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Abstract: Public bike-sharing is eco-friendly, connects excellently with other transportation modes,
and provides a means of mobility that is highly suitable in the current era of climate change. This
study proposes a methodology for inferring the bike trip purpose based on bike-share and point-of-
interest (POI) data. Because the purpose of a trip involves decision-making, its inference necessitates
an understanding of the spatiotemporal complexity of human activities. Thus, the spatiotemporal
features affecting bike trips were selected from the bike-share data, and the land uses at the origin
and destination of the trips were extracted from the POI data. During POI type embedding, the data
were augmented considering the geographical distance between the POIs and the number of bike
rentals at each bike station. We further developed a ground truth data construction method that uses
temporal mobile and POI data. The inference model was built using machine learning and applied to
experiments involving bike stations in Seocho-gu, Seoul, Korea. The experimental results revealed
that optimal performance was achieved with the use of decision tree algorithms, as demonstrated
by a 78.95% overall accuracy and 66.43% F1-score. The proposed method contributes to a better
understanding of the causes of movement within cities.

Keywords: bike trip purpose; point-of-interest embedding; land use extraction; temporal mobile
data; machine learning

1. Introduction

Although the sharing economy is accelerating worldwide, there is a limit to the expan-
sion of vehicle sharing owing to transportation and environmental issues in crowded cities.
Accordingly, bike-sharing, which reduces vehicle emissions and improves urban mobility, is
an attractive alternative [1]. Currently, more than 2000 cities operate bike-sharing systems,
which provide users with a flexible tool for making short-distance trips and interchanging
between different modes of transport [2]. Bike-sharing is a significant transportation mode
because it is often located at the start and end stages of trip chains [3–5]. Free-floating
car-sharing, which has experienced remarkable growth in European and American urban
markets, is a system that allows users to freely rent shared vehicles through smartphones
at participating public parking lots [6,7]. In this context, bike-sharing enables users to
connect between their departure points and the beginning parking lots and between the
end parking lots and their destinations. This expands the service of vehicle sharing, with
an increase in bike-sharing leading to an increase in the use of shared vehicles, as well
as other public transportation modes. The scenario offers an effective countermeasure
against urban traffic congestion. Non-motorized trips (walking and cycling) account for
the finer-scale “capillary” flow in cities, revealing the full nature of urban transportation
flows [3,8]. Many studies have analyzed bike-share movement patterns to better under-
stand the urban dynamics [1,3,9], while others have focused on examining the variability
of land use [10,11]. Zhao et al. [10] used bike-share data as the main basis for identifying
land use characteristics.
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The present study focused on the “why” of traffic, rather than simply analyzing bike-
share movement patterns, which is more relevant to the “where” of traffic. The latter only
addresses urban mobility, whereas the former enables inferences on the purposes of the
trips and determination of the causes of urban movement [12]. Nevertheless, the reason for
a phenomenon and its result is more meaningful to decision-making, rather than a mere
observation of the phenomenon. For example, rather than simply observing many cars in a
specific area after 6 p.m. (movement pattern analysis), it is more significant to understand
the cause of the observation, namely, the rush-hour movement of people from their work
to dwelling places (trip purpose inference). This enables drivers to make the decision to
avoid roads leading to residential areas at that time.

Traffic purpose inference is essential for understanding traffic behavior for traffic plan-
ning, investment decision-making, and estimating traffic demand [13]. However, among
studies related to traffic characteristics, trip purpose prediction has received considerably
less attention [14–16]. Traffic history data are required for trip purpose prediction; however,
there are only a few accurate data containing information on human decision-making.
Thus, traditional trip purpose inference analyses rely on direct user surveys [1]. User-direct
surveys for traffic purposes contain accurate ground truth data and are, therefore, suit-
able datasets for applying inference algorithms. However, there are limited targets and
cost-related limitations.

Nguyen et al. [17] reviewed 25 studies in terms of trip purpose imputation, and classi-
fied them into two broad fields, namely, transportation science (TS) and human geography
(HG). They indicated that researchers will always find themselves in these two situations
in the real world. In other words, researchers would analyze a post-collected dataset or
design a survey to create an enhanced inference model. Therefore, it is emphasized that
accurate targeting of research domains is crucial. TS-related studies focus on the methods of
deriving objects from GPS data, whereas HG-related studies focus on semantic enrichment
for GPS trajectories. The latter case focuses on obtaining general knowledge on the mobility
and whereabouts of activities, rather than accurate methodologies [17].

For GPS information collected via onboard devices that do not contain ground
truth data, various studies have utilized a fusion of survey data (such as household
travel survey data), point-of-interest (POI) data, and social media data for trip purpose
inference [13,14,18]. However, these make for only a small percentage of related works,
and research on the prediction of the purpose of bike-related travel remains insufficient [2].
Bao et al. [1] and Xing et al. [2] inferred bike trip purpose using POI data, considering that
trip purpose is correlated with land use at the destination [18–20]. However, these studies
did not consider the effect of mixed land use in urban areas. Bao et al. [1] classified the trip
purposes by clustering based on only a simple frequency count of the POI type near the
bike stations. Xing et al. [2] augmented the context of the origin and destination of bike use
through POI data but did not consider the specific trip purpose for an integrated location
such as a shopping mall. However, the increasing occurrence of mixed land use in urban
areas and integrated POIs such as buildings needs to be considered [21,22].

Therefore, the present study aims to solve the problem of mixed land use in the
context of origin–destination, which is key to trip purpose inference, using POI embedding
technology. POI is a useful tool for defining the meaning of a place. However, owing to
the hierarchy of POI types, many factors are overlooked, resulting in information loss [23].
For example, apartments and parks are perceived as completely unrelated POIs because
of their different categories, but residential areas and urban parks are generally located
very close to each other. Recently, research has been conducted on the meaning of a POI
considering its spatial correlations [23–25]. This may involve the application of word-
embedding technology to the natural language processing domain [26], as has been used
to classify urban functional areas [25,27]. As urban functional areas are strongly correlated
with the internal socioeconomic activities in spaces, they are not easy to identify from pure
remote-sensing images [21]. Therefore, POI data are used as a complementary measure,
but the limitation of the hierarchy of POI types requires the use of embedding technology
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to define the POI type. Consequently, in the present study, POI types customized for bike
trips were used, with POI type embedding conducted based on the bike trip purpose. This
provides a solution to the urban mixed land use problem.

