Integrating Network Centrality and Node-Place Model to Evaluate and Classify Station Areas in Shanghai
Abstract
:1. Introduction
- Combined official data and open geographic big data, an extended node-place-network (NPN) model was proposed to measure the synergy between the built environment and travel characteristics around stations. Moreover, the carrying pressure indicator was utilized for the quantitative evaluation;
- Employed the proposed analytical methodology to complement empirical knowledge concerning TOD of the station’s area in Shanghai, which verified the effectiveness of the proposed NPN model.
2. Literature Review
2.1. The Node-Place Model
2.2. TOD and the Travel Network
3. Methodology
3.1. Node-Place-Network Model
3.1.1. Index Selection
- Degree centrality
- Betweenness centrality
3.1.2. Station Classification
3.2. Carrying Pressure
4. Study Area and Data
4.1. Study Area
4.2. Data
5. Results and Discussion
5.1. Node-Place-Network Model
5.1.1. Variables
5.1.2. Indexes
5.2. Cluster Analysis
5.2.1. Typologies of the NP Model
5.2.2. Typologies of the Node-Place-Network Model
5.3. Comparative Analysis
5.4. Guidance for Individual Stations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Data Description
Code | Category | Number | Percentage |
---|---|---|---|
1 | Business | 158,938 | 24.7% |
2 | Transportation | 41,283 | 6.4% |
3 | Residence | 119,818 | 18.6% |
4 | Industry | 206,724 | 32.2% |
5 | Green space | 3749 | 0.6% |
6 | Public service | 112,212 | 17.5% |
Card ID | Date | Time | Line | Station Name | Fare |
---|---|---|---|---|---|
2900***4556 | 1 March 2018 | 19:04:05 | Line1 | Jinhong Road | 0 |
2900***5306 | 1 March 2018 | 16:02:03 | Line3 | Minhang | 4 |
2900***5324 | 1 March 2018 | 08:05:02 | Line7 | Xinzhuang | 5 |
2900***5339 | 1 March 2018 | 22:45:50 | Line1 | People’s Square | 0 |
Directed Weighted Network Analysis
Rank | Station Name | Station Name | Volume |
---|---|---|---|
1 | Sijing | Caohejing Development Zone | 7145 |
2 | Jiuting | Caohejing Development Zone | 5551 |
3 | Qibao | Sijing | 4839 |
4 | West Nanjing Road | Lujiazui | 4791 |
5 | Xujiahui | Xinzhuang | 4790 |
Appendix B. Correlation between the Indicators
c1 | c2 | n1 | n2 | n3 | n4 | n5 | n6 | p1 | p2 | p3 | p4 | p5 | p6 | p7 | p8 | p9 | p10 | p11 | |
c1 | 1.000 | 0.851 ** | 0.412 ** | 0.283 ** | 0.017 | 0.610 ** | 0.561 ** | −0.353 ** | 0.486 ** | 0.500 ** | 0.686 ** | 0.478 ** | 0.609 ** | 0.610 ** | 0.591 ** | 0.676 ** | 0.298 ** | 0.422 ** | 0.393 ** |
c2 | 0.851 ** | 1.000 | 0.458 ** | 0.287 ** | 0.053 | 0.655 ** | 0.582 ** | 0.394 ** | 0.458 ** | 0.519 ** | 0.671 ** | 0.480 ** | 0.655 ** | 0.616 ** | 0.600 ** | 0.681 ** | 0.275 ** | 0.466 ** | 0.446 ** |
n1 | 0.412 ** | 0.458 ** | 1.000 | 0.496 ** | 0.099 | 0.644 ** | 0.583 ** | 0.560 ** | 0.583 ** | 0.610 ** | 0.628 ** | 0.555 ** | 0.643 ** | 0.702 ** | 0.560 ** | 0.666 ** | 0.293 ** | 0.541 ** | 0.587 ** |
