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Abstract: Land-use change is a typical geographic evolutionary process characterized by spatial
heterogeneity. As such, the driving factors, conversion rules, and rate of change vary for different
regions around the world. However, most cellular automata (CA) models use the same transition
rules for all cells in the model space when simulating land-use change. Thus, spatial heterogeneity
change is ignored in the model, which means that these models are prone to over- or under simulation,
resulting in a large deviation from reality. An effective means of accounting for the influence of
spatial heterogeneity on the quality of the CA model is to establish a partitioned model based on
cellular space partitioning. This study established a partitioned, dual-constrained CA model using
the area-weighted frequency of land-use change (AWFLUC) to capture its spatial heterogeneity. This
model was used to simulate the land-use evolution of the Dianchi Lake watershed. First, the CA
space was divided into subzones using a dual-constrained spatial clustering method. Second, an
artificial neural network (ANN) was used to automatically acquire conversion rules to construct an
ANN-CA model of land-use change. Finally, land-use changes were simulated using the ANN-CA
model based on data from 2006 to 2016, and model reliability was validated. The experimental results
showed that compared with the non-partitioned CA model, the partitioned counterpart was able
to improve the accuracy of land-use change simulation significantly. Furthermore, AWFLUC is an
important indicator of the spatial heterogeneity of land-use change. The shapes of the division spaces
were more similar to reality and the simulation accuracy was higher when AWFLUC was considered
as a land-use change characteristic.

Keywords: dual-constrained spatial partition; ANN; partitioned CA; land-use dynamic simulation;
Dianchi Lake watershed

1. Introduction

Land-use and land-cover change (LUCC) are very important processes and represent
the most direct outcome of the interaction between humans and landscapes. Not only is
LUCC an important factor affecting the global ecological environment and climate change,
but it also plays a critical role in areas such as sustainable regional development and
urban planning [1]. Therefore, understanding the evolution of LUCC and its patterns may
help elucidate the mechanisms underpinning human–land interactions and may reduce
the human–land conflict and promote sustainable regional development [2]. LUCC is a
dynamic process driven by the integration of natural and anthropogenic landscapes, and
its formation mechanism is extremely complex. As such, it is often necessary to use land-
use simulation models to understand the evolution of land-use change and its results [3].
Cellular automata (CA) is a “bottom-up” dynamic model that is discrete regarding time
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and space. It is able to simulate the spatio-temporal evolution of complex systems and
is an easy model to understand and program. In recent decades, this model has been
extensively used by researchers in land-use evolution and urban expansion studies [4–6].
The conversion rule is a transformation function that specifies how a cell is able to change
its state from one moment to the next. The conversion rule is the dynamic basis of CA to
simulate the evolution of a complex system; it has an important influence on the simulation
process and results [7,8].

There are many conversion-rule mining methods for the CA model. In a realistic
application, it is necessary to select an appropriate method to determine cellular conversion
rules based on the object of the simulation. Commonly used conversion-rule mining meth-
ods may be classified into three categories: logistic regression (LR), Markov chain (MC),
and artificial intelligence (AI). The LR model uses the logistic function to construct the rela-
tionship between land-use type (dependent variable) and its driving factors (independent
variables). It normalizes the value of the dependent variable to zero or one to calculate
the land-use type conversion probability [9,10]. The LR model is an effective method for
mining the CA conversion rules; however, as it is essentially a linear-fitting method, it is dif-
ficult to express the non-linear characteristics of land-use change. Therefore, the conversion
rules constructed using this method are usually inaccurate. The MC model maps land-use
types to states, and the next time point is dependent on the transition probability between
the current state and the next one. The land-use state transition probability at adjacent
moments is considered the key to constructing a transition rule using a Markov chain
model. Typically, the land-use-type transition matrix of the two-phase land-use change is
used to determine the state transition probability between land-use types at consecutive
points in time [11]. An MC model is able to generate the transfer probability matrix of
land-use change based on the transfer direction and quantity between land-use types; these
are effective for mining land-use change conversion rules. However, this model is unable
to characterize the impact of the driving forces on the process of land-use change. As such,
it is often necessary to combine other methods to improve the accuracy of conversion rules.
AI refers to a series of methods that use computers to complete specific intelligent activities.
This is an idea or framework that uses computers to build automated analysis tools or
models that are partially similar to human intelligence to help solve complex problems.
Compared with the LR and MC models, this “human-like intelligence” characteristic of
AI methods is relatively easier for discovering knowledge and calculating and expressing
complex relationships, for example: dealing with non-linearity and uncertainty in land-use
change, which improves the accuracy of the CA model conversion rules. Currently, the AI
methods used to mine the CA conversion rule mainly includes a tree-based decision [12],
support vector machine (SVM) [13,14], ant colony algorithm (ACO) [15,16], genetic algo-
rithm (GA) [17], and neural network (NN) [18]. Many researchers conducted a comparative
analysis of the effects of these algorithms in the mining of CA model conversion rules.
This was carried out to optimize the automatic mining method of CA conversion rules
based on AI algorithms [19–24]. Their results showed that the ANN was better able to
analyze non-linear complex phenomena and avoid the automatic acquisition of conversion
rules during intermediate calculations. Its self-organization, self-learning, association, and
memory were effectively able to simplify the acquisition of CA model conversion rules,
extract CA conversion rules from the original training data, and avoid subjective factors,
thus improving simulation accuracy. Thus, the NN is an efficient scientific method for
mining CA model conversion rules.

