based on the development of
techniques and data availability. For example, the availability of data sources is common
and well-known in all research based on the analysis of several types of data collected
from different sources, not only in this research. The expected data limitations in future
empirical analyses of the high-frequency cities mainly include the following aspects:

• Limited data accessibility: The selection of indicators is the primary step of any
benchmark. However, data for selected indicators are not always available or reliable
in a significant number of countries or even the cities of the same country. The
current era is undoubtedly data-driven, and the availability of big data has created
unprecedented opportunities for various geographic information science studies.
However, with such massive amounts of data at our disposal, other data that reveal
human interaction, such as information transfer and money transfer, are lacking, and
we hope that the availability of such data will open perspectives on the improvement
of high-frequency city modelling.



ISPRS Int. J. Geo-Inf. 2021, 10, 317 26 of 30

• Spatial resolution: Since the level of data privacy protection varies due to different
sources, some data are collected at different spatial resolutions and are not available
at the same level of aggregation. If the data were collected with high spatial accuracy,
the results of the indicator analysis could certainly be more accurate.

• Temporal scale: Unfortunately, due to limited data availability, some data can only be
provided on a small-time scale. For example, point of interest data (POI) can only be
collected once in a given time period (i.e., the data were collected infrequently), and it
is difficult to obtain such data over a longer time scale. If such data were available
over a longer time scale, we could monitor changes in land use over time, and the
assessment results could be improved.

• Time reference: the variability in the time period of data collection is one of the main
data limitations that could lead to outliers or bias in the assessment results, especially
at the inter-city level.

5. Conclusions

This article presents a new perspective on modelling high-frequency cities to deal
with the effects of city dynamics and the resulting challenges, which are difficult to solve
over the short term with traditional methods. Many urban dynamics, such as urbanisation,
suburbanisation, urban decay and urban renewal, occur in a form that is gradual and
spontaneous or through a process of state coordination. Urban dynamics are thus actors
that can shape and reshape cities over time. These urban dynamics influence cities and
force them to follow one of three scenarios. In the first scenario, the city withstands these
forces and continues to thrive and balance urban functions. The second scenario involves a
period of inaction and failure to address the city’s challenges. If this scenario continues, it
will inevitably lead to the third scenario, which is the death and loss of the city. Therefore,
new theories and tools must be applied to bring about the first scenario.

Cities today do not sleep, and this can be traced to their history of rapid urbanisation,
especially in megacities. Cities have become more complex than single organisms and
have grown more active with their frequent changes. For example, urban mobility occurs
frequently and undergoes changes continuously and in the short term. Urban mobility
also occurs and changes concerning space, time and civilisation of which the city is a
part. Although existing urban theories have succeeded in providing long-term urban
solutions, to which we refer here as low-frequency city modelling, they are not sufficient to
address the challenges of today’s cities, such as traffic congestion, resource management
and other short-term problems. We should therefore change the ways we think about
urban management and planning to withstand the many challenges posed by various
urban dynamics by gaining a different perspective on urban modelling and analysis.

The geospatial big data provided by information and communications technology
offer the possibility of modelling cities with unprecedented resolution. In this study,
we adopted the concept of high-frequency as opposed to low-frequency cities for urban
modelling and analysis. Although the general idea of high-frequency cities was formulated
by Batty in 2018, a method for estimating the frequency of cities has yet to be investigated.
After an extensive literature review, 22 indicators in five groups—human mobility, PTSs,
road network, UGM and land use—were selected for modelling the high-frequency city.
We thus proposed a framework for analysing the selected indicators to model and better
understand the concept of the high-frequency city in a systematic manner. Moreover, we
have proposed a composite index, the HFCI, to provide a comprehensive value based on
the indicator analysis. The impacts of COVID-19 and the evolution of technologies (e.g.,
driverless mobility) on the high-frequency city were discussed. This work would be a pilot
study to better highlight the aspects in which urban policies and operations can be adjusted
to improve urban liveability and urban sustainability as much as possible in a smart city
context.
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