n2 | 0.283 ** | 0.287 ** | 0.496 ** | 1.000 | 0.412 | 0.418 ** | 0.417 ** | 0.158 ** | 0.348 ** | 0.388 ** | 0.416 ** | 0.356 ** | 0.418 ** | 0.451 ** | 0.360 ** | 0.439 ** | 0.183 ** | 0.264 ** | 0.250 ** |
n3 | 0.017 | 0.053 | 0.099 | 0.412 | 1.000 | 0.369 | 0.118 * | 0.006 | 0.120 * | 0.103 | 0.064 | 0.020 | 0.070 | 0.066 | 0.108 | 0.072 | 0.151 * | 0.093 | 0.048 |
n4 | 0.610 ** | 0.655 ** | 0.644 ** | 0.418 ** | 0.418 ** | 1.000 | 0.729 ** | 0.412 ** | 0.691 ** | 0.746 ** | 0.856 ** | 0.620 ** | 1.00 ** | 0.844 ** | 0.806 ** | 0.907 ** | 0.388 ** | 0.646 ** | 0.621 ** |
n5 | 0.561 ** | 0.582 ** | 0.583 ** | 0.417 ** | 0.118 * | 0.729 ** | 1.000 | 0.372 ** | 0.664 ** | 0.710 ** | 0.753 ** | 0.574 ** | 0.729 ** | 0.755 ** | 0.665 ** | 0.765 ** | 0.330 ** | 0.585 ** | 0.488 ** |
n6 | 0.353 ** | 0.394 ** | 0.560 ** | 0.158 ** | 0.006 | 0.412 ** | 0.372 ** | 1.000 | 0.364 ** | −0.386 ** | 0.394 ** | 0.329 ** | 0.412 ** | 0.391 ** | 0.384 ** | 0.406 ** | 0.163 ** | 0.333 ** | 0.359 ** |
p1 | 0.486 ** | 0.458 ** | 0.583 ** | 0.348 ** | 0.120 * | 0.691 ** | 0.664 ** | 0.364 ** | 1.000 | 0.764 ** | 0.733 ** | 0.514 ** | 0.690 ** | 0.761 ** | 0.648 ** | 0.738 ** | 0.191 ** | 0.458 ** | 0.407 ** |
p2 | 0.500 ** | 0.519 ** | 0.610 ** | 0.388 ** | 0.103 | 0.746 ** | 0.710 ** | 0.386 ** | 0.764 ** | 1.000 | 0.842 ** | 0.670 ** | 0.746 ** | 0.869 ** | 0.715 ** | 0.844 ** | 0.299 ** | 0.567 ** | 0.476 ** |
p3 | 0.686 ** | 0.671 ** | 0.628 ** | 0.416 ** | 0.064 | 0.856 ** | 0.753 ** | 0.394 ** | 0.733 ** | 0.842 ** | 1.000 | 0.695 ** | 0.856 ** | 0.893 ** | 0.801 ** | 0.943 ** | 0.369 ** | 0.615 ** | 0.548 ** |
p4 | 0.478 ** | 0.480 ** | 0.555 ** | 0.356 ** | 0.020 | 0.620 ** | 0.574 ** | 0.329 ** | 0.514 ** | 0.670 ** | −0.695 ** | 1.000 | 0.620 ** | 0.709 ** | 0.590 ** | 0.708 ** | 0.375 ** | 0.508 ** | 0.513 ** |
p5 | 0.609 ** | 0.655 ** | 0.643 ** | 0.418 ** | 0.070 | 1.00 ** | 0.729 ** | 0.412 ** | 0.690 ** | 0.746 ** | 0.856 ** | 0.620 ** | 1.000 | 0.844 ** | 0.806 ** | 0.907 ** | 0.388 ** | 0.645 ** | 0.620 ** |
p6 | 0.610 ** | 0.616 ** | 0.702 ** | 0.451 ** | 0.066 | 0.844 ** | 0.755 ** | 0.391 ** | 0.761 ** | 0.869 ** | 0.893 ** | 0.709 ** | 0.844 ** | 1.000 | 0.775 ** | 0.943 ** | 0.362 ** | 0.592 ** | 0.572 ** |
p7 | 0.591 ** | 0.600 ** | 0.560 ** | 0.360 ** | 0.108 | 0.806 ** | 0.665 ** | 0.384 ** | 0.648 ** | 0.715 ** | 0.801 ** | 0.590 ** | 0.806 ** | 0.775 ** | 1.000 | 0.900 ** | 0.516 ** | 0.589 ** | 0.501 ** |
p8 | 0.676 ** | 0.681 ** | 0.666 ** | 0.439 ** | 0.072 | 0.907 ** | 0.765 ** | 0.406 ** | 0.738 ** | 0.844 ** | 0.943 ** | 0.708 ** | 0.907 ** | 0.943 ** | 0.900 ** | 1.000 | 0.441 ** | 0.643 ** | 0.584 ** |
p9 | 0.298 ** | 0.275 ** | 0.293 ** | 0.183 ** | 0.151 * | 0.388 ** | 0.330 ** | 0.163 ** | 0.191 ** | 0.299 ** | 0.369 ** | −0.375 ** | 0.388 ** | 0.362 ** | 0.516 ** | 0.441 ** | 1.000 | 0.430 ** | 0.379 ** |
p10 | 0.422 ** | 0.466 ** | 0.541 ** | 0.264 ** | 0.093 | 0.646 ** | 0.585 ** | 0.333 ** | 0.458 ** | 0.567 ** | 0.615 ** | 0.508 ** | 0.645 ** | 0.592 ** | 0.589 ** | 0.643 ** | 0.430 ** | 1.000 | 0.727 ** |