This work differs from the TS-related existing trip purpose inference studies focusing
on the accuracy of the methodology. It is different in that it focuses on obtaining general
knowledge on bike mobility and the whereabouts of activities by applying meaning-
enhancing processes reflecting the real world. To evaluate the proposed method, we also
create ground truth data using mobile data and POI data. The contributions of this work to
the field and the society are as follows. First, this work proposes a methodology to apply
POI embedding techniques to bike trip purpose inference. POI embedding technology is
an application of technology in the field of natural language processing (NLP); in the field
of spatial analysis, it has only been used for urban functional area classification [25,27] and
POI recommendation [26]. To the best of our knowledge, this study is the first to adopt POI
embedding techniques for trip purpose inference. Second, personal mobility, as well as
existing transportation modes such as buses and taxis, has recently been rapidly increasing
worldwide. Given this scenario, the proposed methodology can be customized according
to the corresponding mode when inferring the trip purpose for personal mobility. Third,
the travel data of personal mobility, including those of shared bicycles, allow us to know
the fine flow of personal movement in cities that cannot be observed from the movement
patterns of buses or subways. Thus, applying the proposed inference methodology to
real-world data for analyzing the trip purpose would lead to a better understanding of the
causes of personal movement within cities.

The remainder of this paper is organized as follows. Section 2 reviews previous
studies related to trip purpose inference and POI embedding. Section 3 presents the
proposed methodology for inferring the bike trip purpose. In Section 4, we describe a
bike trip purpose inference experiment conducted using 87 bike stations in Seocho-gu,
Seoul. Finally, Section 5 presents the conclusions and limitations of the study and future
research directions.

2. Related Works
2.1. Studies on Trip Purpose Inference

Among traffic-related studies, trip purpose has received relatively less attention [14–16].
This is because of the spatial-temporal complexity of human activities required for pre-
dicting trip purpose [13,28]. Studies on the inference of trip purpose can be classified
according to the main modes of travel. The most studied aspect focuses on the trips of
human beings without specifying the transportation mode. In this case, the trip purpose is
mostly predicted based on surveys, with the development of related technologies enabling
extensive research, including the addition of GPS data that provide the travel routes [15,29].
In addition, the analysis of complex space and time data has become more sophisticated
through the fusion of heterogeneous data such as social media data (e.g., tweets) and POI
data (e.g., Google API) [14,29,30]. However, predicting the trip purpose only through direct
traveler surveys has severely limited the existing research.

Studies have also been conducted on trip purpose inference with respect to the trans-
portation mode. The most studied aspect in this case is the public transportation mode,
such as subways, with diversification achieved with the development of smart cards. How-
ever, only a few of these studies focused on predicting the trip purpose because a smart
card does not include “travel purpose,” which requires decision-making by the traveler.
Alsger et al. [18] addressed this issue by inferring the trip purpose through the collection
of household travel survey (HTS) data. Rule-based modeling was applied to the HTS data,
which were obtained through traveler surveys, and the trip purpose was inferred based on
the spatial, temporal, and frequency attributes.

In bike-related studies, the analysis of the traditional sharing patterns or travel pur-
poses is often based on traveler satisfaction surveys [13,14,29,31–33]. More recently, the
increasing abundance of bike-share data has been used to infer the trip purpose. In particu-
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lar, trip purpose is highly related to land use at the destination. Thus, with the increasing
sophistication of POI data, many researchers have attempted to carry out a spatiotemporal
analysis of the fusion of bike-share data and POI data. Bao et al. [1] analyzed bike-share
travel patterns and trip purpose using Citi Bike data in New York, USA. Through k-means
clustering, they classified the bike stations based on the surrounding POI data and de-
veloped a bike travel pattern model using the latent Dirichlet allocation (LDA) method.
However, the study had some limitations, such as the clustering of the bike trip purposes us-
ing only the simple frequencies of the POI types around the destination. Xing et al. [2] used
Mobike data and dockless bike-share data for Shanghai, China, and similar to Bao et al. [1],
they combined bike-share data and POI data to analyze the user travel patterns and pur-
poses. In particular, they enriched the trip origin and destination contexts by extracting
information on the configurations of nearby POIs. This is different from the approach of
Bao et al. [1], who considered only the frequencies of the POI types. However, only the POI
type and bike point were used to construct the context, and data that changed over time
were excluded. Additionally, the method is limited by its inability to consider integrated
POI such as shopping malls.

Chen et al. [34] predicted the trip purpose for taxi users. The study was significant
because a large amount of trip character data was integrated into one vector value, and
embedding was used to infer the trip purpose. The utilized taxi trajectory data and POI data
were generated in New York City, USA. To elaborate on the contexts of the taxi origin and
destination, popularity, uniqueness, and distance to the POI were considered through time
information and Foursquare check-in data. Three contexts (time, origin, and destination) of
the taxi trip were constructed and deep-embedded through an autoencoder. Finally, the taxi
trip purpose was extracted by clustering the embedded values.

The foregoing review reveals that traditional studies related to trip purpose inference
have mainly employed GPS-based surveys of human trips. However, some recent trip
purpose inference works have utilized big data acquired by smart cards or public bike-
share services. Nevertheless, it remains difficult to measure the inference model accuracy if
the dataset is not based on a traveler survey. Most of these previous studies attempted to
infer the trip purpose from trip history data and POI data, but it was not easy to generate
ground truth data. Therefore, when big data are used, they are combined with survey data,
or the results obtained by the inference models are clustered and labeled for appropriate
traffic purposes.

Table 1 compares different studies related to trip purpose inference conducted over
the last three years, from which the recent trends can be observed. Unlike the existing
studies, this study proposes a methodology to infer bike trip purposes, with the aim of
acquiring general knowledge on bicycle mobility and activity sites. Further, this study
evaluates the proposed method by generating ground truth data using mobile data and
POI data.

Table 1. Previous studies related to trip purpose inference.