However, the accuracy of the CA model is affected by the accuracy of the conversion
rule and the scale of conversion-rule mining. For conversion rules, this has a significant
spatial scale effect [25] on the impact of the driving factors of land-use change and their
spatial distribution patterns and may be measured from two aspects: spatial dependence
and spatial heterogeneity. Spatial dependence describes the extent to which the state of a
cell is affected by the state of the surrounding cells. This means it measures the effects of
spatial interaction between land-use types and land-use changes and driving factors [26].
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As the CA model itself has significant neighborhood characteristics, the spatial interaction
of the cellular transformation rules is generally expressed by defining the shape and size of
the cellular neighborhood. This eliminates or weakens the spatial dependence effect of the
cellular transformation rules [27].

Spatial heterogeneity is another important theory for explaining the laws of geographic
distribution. It describes the phenomenon by which the attribute values of a spatial unit
changes, with modifications to the spatial unit as a result of geographic isolation [28].
Land-use change is a typical geographic evolutionary process characterized by spatial
heterogeneity. However, most current CA models use unified land conversion rules to
simulate land-use change, dismissing the influence of the spatial heterogeneity of land-use
change on the model. As such, the model is prone to over- or under-simulation, which
means the simulation results substantially deviate from reality [29]. An effective means to
accommodate the influence of geographic heterogeneity on the quality of the CA model is
to establish a cellular space partition mechanism. This involves dividing the cellular space
according to the spatial heterogeneity characteristics of land-use change; each partition
inside the cell then has more similar attributes in characterizing land-use change. As such,
the conversion rules of each partition are able to express the driving mechanism of land-use
change in the area more accurately, thereby improving the accuracy of the CA model
simulation [30]. There are two main methods for cellular space partitioning: one, based on
an administrative area and the other on dual-constrained space clustering. For example,
Yang et al. [31] used sub-administrative divisions to classify research into several sub-areas.
They used LR analysis to construct the land-use evolution parameters and conversion rules
of these sub-areas, and then constructed a division of the urban expansion CA model for
Dongguan. The results showed the improved simulation accuracy of the partitioned CA
model. The main disadvantage of dividing the cellular space by administrative districts is
that the divisions are highly subjective, and it is difficult for them to express the similarity
of land-use change characteristics. Ke et al. [29,30,32] proposed a dual-constrained spatial
clustering method to partition the cellular space. They sought to comprehensively consider
the similarity in the spatial and attribute relations of land-use change; as such, a clustering
method was used to realize the partitioning of the cellular space. Although some studies
showed that the dual-constrained spatial clustering partition method was more objective
than administrative district partitioning, there were problems, such as the single-constraint
attribute and difficulties reflecting the key characteristics of land-use change.

In summary, the mining method for cellular conversion rules has evolved from linear
methods (e.g., statistics) to AI methods such as NNs. Many research results show that NNs
are scientific methods to mine cellular conversion rules, thereby improving the simulation
accuracy of land-use change. Partitioning cellular space based on the similarity of land-
use change features and constructing a partitioned CA model is an effective means for
eliminating or weakening the influence of spatial heterogeneity. However, determining
the similar attributes that better characterize land-use change is still a problem requiring
in-depth research. The frequency of land-use change (FLUC) refers to the number of times
a land-use type has changed within a certain period (e.g., year or month). FLUC is a key
indicator of the spatio-temporal evolution of land use. It is able to consider the frequency
and amplitude of land-use transformation among land-use types and express its intensity
in the region [33]. Therefore, the addition of the FLUC to the attribution collection to
measure the similarity of change may provide insight into the spatial heterogeneity of the
processes and causes underpinning it more accurately.

Based on this research, this study applied the FLUC as the key attribute for under-
standing the process of change in the Dianchi Lake watershed. This was carried out using
the partition method with dual-constraint criterion and the NN method. A simulation
model of partitioned CA was established to improve model quality. First, a clustering
method with dual-constraint criteria (spatial and non-spatial features) was used to detect
the geographic heterogeneity of change; this formed the basis of cellular space partitioning.
Second, an ANN model was used to mine the unified and partitioned cellular conversion
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rules. Then, the two CA models of the partitioned and unified rules were compared and
analyzed to verify the effectiveness of the partitioned CA model. Based on the verified
model and the simulation results, this research may serve as a decision-making basis for
planning and spatial layout optimization in the Dianchi Lake watershed.