p11 | 0.393 ** | 0.446 ** | 0.587 ** | 0.250 ** | 0.048 | 0.621 ** | 0.488 ** | 0.359 ** | 0.407 ** | 0.476 ** | 0.548 ** | 0.513 ** | 0.620 ** | 0.572 ** | 0.501 ** | 0.584 ** | 0.379 ** | 0.727 ** | 1.000 |
References
- Ibraeva, A.; Correia, G.H.D.A.; Silva, C.; Antunes, A.P. Transit-Oriented Development: A Review of Research Achievements and Challenges. Transp. Res. Part A Policy Pract. 2020, 132, 110–130. [Google Scholar] [CrossRef]
- Cervero, R.; Kockelman, K. Travel Demand and the 3Ds: Density, Diversity, and Design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Zemp, S.; Stauffacher, M.; Lang, D.J.; Scholz, R.W. Classifying Railway Stations for Strategic Transport and Land Use Planning: Context Matters! J. Transp. Geogr. 2011, 19, 670–679. [Google Scholar] [CrossRef]
- Papagiannakis, A.; Vitopoulou, A.; Yiannakou, A. Transit-Oriented Development in the Southern European City of Thessaloniki Introducing Urban Railway: Typology and Implementation Issues. Eur. Plan. Stud. 2021, 29, 117–141. [Google Scholar] [CrossRef]
- Bertolini, L. Nodes and Places: Complexities of Railway Station Redevelopment. Eur. Plan. Stud. 1996, 4, 331–345. [Google Scholar] [CrossRef]
- Vale, D.S. Transit-Oriented Development, Integration of Land Use and Transport, and Pedestrian Accessibility: Combining Node-Place Model with Pedestrian Shed Ratio to Evaluate and Classify Station Areas in Lisbon. J. Transp. Geogr. 2015, 45, 70–80. [Google Scholar] [CrossRef]
- Vale, D.S.; Viana, C.M.; Pereira, M. The Extended Node-Place Model at the Local Scale: Evaluating the Integration of Land Use and Transport for Lisbon’s Subway Network. J. Transp. Geogr. 2018, 69, 282–293. [Google Scholar] [CrossRef]
- Groenendijk, L.; Rezaei, J.; Correia, G. Incorporating the Travellers’ Experience Value in Assessing the Quality of Transit Nodes: A Rotterdam Case Study. Case Study Transp. Policy 2018, 6, 564–576. [Google Scholar] [CrossRef] [Green Version]
- Caset, F.; Blainey, S.; Derudder, B.; Boussauw, K.; Witlox, F. Integrating Node-Place and Trip End Models to Explore Drivers of Rail Ridership in Flanders, Belgium. J. Transp. Geogr. 2020, 87, 102796. [Google Scholar] [CrossRef]
- Cao, Z.; Asakura, Y.; Tan, Z. Coordination between node, place, and ridership: Comparing three transit operators in Tokyo. Transp. Res. Part D Transp. Environ. 2020, 87, 102518. [Google Scholar] [CrossRef]
- Zhang, Y.; Marshall, S.; Manley, E. Network Criticality and the Node-Place-Design Model: Classifying Metro Station Areas in Greater London. J. Transp. Geogr. 2019, 79, 102485. [Google Scholar] [CrossRef]
- Peungnumsai, A.; Miyazaki, H.; Witayangkurn, A.; Kim, S.M. A Grid-Based Spatial Analysis for Detecting Supply–Demand Gaps of Public Transports: A Case Study of the Bangkok Metropolitan Region. Sustainability 2020, 12, 10382. [Google Scholar] [CrossRef]
- Currie, G. Gap analysis of public transport needs: Measuring spatial distribution of public transport needs and identifying gaps in the quality of public transport provision. Transp. Res. Rec. 2004, 1895, 137–146. [Google Scholar] [CrossRef]