Author
Object

(Transportation
Mode)

Data Method Accuracy(%) Ground Truth Research
Domain 5

Ermagun et al. [14] People TBI 1 survey,
POI data

Random forest 64.17 TBI
survey

Meng et al. [29] People CHTS 2 survey, POI data,
Social media (Twitter)

Dynamic
Bayesian network 87.8 CHTS survey TS 6

Bao et al. [1] Bikes Smart card data, POI data k-means, LDA - -

Cui et al. [13] People CHTS survey, POI data,
Social media (Twitter)

Bayesian neural
network 90.52 CHTS survey TS

Alsger et al. [17] Public transports
(subways, buses)

HTS 3 survey, OD 4

survey, Smart card data,
land use data, etc.

Rule-based
methods 78 HTS

survey
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Table 1. Cont.

Author
Object

(Transportation
Mode)

Data Method Accuracy(%) Ground Truth Research
Domain 5

Chen et al. [34] Taxis Taxi GPS data, POI data
Auto

encoder,
k-means

- - HG 7

Xing et al. [2] Bikes Mobike data, POI data k-means++ - -
1 TBI: Travel Behavior Inventory; 2 CHTS: California Household Travel Survey; 3 HTS: Household Travel Survey; 4 OD: origin–destination;
5 research domain: categorized by Nguyen et al. [17]; 6 TS: transportation science; 7 HG: human geography.

2.2. Studies Related to POI Embedding

With the development of technologies such as Word2vec for vectorizing information
that is difficult to quantify in natural languages, studies are being actively conducted to
quantify information in various fields [26,35–37]. Yan et al. [24] developed the Place2vec
model, which is used for POI type embedding and takes into account the geographical
distance and popularity of the POI, for quantifying POI information distributed over a
geospatial space. Place2vec differs from previous methods, which do not consider internal
spatial correlations and only use the POI frequency to determine the functional type of the
region of interest [25].

Yao et al. [27] and Zhai et al. [25] proceeded further in measuring the similarity and
relevance of place types. These studies attempted to extract land use from the results of
POI embedding. Zhai et al. [25] simplified the results obtained by Yan et al. [24] and used
them for data augmentation based on only the distance between POIs. The functional type
of the urban area was extracted from the embedding results. In addition, for the accurate
identification of the extraction results, the annotation of each region was supported by
mobile phone data and truck origin–destination (OD) data.

Liu et al. [38] and Liu et al. [23] subdivided POI types to avoid loss of information
due to hierarchy. For example, Liu et al. [23] specified 488 POI types and observed a
correlation between pharmacies, convenience stores, and barbershops. These POI types are
usually located close to each other, but the hierarchy of these POI types may obscure their
correlation. In addition to subdividing the POI type, different correlations may also be
paired when making tuples. For example, Jin et al. [39] embedded the store types instead
of POI types and augmented the data by constructing pairs of the type of store and items
sold by the store.

Table 2 compares different studies on POI embedding. In most studies, the type
of POI was defined through data augmentation based on the distance of the POI in the
geospatial space. The k-nearest or a buffer was used to generate tuples between the POIs,
and Word2vec skip-gram was mainly used for embedding. The present study followed the
flow of these previous studies with respect to tuple composition and the use of Word2vec,
but a novel POI embedding method was used to extract the land use specific to a bike trip.
The POI types were classified according to the bike trip purpose with reference to related
studies. In particular, the POI types related to bike leisure were separately classified to
avoid information loss due to the hierarchy of POI types. We believe this methodology is
beneficial because POI embedding can be customized to suit the mode of transportation
when inferring personal mobility trip purposes in the future.

Table 2. Previous studies related to POI embedding.

Author Data Number of POI
Types

Method of Spatial
Context Augmentation Embedding Method Embedding

Dimension

Yan et al. [24] Yelp POI data 22 ITDL 1 Skip-gram 70

Yao et al. [27] Baidu Maps
POI data 419 Distance CBOW 2 200

Zhai et al. [25] Baidu Maps
POI data 22 Distance Skip-gram 70
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Table 2. Cont.

Author Data Number of POI
Types

Method of Spatial
Context Augmentation Embedding Method Embedding

Dimension

Liu et al. [39] Yelp POI data 842 Distance Skip-gram -

Jin et al. [40] YIWUGOU
Shop data - Shop and product Skip-gram -

Liu et al. [23] Gaode Maps
POI data 488 Distance Skip-gram 100

1 ITDL: information-theoretic, distance lagged; 2 CBOW: continuous bag of words.

3. Methods

We developed a method for inferring the purpose of public bike trips based on bike-
share data and POI data. The method involves extracting the features that affect the trip
purpose from the data and using them for machine learning to infer the final trip purpose.
When selecting the utilized features, the land use information at the bike trip starting
and end points were determined by embedding and clustering the POI data for the area
around the bike station. In addition, to establish the ground truth data for determining the
trip purpose, we standardized the mobility data for each time period in a mesh form and
extracted it together with the POI data. The overall method is illustrated in Figure 1.

3.1. Feature Extraction for Inference of Trip Purpose

Unlike travel demand forecasting, which is influenced by various factors such as
weather and the floating population, the trip purpose can be broadly divided into time and
space information. The time of a bike ride and the land uses at the departure point and
the destination significantly reflect the trip purpose. Chen et al. [34] created three contexts
for time, origin, and destination and used embedding to infer the purpose of a taxi trip.
Alsger et al. [18] inferred trip purpose with the aid of a smart card, using the destination
land use, start time, and activity duration as the important attributes.

In the present study, the features that influence public bike trip purposes are the riding
day, departure time, departure point land use, arrival time, destination land use, trip time,
trip distance, and distance between bike stations. The riding day was considered to be the
rental date given the improbability of the use of a rented public bike for more than 24 h. The
riding day was denoted by 1 for a workday and 0 for a non-workday. The departure and
arrival times ranged between 0 and 23, with only time zone information used and minute
and second details ignored. To consider the time and spatial factors of the entire trip, the
trip time and trip distance were separately inputted. The distance between the departure
and arrival stations was considered an important feature owing to the characteristics of
bikes used for leisure purposes such as park riding. For example, in the case of a leisure
trip, even if the total trip time or distance was long, the departure and destination stations
may be the same.

When the above-mentioned features are constructed using bike-share data, POI data
for the areas around the stations should be used for land use extraction at the departure
point and destination. Considering the distance between public bike stations and the
population density of Seoul City, the search radius for each station was set to 250 m, as in
previous studies [1,40]. For accurate inference, the POIs were classified into customized
types by categorizing based on the purposes of the bike trips. The classification of the
purpose of the trips used in previous studies is presented in Table 3.
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Table 3. Trip purpose classifications in previous studies and the present study.