2. Materials and Methods
2.1. Study Area

The Dianchi Lake watershed is located in the central Yunnan–Guizhou Plateau
(24◦28′–25◦27′ N; 102◦29′–103◦0′ E), covering an area of approximately 3000 km2. In
this watershed, the Dianchi Lake to the southwest is the sixth largest freshwater lake in
China. The altitude of the study area is between 1860 and 2809 m above sea level, and, in
general, the terrain is high in the north and low in the south. As such, the topography is
characterized by a long, narrow intermontane basin from south to north. The climate in
the watershed is warm and moist with distinct wet and dry seasons. The annual average
temperature is 15 ◦C; average annual sunshine is more than 2200 h; and average annual
precipitation is approximately 1050 mm. The area also contains many different vegetation
types with high vegetation coverage such as arbores (Populus Yunnanensis, Taxodiltm
Celestin, Salix Babylonia and Cinnamomum Camphora), shrubs (Crofton Weed and Fi-
cus Macrocarpa), and herbaceous plants (Bidens Pilosa and Artemisia Annua). Due to
its livability, this region has clear footprints of human activity and experiences frequent
changes. It is the most economically active, densely populated, and urbanized region in
Yunnan Province. This region is also typically selected to examine the interaction, results,
and environmental impacts of human–land relationships. The geographic location and
scope of the study area are shown in Figure 1.
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2.2. Data and Processing
2.2.1. Data Types and Sources

This study used two main types of basic data: classification and driving force datasets.
The land-use classification data were obtained by remote-sensing information extraction
(The Classification And Regression Tree (CART) was selected as the classification extraction
method). The remote-sensing imagery was obtained from the United States Geological
Survey (USGS) and the image cloud content was less than 5% as shown in Table 1.

The driving force data included information on the natural and cultural environments.
The former mainly included data on aspects such as transportation networks, water sys-
tems, and administrative areas. This was sourced from the geospatial data cloud and
the OpenStreetMap websites. Data on the cultural environment included information
on population and socioeconomics and was sourced from the statistical yearbook of the
corresponding year in Yunnan Province.

For convenience, the resolution of all raster data was set to 30 m, and the scale
was set to 1:250,000. As for the geography reference system, it was coordinated to
“GCS_China_Geodetic_Coordinate_System_2000” and projected to CGCS2000_GK_CM
_105E with Gauss–Kruger projection.

Table 1. Data source and parameters.

Data Data Source or Parameters

Remote sensing images

Year Satellite and sensor Stripe Resolution

2006 Landsat-5 TM 129/42, 129/43 30 m
2009 Landsat-5 TM 129/42, 129/43 30 m
2013 Landsat-8 OLI/TIRS 129/43 15 m
2016 Landsat-8 OLI/TIRS 129/43 15 m

DEM Year: 2016 Source: USGS Resolution: 30 m

Railway Year: 2006, 2009, 2013, 2016

Source: Geospatial data cloud and OpenStreetMap

Scale: 1:250,000
Road Year: 2006, 2009, 2013, 2016 Scale: 1:250,000
River Year: 2006, 2009,2013, 2016 Scale: 1:250,000
Lake Year: 2006, 2009, 2013, 2016 Scale: 1:250,000

Population Year: 2006, 2009, 2013, 2016
Source: Yunnan Provincial Statistics Bureau

Scale: 1:250,000
GDP Year: 2006, 2009, 2013, 2016 Scale: 1:250,000

2.2.2. Data Processing

To construct a CA model of change, the data identified in Section 2.2.1 had to be
processed and analyzed to meet modeling requirements. Table 2 details the model’s
data requirements, which may be divided into six categories comprising 19 types of
data: two types of change data (classification and change rate—-dependent variables) and
17 change driving force data (independent variables). The “Classification of Land Use
Status GB/T21010-2017” and the geographic significance of Impervious Surface (IS)—-
referring to artificial, impenetrable urban surfaces such as roofs, roads and plazas—-were
used to classify types, of which IS is a key indicator of the level of urbanization and its
effects. types were divided into seven categories: cultivated land, forest, grassland, gardens,
water bodies, impervious surfaces and unused land. In addition, the 16 driving forces
included four spatial variables based on distance analysis, seven neighborhood variables
handled by the neighborhood functions, three representing the unit’s natural attributes
and two representing its social attributes. Among them, the four distance-based variables
were calculated from the vector data of lakes, water systems, roads, and railways in the
study area. This was carried out using a distance analysis tool in the space analysis tool;
variables processed by the seven neighborhood functions were obtained from statistics
on the amount of each land type in the Moore neighborhood of 7 × 7 grid units in the
remote-sensing image classification of the Dianchi Lake watershed. Three natural attribute
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variables (slope, slope direction, and elevation) were extracted from digital elevation model
(DEM) data, and two social attribute variables (population density and gross domestic
product (GDP)) were obtained from the statistical yearbook of Yunnan Province. To account
for the impact of model operation efficiency and space scale, the cellular size was set at
200 × 200 m, and all required data were normalized. Table 2 details the specifics associated
with the data and acquisition method.

Table 2. Spatial variables and acquisition approach.