- Delbosc, A.; Currie, G. Using Lorenz curves to assess public transport equity. J. Transp. Geogr. 2011, 19, 1252–1259. [Google Scholar] [CrossRef]
- Chorus, P.; Bertolini, L. An Application of the Node Place Model to Explore the Spatial Development Dynamics. J. Transp. Land Use 2011, 4, 45–58. [Google Scholar] [CrossRef]
- Bruinsma, F.; Pels, E.; Priemus, H.; Rietveld, P.; Van Wee, B. Railway Development: Impacts on Urban Dynamics; Wiley: Hoboken, NJ, USA, 2008; ISBN 9783790819717. [Google Scholar]
- Bertolini, L. Spatial development patterns and public transport: The application of an analytical model in the Netherlands. Plan. Pract. Res. 1999, 14, 199–210. [Google Scholar] [CrossRef]
- Lee, J.; Choi, K.; Leem, Y. Bicycle-Based Transit-Oriented Development as an Alternative to Overcome the Criticisms of the Conventional Transit-Oriented Development. Int. J. Sustain. Transp. 2016, 10, 975–984. [Google Scholar] [CrossRef]
- El-Geneidy, A.; Grimsrud, M.; Wasfi, R.; Tétreault, P.; Surprenant-Legault, J. New Evidence on Walking Distances to Transit Stops: Identifying Redundancies and Gaps Using Variable Service Areas. Transportation 2014, 41, 193–210. [Google Scholar] [CrossRef]
- Lyu, G.; Bertolini, L.; Pfeffer, K. Developing a TOD Typology for Beijing Metro Station Areas. J. Transp. Geogr. 2016, 55, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Nigro, A.; Bertolini, L.; Moccia, F.D. Land Use and Public Transport Integration in Small Cities and Towns: Assessment Methodology and Application. J. Transp. Geogr. 2019, 74, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.J.; Fard, P.; Zuidgeest, M.; Brussel, M.; van Maarseveen, M. Measuring Transit Oriented Development: A Spatial Multi Criteria Assessment Approach for the City Region Arnhem and Nijmegen. J. Transp. Geogr. 2014, 35, 130–143. [Google Scholar] [CrossRef]
- Park, S.; Choi, K.; Lee, J.S. To Walk or Not to Walk: Testing the Effect of Path Walkability on Transit Users’ Access Mode Choices to the Station. Int. J. Sustain. Transp. 2015, 9, 529–541. [Google Scholar] [CrossRef]
- Noord-Holland, P.; Deltametropool, V. Maak Plaats! Werken aan knooppuntontwikkeling in Noord-Holland; Provincie Noord-Holland & Vereniging Deltametropool: Haarlem, The Netherlands, 2013. [Google Scholar]
- Van Nes, A.; Stolk, E. Degrees of Sustainable Location of Railway Stations: Integrating Space Syntax and Node Place Value Model on Railway Stations in the Province of North Holland’s Strategic Plan for 2010–2040. In Proceedings of the 8th International Space Syntax Symposium, Santiago, Chile, 3–6 January 2012. [Google Scholar]
- Monajem, S.; Ekram Nosratian, F. The Evaluation of the Spatial Integration of Station Areas via the Node Place Model; an Application to Subway Station Areas in Tehran. Transp. Res. Part D Transp. Environ. 2015, 40, 14–27. [Google Scholar] [CrossRef]