Author Object
(Transportation Mode) Trip Purpose Classes Number of Classes

Ermagun et al. [14] People
Education, shopping, social
recreation and community,

eating out, personal business
5

Meng et al. [29] People
Education, shopping, eating out,

recreation, personal,
transportation

6

Bao et al. [1] Bike Home, eating, leisure, shopping,
transport, education 6

Alsger et al. [17] Public transport Work, education, shopping,
recreation, home 5

Chen et al. [34] Taxi Dining, recreation, work,
homing, others 5

Zhao et al. [10] Bike (Land use) residence, work,
consumption, transit 4

This study Bike

Home, work, education,
transit, dining,

shopping and service, leisure,
bike leisure

8

In this study, eight bike trip purpose categories were considered, namely, home, work,
education, transit, dining, shopping and service, leisure, and bike leisure. The classification
was performed by referring to Bao et al. [1], who used bikes as the main object, with
“work” added. In addition, POIs in parks and amusement parks specific to bike traffic
were identified as “bike leisure.” Further, POIs related to “bike leisure” within the search
radius were compared with everything within 1000 m of the bike station instead of the
standard 250 m. The identification of the land use using POI data for areas around the bike
stations is discussed in the next subsection.

3.2. Identification of Land Use in Bike Trips
3.2.1. POI Type Embedding Related to Bike Trip Purpose

Studies on the embedding of POI types have been conducted in various fields over the
last three years, beginning with the work of Yan et al. [23–25,38]. In the present study, we
developed a POI embedding method specifically for bike trips. The POI type was classified
by considering the purpose of the bike trip, while the geographical distance between the
POIs and the number of bike rentals per station were used to augment the POI tuples
for embedding.

The embedding of the POI type to infer the bike trip purpose was essentially word
embedding, which is used to give meaning to a word by considering the location of the
central word and the context words. This method applies the concept of word embedding
to a POI or place. Figure 2 compares the window size-based Word2vec and the concept of
POI type embedding. Because word embedding (skip-gram) is based on window size, if the
window size is 1, as shown in Figure 2, training is performed by selecting “quick” and “for”
as the context words of the center word “brown.” This method is used to predict context
words based on a center word. Conversely, POI type embedding utilizes the location of the
POI. If the POI is located within 100 m of the central POI, “apartment,” it is recognized as
the context POI (e.g., supermarket, pharmacy, or park), and a tuple is produced.
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We developed a POI type embedding method specifically for bike trips based on
Yan et al. [24]. A skip-gram model for predicting context words from the center word
obtained by Word2vec models was utilized, and the difference between the trained proba-
bility and the actual probability was measured by cross-entropy. The model is expressed
as follows.

D(ŷ, y) = −yc log(ŷc) (1)

where ŷ is the learned probability distribution, y is the actual probability distribution, c is
the type index, and ŷc is the probability of occurrence of m POIs (t1, t2, t3, . . . tm), given by
Equation (2).

ŷc = P(t1, t2, t3, . . . tm|tc) (2)

where tc is the center POI. When the naïve Bayes assumption is applied in calculating the
probability, yc is always 1.

Finally, by converting the score into probability using the softmax function, the POI
type can be expressed as a vector. The objective function is given by,

minimize J = −log
m

∏
t=1

exp
(
uT

t vc
)

∑
|T|
k=1 exp

(
uT

k vc
) (3)

where ut denotes the context place-type vectors, vc denotes the center-place-type vectors,
and |T| is the cardinality of the POI type.

To give the correct meaning to a POI type located in a geospatial space, Yan et al. [24]
proposed augmentation of the number of appearances of the training tuple (tcenter, tcontext)
by a factor β. They presented three concepts: (1) naïve spatial context, (2) simple augmented
spatial context incorporating the idea of the popularity and distance to a place, and (3)
spatial context augmented by information-theoretic, distance lagged (ITDL).

The simple augmented spatial context methodology was modified to suit the research
purpose. It was specifically used to augment the popularity of the individual POIs by Yelp
data check-in. This was because the number of check-ins represents the relative popularity
or dominance of the POI. Thus, factor β can be defined as in Equation (4) below, where Pl j is
the total number of check-ins to POI lj. In this study, instead of the Yelp check-in data used
by Yan et al. [24], we augmented POI tuples by allocating the number of rentals at each bike
station among the POIs within the set radius of the station according to their respective
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distances. For example, if there were 100 bike check-in data at station A, they would be
evenly distributed among all nearby POIs; however, their quotas would be proportional to
their respective distances from the station.

β
l j
checkin =

[
1 + ln

(
1 + Pl j

)]
(4)

This was followed by augmentation based on the distance of the POIs. The basic
principle of POI type embedding was applied, i.e., the shorter the distance, the deeper the
relationship between the POIs. The distance-related factor β is defined as follows.

β
l j
distance =

 1 + ∑
|L|
k=1 Plk
|L|

1 + dα
(
li, lj

)
 (5)

where |L| is the total number of POIs, d
(
li, lj

)
is the distance between POI li and POI lj,

and α is the inverse distance factor, which was set to 1 in this study. We applied the distance
augmenting factor used by Yan et al. [24]. Factor β, which comprehensively represents the
popularity of a POI based on the concept of distance, was defined as follows.

β
l j
combined =

1 + ln
(

1 + Pl j

)
1 + dα

(
li, lj

)
 (6)

Based on the method suggested by Yan et al. [24], the proposed POI type embedding
method for bike trip purpose inference is as follows. First, a tuple is formed for POIs
located within a radius of 250 m of the bike station (1000 m in the case of the POIs related to
bike leisure). The created tuple is augmented using an augmenting factor β that considers
the popularity and distance between the POIs. Figure 3 shows the configuration of all the
tuples around the bike stations and their augmentation. As indicated in the table on the
right of Figure 3, if k is 3 during the configuration of the k-nearest function, the tuples
would be formed by grouping the set of three POIs closest to each POI, and all POIs in the
bike station would be included. In this case, because the distance between tuples is shorter
and there is an increase in the number of rentals, the augmentation can be performed using
factor β, as suggested by Yan et al. [24]. The numbers in parentheses below the POIs in
Figure 3 are the values obtained by distributing the total number of bike rentals (assumed
to be 1000 times here) among the POIs proportional to their respective distances from
the station. This indicates that the POIs closer to the bike stations are more popular. In
addition, because the number of rentals varies between bike stations (for example, the
number of bicycle rentals at stop A may be 1000, whereas that at stop B may be 50), this
method can be applied differently among the stations. The tuples created in this way were
trained using TensorFlow, with the number of embedding dimensions set to 70 and applied
as in previous studies.