Data Category Acquired Method Range

1. Land-use data

Year of 2006, 2009, 2013, 2016 Extraction of Remote-sensing images 1–7

2. The area-weighted frequency of land-use change (AWFLUC)

AWFLUC from 2006 to 2016 Overlay analysis 0–1

2. Spatial distance variables

Distance to road (X1)

Distance analysis

0–1
Distance to railway (X2) 0–1

Distance to river (X3) 0–1
Distance to lake (X4) 0–1

3. Land-use neighborhoods

Neighborhoods of impervious surface (X5)

Neighborhood analysis

0–1
Neighborhoods of cultivated land (X6) 0–1

Neighborhoods of water (X7) 0–1
Neighborhoods of grass land (X8) 0–1

Neighborhoods of forestry land (X9) 0–1
Neighborhoods of bear land (X10) 0–1

Neighborhoods of garden land (X11) 0–1

4. Natural environmental variables

Slope (X12)
Surface analysis

0–1
Aspect (X13) 0–1

Elevation (X14) 0–1

5. Socio-economic variables

Density of population (X15)
GDP (X16) the statistical yearbook of Yunnan province 0–1

2.3. Methods
2.3.1. The Frequency of Change and Its Measurement

The FLUC proposed in this paper may be expressed as the count and area of change
within a specified period. The geographic meaning of FLUC is that it concurrently reflects
the intensity and spatial distribution of change in a region based on three dimensions:
time, space, and quantity. The computational process for FLUC and its area-weighted
extension, the Area-Weighted Frequency of Land Use Change (AWFLUC) is shown in
Figure 2, where (a) involves the classifications of different periods and the consequences of
overlay analysis; (b) is the statistical counting of change from one type to another during
any adjacent time; and (c) is the cumulative process of the frequency and area-weighted
smoothing consequences from the beginning to the end of land use. The main variables
and computing methods of AWFLUC are as follows:

(1) Statistical counting of change during an adjacent period
First, it has to be determined if changes between adjacent periods at the same position,

and what the accumulated count of changes is. The calculation method is shown in
Equation (1):
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Nt
k =

{
1
0

i f (P k.Codet 6= Pk.Codet+1)
else

k ∈ [1, Npoly]
t ∈ [1, m− 1]

(1)

where m is the number of periods of land use, which can form (m – 1) adjacent periods of
change; Npoly is the number of polygons formed after overlay analysis; Pk is the kth polygon;
Codei represents the type at period t; Codei+1 represents the type at the time point next to
period t; and Nt

k indicates whether or not the land use has changed in the kth polygon of
period t. The computation rule for Nt

k is: in the kth polygon: if land use changes when the
code value is inconsistent, then Nt

k = 1; otherwise, Nt
k = 0, indicating that land use has

not changed.
(2) Measurement of the FLUC
The purpose of this step is to accumulate the frequency of land-use change in each

polygon, which is the FLUC; the calculation method is shown in Equation (2):

Nk =
m−1

∑
t=1

Nt
k k ∈ [1, Npoly] (2)

where Nk is the accumulative frequency of land-use change in the kth polygon within a
certain period; the other variables have the same meaning as those in Equation (1).
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(3) The area-weighted frequency of land-use change
The FLUC is able to reflect the speed of land-use change although it may disregard its

impact. While the FLUC in some patches may be rapid, the area of change will be small; as
such, this may not substantially influence land-resource development. For example, if a
farmer needs a piece of land to cultivate seasonal vegetables for private use, the land cover
change may occur at a high frequency; however, the changed area is usually insignificant.
Therefore, the impact of land use on overall land resources from farmers is slight. In
some patches, the FLUC is not rapid even though the area of change is large and could
substantially affect land use. For example, airports and railway stations typically require
a large area, and although the FLUC of this land use may not be high, it affects the land
resources more than does the farmer’s land use. This is because a considerable amount of
cultivated land may be lost within a short time. Thus, the effect of the land-use change area
should be considered in the FLUC to smoothen this indicator for greater responsibility. We
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improved the FLUC by using the land-use changed-area ratio as the weight, the AWFLUC,
and its computation is shown in Equation (3):

ωk =
Sk

area
Sarea

F
f inal

=
Npoly

∑
k=1

ωk Nk
(3)

where Ffinal is the AWFLUC of a given space unit; Sarea is the area of the space unit; Sk
area is

the area of the kth polygon in the space unit; and ωk is the AWFLUC in the kth polygon.

2.3.2. Cellular Space Partition Based on Dual-Constrained Spatial Clustering

The basis of the cellular space partition is the similarity of geographic attributes and
locations represented by the cell. Cluster analysis is the main method used to detect and
evaluate this similarity [34]. Many geographic phenomena contain two distinct attributes:
spatial and non-spatial. The former refer to properties such as position and relationship;
the latter refer to features unrelated to space, such as population density, per capita gross
national product, and gross industrial and agricultural output. The influence of these two
attributes on distance should be comprehensively considered in the clustering analysis
of geographic phenomena. Traditional clustering algorithms divide the spatial and non-
spatial attributes of geographic phenomena. However, the same class of spatial objects
needs to have high compactness in spatial characteristics and a high degree of similarity
in non-spatial characteristics during the similarity calculation for geographic phenomena.
This study used a dual-constraint criterion spatial-clustering method proposed by Ke
Xinli et al. [29,30,32] to divide cellular space. This aimed to achieve an optimal dynamic
equilibrium between compactness in the spatial domain and similarity in the non-spatial
domain of every partition.

The key to spatial clustering with dual-constraint criteria is redefining the distance.
Given a set of spatial objects, S = {O1, O2, . . . , On}, any object, Oi ∈ S, has two attribute
domains: spatial and non-spatial. The dual-constrained space-clustering divides the
object set, S, into different clusters; as such, each cluster forms a compact area in the
spatial domain and maximizes the similarity in the non-spatial domain. To address a
spatial geometric distance that was insufficient for dual-constrained spatial clustering, a
generalized Euclidean distance was used as the clustering statistic as opposed to spatial
geometric distance. This may be defined as follows [35]:

Dij = wp

√
(xi − xj)

2 + (yi − yj)
2 + wa

√
m
∑

k=1
wk(zik − zjk)

2

wp + wa = 1
m
∑

k=1
wk = 1

(4)

where Dij is the generalized Euclidean distance between points i and j; (xi,yi) and (xj,yj) are
the spatial coordinates of points i and j, respectively; Zik and Zjk are the kth attribute values
of points i and j, respectively; m is the attribute number of the point group; wp and wa are the
importance of spatial distance and non-spatial attribute similarity in generalized Euclidean
distance, respectively; and wk is the importance of each attribute in the spatial data set. To
determine the weight value, a set of weight values was established and model simulation
accuracy was analyzed under different weights. The weight value was deemed optimal
when model accuracy was at its peak. When the similarity of the non-spatial characteristics
of land-use change was measured, the amount of land-use change was typically selected
for assessment. However, the amount of land-use change only reflected the magnitude of
land-use change in two periods; it could not depict the degree of human–land interaction.
Therefore, the AWFLUC was selected to identify the spatial heterogeneity of land-use
change as it is an important index that can reflect the degree of human–land interactions.



ISPRS Int. J. Geo-Inf. 2021, 10, 346 9 of 19

By using the AWFLUC, more reasonable non-spatial attribute similarity for cellular space
partition was attained.

2.3.3. ANN–CA Model Construction Method of Land-Use Change

The method proposed by Li Xia et al. [23,24] was used to construct a land-use change
CA model based on an ANN, as shown in Figure 3. Model construction may be divided into
two parts: ANN-based land-use change conversion-rule mining, and an ANN-CA model
simulation. First, land-use types and driving factors were used as input parameters for
NN training. The conversion probability of different land-use types in each partition was
obtained through network training based on the results of cellular-space partitioning. Then,
the obtained transition probability served as the basis for cellular-state transformation to
determine the state (land type) of the cellular space at the next point in time. With the
repeated iteration, the change in land-use state with time was simulated. Finally, when the
iterations met the set termination conditions, the simulation ceased, and the results were
checked for accuracy (overall accuracy and Kappa coefficient), to verify model quality. To
compare the role of partitioned CA and key attributes in cellular partitioning, the training
data were divided into three categories: overall training without the AWFLUC factor,
partition training without the AWFLUC factor and partition training with the AWFLUC
factor. The training sample set was randomly generated using software. Following data
verification of the trained model, the weight value and bias parameter of each variable
of the NN obtained were saved. The land-use type that the cellular state would convert
into at the next time point was determined by the roulette selection method. This meant
the conversion probability was designed as a digital roulette, which would generate a
random number each time. Then, the cellular state would be converted to the land type
corresponding to the conversion probability of random number matching at the next time
point. The cellular-state change determined by roulette in this study was more in line with
the randomness of the land-use change process, which helped to improve the authenticity
of the simulation.

Using ANN to mine the rules of cellular-state transition was key, involving a multi-step
core process. First, the standardized land-use type and its driving factors (Xi) formed the
input layer (training data) of the ANN, and this input determined the land-use conversion
probability of the kth unit at time t. Second, the hidden layer received the data from
the input layer, and the signal of the jth neuron at time t, of this unit (neti(k,t)), was
obtained through training. Lastly, the hidden layer generated a certain response value to
these signals, which was converted into the final conversion probability (P(k,t,l)) by the
response function and transmitted to the output layer. The calculation methods for these
key variables are as follows:

netj(k, t) = ∑
i

wi,jxi(k, t)

P(k, t, l) = ∑ wj,l
1

1+e−netj(k,t)

(5)

where xi(k,t) represents the driving factor variables of the kth unit at time t; wi,j represents
the weight between the input layer and the hidden layer; (P(k,t,l)) represents the probability
of the kth cell being converted from its current state to l at time, t; and wj,l is the weight
value of the jth neuron in the hidden layer and the lth neuron in the output layer.
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3. Results
3.1. Cellular Space Partition Results

The land-use change similarity partition results for the study area were obtained
using the dual-constraint partition method in conjunction with land-use classification,
the spatial geometric division based on the Thiessen polygon, fundamental attributes
(population density, GDP, slope, aspect, and elevation), and the AWFLUC of the study
area from 2006 to 2016 (see Figure 4). Figure 4 shows that partitioning the cellular space
using the dual-constraint method ensured cellular compactness in the spatial domain,
and did not lose similarity in the non-spatial domain. As such, this may better reflect the
spatial differentiation law of land-use change. The weight had a degree of influence on the
partitioning effect of the dual-constrained partitioning method: when wp = 0 and wa = 1,
it represented partitioning only according to the property. Conversely, the partitioning
according to the space distance, and the inputs between the two set values represented
a dual-constraint partition. Following a visual analysis and comparison of the partition
results under different weights, the weight of the partition results was finally determined
to be: wp = 0.5 and wa = 0.5.
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3.2. Cellular Conversion Rules Acquisition Based on ANN