3.2.2. Extracting the Land Use at Each Station

The method for extracting the land use at each bike station based on the value obtained
by embedding the POI type is based on the methods presented by Zhai et al. [25] and
Yao et al. [27]. First, the POI type embedding values of each station are combined into one
using Equation (7), where POItype(vi, k) is the vector value of the kth POI type at the bike
station, and N is the total number of POIs at all the bike stations.

Bike staion vector =
∑N

k=1 POItype(vi, k)

N
(7)

Based on the extracted values, the clustering is performed for the bike stations, with
the k-means algorithm used to extract the land use at the stations. The embedding values of
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the individual bike stations consisting of high-dimensional vectors are grouped for similar
land use types by the clustering analysis. The k value, which is the number of clusters in
the k-means algorithm, must be determined in advance as an elbow or silhouette value.
The process is expressed by Equation (8). In this study, because the final output is not an
accurate land use value, the land use value was not specified using additional indicators as
in previous studies. Instead, the clustering results were applied as variables of the land use
features at the origin and destination to infer the bike trip purpose.

X = C1 ∪ C2 . . . . . . ∪ Ck, Ci ∩ Cj = ∅argminc

K

∑
i=1

∑
xj∈Ci

‖xj − ci‖2 (8)
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3.3. Creation of Ground Truth Data Related to Trip Purpose
3.3.1. Standardization of Mesh Data

Because the ground truth data for the trip purpose reflect the decision-making of the
travelers, they are not easy to obtain. In some previous studies, the data were collected
by a traveler survey [13,14,29]. Nevertheless, with the advent of various types of traffic-
related data based on GPS, big data that do not reflect ground truth data have emerged.
Nguyen et al. [17] classified studies that infer trip purpose using these types of data, such
as HG-related studies. In HG-related traffic-purpose inference studies, ground truth data
are optional because common sense or travel patterns from previous surveys are sufficient
for validation [17]. Furthermore, rather than focusing on precision at individual levels, they
aim to semantically enrich the trajectory and discover general patterns of activity. Because
annotation activities with approximations are allowed, most HG-related studies infer trip
purpose results with unsupervised learning, such as clustering results without accurate
ground truth data [1,2,34].

However, this study proposes a technique to generate ground truth data to evaluate the
accuracy of our methodology in a realistic manner—this technique involves quantifying the
bike trip purpose at a common-sense-level when a bicycle user gets off at a specific time and
place. It is meaningful because HG-related research aims to obtain general knowledge on
mobility and the whereabouts of activities. South Korea has a 95% smartphone ownership
rate [41]; thus, we utilize mobile aggregated data from the perspective of service population
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or living population, which differs from the resident population. Thus, ground truth data
of trip purpose for anonymous bike-sharing is created based on the assumption that most
people would have made specific choices when they were at a particular place and time.
Therefore, it reflects the real world, though not the complete ground truth data.

From this perspective, this study utilizes mobile data and POI data to generate ground
truth data for bike trip purposes. This required standardization of the available spatial
information. The utilized real-time mobile data consisted of the population data provided
by Seoul City. The unit of the spatial information was the output area, which is the minimum
statistical counting area built to consider the population size (optimum of 500 people),
socioeconomic homogeneity (housing type, land price), and land shape based on a basic
statistical zone [42]. Accordingly, the National Statistical Office in Korea aggregates and
serves census data in small area units (output area) that are smaller than the administrative
units. As shown in Figure 4, the standardized unit was unified as mesh data (50 × 50 m)
to match the spatial unit of the mobile data that can be used to determine the floating
population with respect to time. The data were applied in a buffer zone that included POIs
within 250 m of each bike station.
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To standardize the output area unit into mesh data, the mesh weights were determined
using the building floor area data. These data were used to consider the area where the
actual population lives in the geospatial space. In Figure 5, the mesh data (standardized
unit), building floor area data, and output area data are presented in the same space. First,
the points were arranged at intervals of 5 m in the building polygon, and the building floor
area was then equally divided at each point to obtain their attribute values. For example,
building A, which is represented in Figure 5, has a building floor area of 1000; if the number
of points is 100, each point would weigh 10. If this value is distributed in a mesh, each
grid surrounding building A (marked by red dashed lines) would have a different weight.
The next step is the determination of the output areas to which the numbered mesh points
belong. This step is used to match a mesh area and an output area based on points.

In most cases, the range of the output area is wider than the mesh; thus, the former
can be calculated by dividing the output areas into the mesh. However, similar to those in
the center of Figure 5 (marked in yellow), a mesh may contain multiple output areas, and
the unit must, therefore, be standardized based on the value of the point. In this way, the
mobile data for each time period constructed in the output area units can be standardized
in the mesh units.
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3.3.2. Extraction of Bike Trip Purpose

The method for inferring the bike trip purpose using mobile data standardized in
mesh units and POI data around the bike stations is as follows. First, the 250 m-radius
buffer zone of the bike station is standardized in mesh units. As shown in Figure 6, the
floating population inferred from mobile data is assigned to each mesh; the darker the
mesh, the higher the assigned floating population. The calculation is performed by dividing
the floating population among the POI data of each mesh. For example, the mesh area in
Figure 6 marked by the red dashed lines has two POIs related to shopping and service and
transit, and the floating population within this grid is assigned to each of these POI types.
In other words, the POIs have values allocated from the floating population, and when
these are combined for each bike station, the type with the largest value can be inferred
as the bike trip purpose for that station. Accordingly, it can be inferred that the bike trip
purpose for the station in Figure 6 is shopping and service. As the mobile data were built in
a time zone, this method enables the construction of a large amount of ground truth data.
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3.4. Training for Machine Learning

When traffic data are established, there are three types of methods for using the data
for trip purpose inference, namely, rule-based, statistical, and machine learning and neural
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network methods [14,15]. Rule-based methods are the most traditionally employed, with
the representative utilized rules being heuristic, land-use-and-purpose matching tables,
and closest-POI matching. Statistical methods are used to calculate the probability of
each trip purpose with integration of the respondent’s personal information or location
information using a multinomial logit model or distance-based probability calculation.
Machine learning and neural network methods are more suitable for larger amounts of
data and are used to build sophisticated and computationally intensive classification and
pattern recognition models. Recent studies tend to use statistical or machine learning (and
neural network) methods [14].