The ANN training datasets of four different periods were generated, consisting of
4000 random sampling points, of which 2000 were used for training and 2000 were used
to verify the training results. These datasets were based on the four different periods of
land-use data and driving factors in the study area, and the three schemes: no partition,
partition according to land-use change, and partition according to land-use change rate.
When the contrast accuracy of the training and verification datasets reached the set thresh-
old, it signified that the training accuracy met the requirements; consequently, the ANN
discontinued the iterative process and output the training results (weights and biases).
Table 3 presents the accuracy valuation of training: loss rates were relatively low, and the
ANN model satisfied the requirements for conversion-rule mining.

Table 3. The accuracy valuation of ANN model.

Model
Index Loss Rate

2006–2009 2009–2013 2013–2016

Mode I 0.39162 0.37613 0.34464
Model II 0.33429 0.30922 0.27666
Model III 0.33422 0.30890 0.28092

Note: Model I: Non-partitioned CA model; Model II: Ordinary partitioned CA model; Model III: AWFLUC
constrained partitioned CA model.

Based on the ANN training results, the probability maps of the conversion of each
land-use type for each CA model were calculated for each simulation period: 2006–2009,
2009–2013, and 2013–2016. The probability maps in Figure 5 are examples of Model III;
these maps determine the probability that one land-use type may switch to another.
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Figure 5. The probability maps (x1–x7) are the transition probabilities of seven land-use types, which are, respectively,
IS, forest, cultivated land, grassland, garden, water area and bare land. Here, x is a, b or c, which refers to, respectively,
2006–2009, 2009–2013 or 2013–2016.

3.3. Land-Use Dynamic Simulation Results and Accuracy Test

Once the AWFLUC was calculated for 2006–2009, 2009–2013, and 2013–2016 and the
total AWFLUC was determined for the 10 years, the land-use change processes for each
time period were simulated using the ANN-CA model. The simulation was based on
the CA conversion rules under three different cellular-space partitioning schemes, which
are shown in Figure 6. For ease of understanding, three abbreviated aliases were used
to represent the three types of CA models used in this study. Model I represents the
non-partitioned CA model; Model II represents the ordinary dual-constrained partitioned
CA model (without considering AWFLUC); and Model III represents the dual-constrained
partitioned CA model considering AWFLUC.
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Figure 6. Comparison of simulation results with different CA partition. (x1) is the actual land use,
and (x2–x4) are the simulation results of Model I, Model II and Model III. Here, “x” is a, b or c, which
means the period of 2006–2009, 2009–2013 and 2013–2016, respectively.

To verify the correctness and reliability of the simulation model, the Kappa coefficient
and overall accuracy were used to evaluate model quality. The Kappa coefficient was
used to measure the consistency between simulation results and reality. When it ranges
from −1 to 1, the result is usually between zero and one. When Kappa = 1, the simulation
result is completely consistent with reality; when Kappa ≥ 0.75, the consistency is high;
and when Kappa ≤ 0.4, the consistency is poor and the simulation result is not ideal. The
Kappa coefficient and the overall accuracy of the results from each simulation year were
determined at a sampling rate of 20%. Table 4 shows that the simulation accuracy of the
partitioned CA models was significantly better than the non-partitioned model (Kappa
coefficient increased by a maximum of >9%, and the maximum overall accuracy exceeded
14%); as such, the quality of the partitioned model had significantly improved. Compared
with Model II, the simulation accuracy of Model III was also found to improve (Kappa
coefficient increased by a maximum of >6%, and overall accuracy increased by a maximum
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of >3%). The experimental and precision analysis results confirmed that the hypothesis
proposed in this research is scientific and effective.

Table 4. The simulation accuracy evaluation of three CA models in three periods.

Period (Year)

Accuracy Index Model I Model II Model III
AAUD

I vs. II II vs. III I vs. III

OA K OA K OA K OA K OA K OA K
2006–2009 0.8301 0.7716 0.8606 0.8133 0.8833 0.8448 3.68% 5.41% 2.64% 3.87% 14.48% 9.49%
2009–2013 0.8477 0.7959 0.8687 0.8133 0.9007 0.8680 2.48% 2.19% 3.68% 6.72% 13.17% 9.05%
2013–2016 0.8616 0.8151 0.8952 0.8602 0.9187 0.8920 3.90% 5.54% 2.63% 3.69% 12.72% 9.44%

Note: Model I: Non-partitioned CA model; Model II: Ordinary partitioned CA model (without considering AWFLUC); Model III: AWFLUC
constrained partitioned CA model; OA: Overall Accuracy; K: Kappa coefficient. AAUD: Analysis of accuracy ups and downs.

3.4. Land-Use Dynamic Simulation Results and Accuracy Test

To test the sensitivity of the AWFLUC to the space partition of CA, three typical areas
that had the same area but differed in land-use change frequency (high, medium, or low)
were selected. The method used in this test followed a multi-step process. First, in the three
selected test areas, land-use change was simulated by Models I, II, and III. Second, the
influence of AWFLUC on the CA model of land-use change was evaluated by analyzing the
simulation accuracy of the three models in the same testing area. Figures 7 and 8 present
the land-use change simulations from each model in the three testing areas, and Table 5
presents the analysis of their accuracy.
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Figure 8. The simulation results of using three different CA models in three testing areas. (a1) Initial
land use in Area 1; (a2) Simulation result by Model I in Area 1; (a3) Simulation result by Model II in
Area 1; (a4) Simulation result by Model III in Area 1; (b1) Initial land use in Area 2; (b2) Simulation
result by Model I in Area 2; (b3) Simulation result by Model II in Area 2; (b4) Simulation result
by Model III in Area 2; (c1) Initial land use in Area 3; (c2) Simulation result by Model I in Area 3;
(c3) Simulation result by Model II in Area 3; (c4) Simulation result by Model III in Area 3.

The rows in Table 5 depict the simulation accuracies of the CA model and the variations
under the three partitioning strategies of the CA space. As such, the influence of the three
strategies on the CA model may be analyzed from the row perspective. Table 5 shows
that the overall accuracy and Kappa coefficient of simulation in the three testing areas
changed with model selection, thereby exhibiting clear improvements in accuracy. The
overall accuracy and Kappa coefficient of the simulation results obtained using Model
II improved by 8.57 and 10.72%, respectively, compared with Model I, and the overall
accuracy and Kappa coefficient of the simulation results obtained using Model III improved
by a maximum of 13.51 and 11.07%, respectively over Model II. Furthermore, there was
improved simulation accuracy using Model III in Area 2 (with medium AWFLUC) and
Area 3 (with high AWFLUC) compared to Area 1 (with low AWFLUC). As such, these
results indicate that the CA space was sensitive to AWFLUC. In other words, AWFLUC was
conducive to identifying the spatial heterogeneity of land-use evolution more accurately,
thus optimizing the division strategy of the CA space.

Second, the column perspective of the table reflects the influence of AWFLUC on
three different partitioned CA models. The results demonstrated that, with an increase
in AWFLUC from Areas 1 to 3, the three CA models experienced a downward trend in
accuracy to varying degrees. This showed that human–land interaction may to a certain
extent be described by AWFLUC; this is because the increase in AWFLUC indicated that
the intensity of human–land interactions was rising. This increased interaction elevated the
complexity of land-use evolution and the difficulties associated with the land-use change
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simulation using the CA model; as such, this led to a decrease in simulation accuracy.
Among the three models, Model I showed the largest fluctuation in simulation accuracy
(overall accuracy was reduced by up to 6.69%, and the Kappa coefficient was reduced by
up to 8.24%), while Model III experienced the smallest fluctuation (overall accuracy was
reduced by up to 0.29%, and the Kappa coefficient was reduced by up to 0.35%). This may
have indicated that the partitioned CA model had better stability than the non-partitioned
CA model. This may have been because the AWFLUC had a better ability to identify the
spatial heterogeneity of land-use evolution. As such, the AWFLUC-constrained partition of
the CA space was able to resemble the actual evolution of landscape pattern more closely,
thus improving the simulation accuracy of land-use change through the CA model.

Table 5. The accuracy evaluation and analysis of three CA models in testing areas.

Model I Model II Model III
AAUD

I vs. II II vs. III I vs. III

OA K OA K OA K OA K OA K OA K

Area 1 0.9041 0.885 0.9198 0.9038 0.9346 0.9215 1.74% 2.12% 1.61% 1.96% 5.60% 4.12%
Area 2 0.8296 0.7956 0.9007 0.8809 0.9031 0.8837 8.57% 10.72% 0.27% 0.32% 13.51% 11.07%
Area 3 0.8891 0.867 0.9047 0.8857 0.9319 0.9183 1.75% 2.16% 3.01% 3.68% 7.49% 5.92%

AAUD
1 to 2 −6.69% −8.24% −0.44% −0.54% −3.09% −3.77%
1 to 3 −1.66% −2.03% −1.64% −2.00% −0.29% −0.35%
2 to 3 7.17% 8.97% 0.44% 0.54% 3.19% 3.92%

Note: Model I: Non-partitioned CA model; Model II: Ordinary partitioned CA model (without considering AWFLUC); Model III: AWFLUC
constrained partitioned CA model; Area 1: Low-frequency area of land-use change; Area 2: Medium-frequency area of land-use change;
Area 3: High-frequency area of land-use change; OA: Overall Accuracy; K: Kappa; AAUD: Analysis of accuracy ups and downs.