The trip purpose inference in this study utilized a machine learning model, which
enabled the building of a more sophisticated model compared to the use of the rule-based
or statistical methods. This is because the possibility of supervised learning through the
construction of ground truth data uses more abundant data than that obtained by travel
surveys. Owing to the need for a classification model for the multiple classes of the purpose
of public bike trips, we implemented the learning using decision tree and random forest
models, which have been shown to perform relatively well [14,16,20,43–46].

Decision tree algorithms are useful for supervised learning as analytical tools for
classifying data into different groups and making predictions through decision rules
represented in a tree structure. The key to training decision trees is learning in a way that
minimizes classification impurity, which is measured using indexes such as the Gini index
and entropy. The advantage of decision tree algorithms is their ability to interpret their
results. The generated decision tree segmentation criteria indicate which attributes are
used as classification criteria and what the criteria values are.

Random forest is an ensemble method that aggregates predictions using multiple
decision tree models. Multiple training data are generated to build the individual decision
trees for each dataset and to randomly select variables for constructing a decision tree
model. Random forest has the advantage of enabling the rapid building of a model, and
even when the data size of the base model is large, a vast decision tree model can be
built without the need for data distribution. Accordingly, random forest does not provide
information about the significance of individual variables, as in the case of linear or logistic
regression models but indirectly determines the importance of the variables, for example,
through out-of-bag estimations [47].

The results of training by machine learning are evaluated using the confusion matrix
in Table 4. Two evaluation metrics were used to assess the performance of the model,
namely, accuracy and F1-score, based on Equations (9) and (10), respectively. The accuracy
can most intuitively represent the model’s performance, while the F1-score is a useful
performance metric when the classification of the data is unbalanced.

Accuracy =
TN + TP

TN + FN + FP + TP
(9)

F1 score = 2× precison× recall
precision + recall

where precision =
TP

TP + FP
and recall =

TP
TP + FN

(10)

Table 4. Confusion matrix.

Actual Class

0 1

Predicted
class

0 True negative (TN) False negative (FN)
1 False positive (FP) True positive (TP)

4. Experiments and Results
4.1. Data

The experimental area was in Seocho-gu, located on the south side of the Han River
that runs through the center of Seoul, Republic of Korea. Seocho-gu has a convenient trans-
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portation system and is a representative business district in Seoul, along with Gangnam-gu.
The specific experimental area is a well-developed residential area adjacent to natural envi-
ronments, such as the Han River and the Yangjae Citizen’s Forest, resulting in a high use
rate of public bikes compared with other local government areas in Seoul. The experiment
period was 1–30 June 2019. The total number of bike stations in Seocho-gu was 87.

The utilized bike-share data consisted of public data available from the Seoul Open
Data Plaza (http://data.seoul.go.kr, accessed on 4 March 2021). The data included the
number of bikes, rental date and time, rental location number, rental location name, number
of rental docks, return date and time, return location number, return location name, number
of return docks, usage time, and distance traveled. Overall, there were 132,788 datum units.

The utilized POI data were obtained from commercial maps that are currently used
on the Korean market for the CNS. The data were used to check the land use around the
bike stations. In total, 19,358 POI datum units for Seocho-gu were used. The original POI
types in the data were modified to fit the purpose of this study, i.e., inference of bike trip
purpose. The modified POI types are presented in Table 5. POIs within 250 m of a bike
station were selected for the determination of land use, with the exception of the cases of
bike leisure, for which a radius of 1000 m was used.

Table 5. Reorganized POI type for inference of bike trip purpose.

Bike Trip Purpose POI Type Location Radius

Home Apartment, row house 250 m

Work

Police station, industrial complex
corporation, financial institution, company,
embassy, town office, broadcasting station,
court prosecutor’s office, foreign mission

250 m

Education University, library, cultural center, museum,
school, academy, kindergarten 250 m

Transit Airport, bus stop, parking lot, subway
station, railway station, taxi stop, terminal 250 m

Shopping and service
Other facility, facility in the complex, large
shopping mall, shopping center, bookstore,

repair shop, gas station
250 m

Dining Restaurant, cafe 250 m

Leisure

Stadium, golf course, church, fishing ground,
cemetery, cultural property, mountain,

lodging facility, movie theater, wedding hall,
hot spring, temple, river, port, beach,

rest area

250 m

Bike leisure Parks, amusement parks, leisure sports 1000 m

The mobile data used to produce the ground truth data were also public data obtained
from the Seoul Open Data Plaza (http://data.seoul.go.kr, accessed on 4 March 2021). For
this purpose, the number of people within a specific space unit at a specific time on a
specific day was estimated based on KT mobile phone signals captured from 6000 base
stations across Seoul. This method is useful for identifying the floating population, not the
residential population, because the population of the output area, which is the smallest
statistical unit, corresponds to the time zone.

4.2. Extracted Land Use at Bike Stations by POI Type Embedding

The POI types associated with eight bike trip purposes were embedded based on the
work of Yan et al. [24] through the application of the popularity and distance concepts.
In the configuration of the POI tuples, the k value of the k-nearest function was set to
10, resulting in groups of the 10 closest POIs per POI. The tuples were augmented using

http://data.seoul.go.kr
http://data.seoul.go.kr
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the parameter β
l j
combined presented by Yan et al. [24], and the popularity of a POI was

calculated based on the number of bike rentals at the station to which the POI belongs.
The final number of POI tuples obtained by the data augmentation was 323,184. The POI
type embedding experiments were conducted in Python 3.7.7 and TensorFlow 2.0.0. The
number of embedding dimensions was set to 70 and the number of iterations to 20,000.
The embedding values according to POI type calculated through training are presented in
Table 6.

Table 6. Embedding values according to POI type.