4. Discussion

Spatial heterogeneity is a common geographic phenomenon in land-use evolution.
When a CA model is used to simulate land-use change, it is necessary to consider the
influence of spatial heterogeneity on key processes, such as the selection of transformation
rules and scale [36]. Although double-constrained spatial clustering is an effective method
of dividing cellular space, it only provides a computational framework; it cannot explain
the differences in land-use from the internal mechanism. To solve the above problem, this
paper put forward the idea of adding indicators that could better characterize the spatial
heterogeneity characteristics of land-use change within the double-constraint calculation
method for dividing cellular space. Therefore, an index called the “Area-Weighted Fre-
quency of Land-use Change (AWFLUC)” was proposed to identify the spatial heterogeneity
of land-use change and improve the rationality of cellular-space partition. As a result, two
dual-constrained methods—-one with and one without the influence of AWFLUC—-were
proposed for dividing the CA space, and the consequences of two methods were com-
pared and analyzed. Moreover, the validity of these methods was verified by simulating
land-use change in the Dianchi Lake watershed through verification of model accuracy.
The analysis suggested that the dual-constrained method of cellular space accounts for
the spatial adjacency relationship and the similar attributes of land units. These features
may be the basis for the observed improvements in simulation accuracy from using the CA
model in land-use change [29,30,32]. However, this method also possesses some degree
of subjectivity when it assigns weight to the similarity of space and attribute features.
Therefore, it is recommended that future research focus on determining the weight more
reasonably or identifying a better method of cellular space partitioning. At present, great
progress in the quantitative detection of spatial heterogeneity was made. Using detection
tools such as “Geodetector” [28] to identify the spatial heterogeneity of land-use change
offers a probable way of determining the weight of the similarity of space and attributive
features more objectively.
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The AWFLUC is an important indicator for measuring human–land interactions;
however, it may be influenced by the density of the time interval of original land-use data,
such as the data acquisition time of remote-sensing imagery. The higher the temporal
resolution of land-use classification data collections, the larger the AWFLUC. In contrast,
if the temporal resolution of data collection had been low, it would have been difficult
to show human–land interactions. Limited by the availability of raw data, the minimum
temporal resolution of the original land-use data is three years, and the maximum is four.
The temporal resolution of the data was uneven, and the span was relatively high. It is not
known whether the calculated land-use change frequency was able to reflect the intensity
of human–land interactions over a 10-year period (2006–2016) objectively. Therefore, future
research to determine the AWFLUC, will need to address the effect of the original data
acquisition period. It is evident that increasing the temporal resolution of land use in data
updating environmental permits is conducive to improving the reliability of the AWFLUC.

5. Conclusions and Further Work

This study used ANNs and the CA model to construct an ANN—CA model, based
on the cellular-space partition theory and the dual-constrained partition method. This
model was suitable for simulating the land-use change process in the Dianchi Lake water-
shed. Through the analysis and verification of the test results, the main conclusions are
the following:

(1) The partitioned CA based on dual-constrained spatial clustering significantly
improved the simulation accuracy of the land-use change model. Cellular-space division
based on dual-constrained spatial clustering guaranteed cellular compactness in the spatial
domain, and accounted for its similarity in the non-spatial domain. Thus, it was able
to better reflect the spatial differentiation law of the cellular space. The experimental
results showed that the simulation accuracy of the partitioned CA model based on dual-
constrained spatial clustering was significantly higher than that of the uniform regular CA
(non-partitioned CA); and

(2) The AWFLUC is an effective index for identifying the differentiation law of cel-
lular space. In this study, using AWFLUC as the attribute, the dual-constrained method
combined with the spatial geographic location was used to partition the cellular space.
This properly solved the problem of an inconsistent evolution process and the results of
geographic cellular space; as such, the impact of this problem on the accuracy of the CA
model was reduced. The simulation process was able to better reflect the relationships
among cellular elements and their own attributes.

In summary, there is an influence from spatially heterogeneous regional development
on the differentiation of cellular space, and this influence is controllable. The cellular-space
partitioning method and the partitioned ANN–CA model can greatly improve the accuracy
of the land-use change simulations, where the degree of improvement was significant. It is
recommended that future research focus on the following:

First is the weights of cellular spatial regionalization. In this study, these were based
on dual-constrained spatial clustering that were mainly determined by empirical and
visual interpretation methods. These weights have strong subjectivity and were unable to
reflect the mechanical influences of weights on land-use change. Therefore, more scientific
quantitative methods such as decision trees should be considered to determine the optimal
weight threshold. Alternatively, spatial heterogeneity tools such as “Geodetector” may be
used to detect the driving factors that cause the spatial heterogeneity of land-use change,
and thus provide a better approach for cellular space partitioning.

The second concerns the possibility of more suitable attributes for evaluating the
similarity of land-use change and its results. Although AWFLUC is an essential attribute
for evaluating land-use change, it is limited by the temporal resolution of the original land
use, and as such its impact mechanism on land-use change is still unclear.
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Explanation of Abbreviation

LUCC Land-use and Land Cover Change
CA Cellular Automata
LR Logistic Regression
MC Markov Chain
AI Artificial Intelligence
SVM Support Vector Machine
ACO Ant Colony Algorithm
GA Genetic Algorithm
NN Neural Network
ANN Artificial Neural Network
FLUC The Frequency of Land-use Change
AWFLUC The Area-Weighted Frequency of Land-use Changes
GDP Gross Domestic Product
Model I Non-partitioned CA model
Model II Ordinary partitioned CA model (without considering AWFLUC)
Model III AWFLUC-constrained partitioned CA model
Area 1 Low-frequency area of land-use change
Area 2 Medium-frequency area of land-use change
Area 3 High-frequency area of land-use change
OA Overall Accuracy
K Kappa coefficient
AAUD Analysis of accuracy ups and downs
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