POI Type Embedding Values (70 Dimensions)

Home 1.4437118, −0.49141836, 0.37585074, 1.2514722, . . . . . . , −0.008957267, 0.43792307
Work −0.4497794, 1.2613311, −1.0206449, −0.18877816, . . . . . . . . . , 2.1714773, 1.7034453

Education 2.1038136, −1.1537447, 1.9189929, −0.13579279, . . . . . . . . . , −1.3273395, 1.3194451
Transit 0.7793237, 1.3215489, 1.6597316, 1.5443871, . . . . . . . . . . . . , 0.22104016, −0.8933525

Shopping and service 1.4498143, 1.2004231, 0.3364074, −0.8220532, . . . . . . . . . , −0.13508117, 0.29791373
Dining 0.75449663, 0.02276361, −1.2446628, −2.0252762, . . . . . . . . . , 1.1871392, −0.5045676
Leisure −0.22978044, 1.8953556, 0.82838845, −0.100471795, . . . . . . , 1.3570645, −1.5268697

Bike leisure 1.2568898, −0.005698264, 0.6222984, 0.88474447, . . . . . . , −1.7393752, −0.40834773

The calculated POI type embedding values were aggregated for each bike station, and
k-means clustering analysis was then performed. Because k-means clustering is used to
determine the center of the cluster to minimize the sum of squares error (SSE), the optimal
value of Cluster k is determined by the elbow technique by checking the SSE. In the present
experiments, the SSE was at the minimum value for k = 4, as shown in Figure 7.
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The final clustering results are shown in Figure 8. To visualize the geospatial elements
of the experimental area, a layer provided by OpenStreetMap (http://www.openstreetmap.
org, accessed on 4 March 2021) was used as a background map. A simple POI type analysis
of the clustered results was conducted. Cluster 1 was found to be the center of work,
transportation, and shopping, while Cluster 2 was an area with a relatively high amount
of bike-related leisure facilities such as nearby forests, playgrounds, and parks. Cluster 3
was observed to be a residential area where schools and academies were dominant, and
Cluster 4 an area with few and relatively insignificant POIs.

http://www.openstreetmap.org
http://www.openstreetmap.org
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To verify the distribution of POIs in the significant clusters, the regions A and B in
Figure 8 are magnified and shown in Figure 9. Because region A is dense with clusters 1, 2,
and 3, features can be compared for each cluster. Cluster 1 (marked in red) is the center
of work, transportation, and shopping, with various POIs concentrated along the road.
Cluster 2 (marked in orange) contains relatively fewer POIs but is highly influenced by
POIs related to bike leisure, such as parks and playgrounds. Bike leisure POIs are designed
to have an influence range of 1000 m from the center of a bike station; thus, the POIs outside
the buffer range are also in the ambit of this cluster. Consequently, not only the Banpo
sports complex in Cluster 2 but also Puleun park and Seorae children’s park are in the
ambit of Cluster 2. Cluster 3 (marked in yellow) is a residential area where residential POIs
are identified at the bottom of the figure. Region B is located in the foothills of a mountain
and thus contains relatively fewer POIs. Cluster 4 (marked in green) reflects greenfield
characteristics, and Cluster 2 is influenced by the Wissaem children’s park outside the
buffer range, similar to region A. This confirms that our POI-type embedding design is
well customized for bike trips when configuring clusters.

This methodology would improve the study results if applied to the results of existing
works. Only type information is used in POI embedding in this study; however, information
about the size or open time of POI can also be used [48]. The influence of a bike leisure POI,
such as a park that affects bicycle traffic, may vary depending on its size. We used a buffer
of 250 m to design a range that currently affects bike stations—this would present more
realistic embedding results if a network distance is used or a service area is applied [24].
The results could be more easily interpreted if additional data are utilized to validate
the current clustering results. Zhai et al. [25] extracted urban functional regions using
POI embedding and verified the extraction results using truck OD data to interpret the
clustered results.
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4.3. Results of Public Bike Trip Purpose Inference

The final dataset consisted of features related to bike trip purpose obtained from
bike-share data and land use features calculated by POI type embedding. There was a
total of eight features, as shown in Table 7. The ground truth data were obtained using the
trip purpose values calculated from mobile data and POI data. Among the features, the
land use values of the trip origin and destination calculated by POI type embedding were
applied to the clustering values derived, as discussed in the previous section. Thereafter,
one-hot encoding was performed because of the categorical nature of the data. Of the
utilized 132,788 bike-share datum units for Seocho-gu, Seoul, for the month of June 2019,
those for 1–20 June were classified as training data, and those for 21–30 June as test data for
the experiment.
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Table 7. Feature selection for bike trip purpose inference.

Division Feature Name Data Representation

Feature 1 Riding day 1 (workday),
0 (non-workday)

Feature 2 Time zone of origin 0, 1, 2, 3, . . . . . . , 23
Feature 3 Land use at origin 1, 2, 3, 4
Feature 4 Time zone of destination 0, 1, 2, 3, . . . . . . , 23
Feature 5 Land use at destination 1, 2, 3, 4
Feature 6 Trip time between origin and destination (ex) 2 h
Feature 7 Trip distance between origin and destination (ex) 20,000 m
Feature 8 POI distance between origin and destination (ex) 0 m

The decision tree and random forest algorithms were employed for bike trip inference.
We performed k-fold cross-validation, in which the data were repeatedly divided to train
multiple models and measure the generalization performance. Decision tree and random
forest require hyperparameter tuning for critical variables and were used to select the
optimal hyperparameters with a high predictive performance using Python’s GridSearchCV
module of Scikit-learn.

The experimental results showed that the optimal performance (accuracy criterion)
measured by machine learning was 78.95% for decision tree and 74.08% for random
forest. The decision tree model also exhibited better performance in terms of the F1-score,
i.e., 66.43%, as determined by the confusion matrix. The experimental results for different
bike trips are presented in Table 8, from which an accurate prediction can be observed,
especially for shopping and service, work, and transit. An education purpose for a bike trip
is relatively less predictable, attributable to the relatively large number of shopping and
service POIs in Seocho-gu. In addition, the POI characteristics for shopping and service are
combined with those for various other POI types, as the shopping and service POIs are
not located alone, similarly impacting other trip purposes. This issue can be resolved by
disaggregating the classification of the POI types.

Table 8. Confusion matrix for statistical evaluation.

Actual Class

Target H W E T S D L BL Total

Home 3016 286 14 100 722 54 214 42 4448
Work 240 7008 36 224 968 232 8 20 8736

Education 24 36 284 14 276 30 16 - 680
Transit 82 276 14 1686 248 20 2 26 2354

Shopping and service 634 1004 238 178 21,182 892 342 86 24,556
Dining 70 282 54 24 1042 2250 20 - 3742
Leisure 154 6 2 - 272 32 794 - 1260

Bike Leisure 68 22 - 12 64 - - 240 406
Total 4288 8920 642 2238 24,774 3510 1396 414 46,182

NB: The notations in the column headings correspond to the bike trip purposes in each column, in the same order.

Furthermore, to improve the overall accuracy, applying deep learning algorithms
may be an alternative, wherein bike-user characteristics (e.g., gender, age) can be added as
features. Among the studies related to trip purpose inference, studies using deep learning
have exhibited higher accuracy [13,29]. Because deep learning works well for big data,
it is required to build data by increasing the spatial and temporal scope of the study, as
well as features that affect the trip purpose. Furthermore, entire datasets must be built by
combining various user-generated data, such as review data built by real bike users.

5. Discussion and Conclusions

This paper proposed a methodology for inferring the purpose of bike trips from his-
torical data on shared bikes. Investigations of bike-sharing facilitate a more detailed look at
urban mobility, especially the first and last miles of public transportation. Decision-making
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on various urban issues can, therefore, be supported by inferring the purpose of bike trips.
An essential factor in trip purpose inference is the land use of destinations [18–20]. Based
on this fact, this study resolved the urban mixed land-use problem by applying the POI
embedding technology. The bike trip date, departure time, arrival time, total time, total trip
distance, and distance between stations were adopted as relevant features from bike-share
data. POI data were used to extract the land uses at the origin and destination, which
significantly reflect the trip purpose. POIs within a radius of 250 m from the bike stations
(1000 m for bike leisure-related POIs) were used to extract the land use through POI type
embedding, a methodology developed by Yan et al. [24], with the POI types redefined for
the present interest in bike trips. The geographical distance of the POIs and the number of
bike rentals at each station were considered as tuple augmentation factors for the POI type
embedding. However, if there were hundreds of POIs for each bike station, the POI-type
information alone could not capture the biker preferences for visiting the area. Therefore,
the number of bike rentals at each station was distributed to obtain popularity information
for each POI. We also developed a method for utilizing the temporal mobile data and POI
data for the extraction of ground truth data for bike trip purposes. The mobile data for
each time zone obtained in the output area units and the POI data obtained in the buffer
units around the bike stations were standardized as mesh data for the generation of the
ground truth data.

The experiments of this study considered 87 bike stations in Seocho-gu, Seoul. The
study period was 1–31 June 2019, and in total, 132,788 public bike-share datum units were
utilized. Decision tree and random forest were used for machine learning for bike trip
purpose inference, with the hyperparameters adjusted for optimal performance. The land
uses at the bike stations deduced by POI type embedding were divided into four clusters,
with decision tree exhibiting better performance, having an accuracy of 78.95% and an
F1-score of 66.43%.

Results from POI type embedding revealed relatively well the origin and destination
land use for bike trips proposed in this study. A single bike station contains 70–100 POIs
on average in a buffer zone of 250 m; however, clusters about these mixed land uses were
classified well in this study. In particular, as for bike leisure POI, which affects bike trips,
the influence range from the center of a bicycle station was set to 1000 m, and the cluster
results (Figure 9) showed that the details are well-reflected. Furthermore, the trip purpose
inference results obtained through machine learning indicated that relatively accurate
predictions are made for all eight traffic purposes (Table 8). In previous studies related to
trip purpose inference, accuracies of 60–90% were only achieved through the use of survey
data. This study is of significance as the first step toward using machine learning on spatial
data—not survey data—for trip purpose inference.

The results of this study can be helpful not only for bicycles but also for the recent
increase in personal mobility trip purpose inference. The bike-specific POI embedding tech-
nique proposed in this study can be customized according to the corresponding mobility
and used for its trip purpose inference. This study offers a good resource for policymakers
for decision-making on urban issues, affording a means of making bike trip purpose infer-
ences using only publicly available bike-share data and POI data. Inferring trip purposes
using the methodology proposed in this study and analyzing its patterns will lead to a
better understanding of the causes of personal movement within cities.

This study differs from the related works on trip purpose inference using survey data
in that it focuses on obtaining general knowledge on bike mobility and the whereabouts of
activities by applying meaning-enhancing processes reflecting the real world rather than
improving the accuracy of inference from a traffic-engineering perspective. For semantic
enhancement of bike-sharing data, land use at origin and destination was extracted using
the POI embedding technology. Further, this study evaluated the proposed method by
generating ground truth data using mobile data and POI data to infer bike trip purpose at
a common-sense level.
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However, this study has a limitation that the proposed method for ground truth data
generation utilizes aggregated data and not the data at the disaggregated level. Neverthe-
less, this reflects the difficulty of the travel survey of individuals from a realistic perspective.
We believe that this study’s results are meaningful in terms of human geography, which
aims to semantically enrich and discover general patterns of mobility rather than focusing
on precision at individual levels. Additionally, a problem exists that individual charac-
teristics of bicycle users could not be considered when selecting features for trip purpose
inference. Because the level of data provided only presents information about the origin,
and not the entire OD data, to protect users’ privacy.

From the methodological perspective, we limited the POI type to eight during POI
embedding and used only type information for data augmentation. This limitation can be
addressed by segmenting the POI type and redesigning the algorithm to allow for data
augmentation using various information such as the size or open time of POI during POI
embedding. In addition, the results can be verified by converging various data such as
social media and mobile data to strengthen the meaning of the extracted cluster. Deep
learning algorithms that have been proven to deliver relatively good inference results can
be utilized to improve the accuracy of trip purpose inference. Because deep learning yields
good results only for large datasets, the spatial and temporal range of the experimental
sites must be improved. Alternatively, methods to increase the number of features that
affect the trip purpose can be considered, including users’ personal information combined
with various user-generated data, such as the review data built by actual bicycle users.
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