- Caset, F.; Teixeira, F.M.; Derudder, B.; Boussauw, K.; Witlox, F. Planning for Nodes, Places, and People in Flanders and Brussels: An Empirical Railway Station Assessment Tool for Strategic Decision-Making. J. Transp. Land Use 2019, 12, 811–837. [Google Scholar] [CrossRef]
- Reusser, D.E.; Loukopoulos, P.; Stauffacher, M.; Scholz, R.W. Classifying Railway Stations for Sustainable Transitions—Balancing Node and Place Functions. J. Transp. Geogr. 2008, 16, 191–202. [Google Scholar] [CrossRef]
- Liu, Y.; Singleton, A.; Arribas-Bel, D. Considering Context and Dynamics: A Classification of Transit-Orientated Development for New York City. J. Transp. Geogr. 2020, 85, 102711. [Google Scholar] [CrossRef]
- Singh, Y.J.; Lukman, A.; Flacke, J.; Zuidgeest, M.; Van Maarseveen, M.F.A.M. Measuring TOD around Transit Nodes—Towards TOD Policy. Transp. Policy 2017, 56, 96–111. [Google Scholar] [CrossRef]
- Kim, H.; Sultana, S.; Weber, J. A Geographic Assessment of the Economic Development Impact of Korean High-Speed Rail Stations. Transp. Policy 2018, 66, 127–137. [Google Scholar] [CrossRef]
- Strogatz, S.H. Exploring Complex Networks. Nature 2001, 410, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Zhong, C.; Arisona, S.M.; Huang, X.; Batty, M.; Schmitt, G. Detecting the Dynamics of Urban Structure through Spatial Network Analysis. Int. J. Geogr. Inf. Sci. 2014, 28, 2178–2199. [Google Scholar] [CrossRef]
- Zhong, C.; Manley, E.; Müller Arisona, S.; Batty, M.; Schmitt, G. Measuring Variability of Mobility Patterns from Multiday Smart-Card Data. J. Comput. Sci. 2015, 9, 125–130. [Google Scholar] [CrossRef]
- Yildirimoglu, M.; Kim, J. Identification of Communities in Urban Mobility Networks Using Multi-Layer Graphs of Network Traffic. Transp. Res. Part C Emerg. Technol. 2018, 89, 254–267. [Google Scholar] [CrossRef]
- Munoz-Mendez, F.; Han, K.; Klemmer, K.; Jarvis, S. Community Structures, Interactions and Dynamics in London’s Bicycle Sharing Network. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, New York, NY, USA, 8–12 October 2018; pp. 1015–1023. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Sui, Z.; Kang, C.; Gao, Y. Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-in Data. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Borgatti, S.P. Centrality and Network Flow. Soc. Netw. 2005, 27, 55–71. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Zhou, M.; Li, F.; Sun, C. Robustness Assessment of Urban Rail Transit Based on Complex Network Theory: A Case Study of the Beijing Subway. Saf. Sci. 2015, 79, 149–162. [Google Scholar] [CrossRef]
- Lin, P.; Weng, J.; Fu, Y.; Alivanistos, D.; Yin, B. Study on the Topology and Dynamics of the Rail Transit Network Based on Automatic Fare Collection Data. Phys. A Stat. Mech. Appl. 2020, 545. [Google Scholar] [CrossRef]
- Xia, F.; Wang, J.; Kong, X.; Zhang, D.; Wang, Z. Ranking Station Importance with Human Mobility Patterns Using Subway Network Datasets. IEEE Trans. Intell. Transp. Syst. 2020, 21, 2840–2852. [Google Scholar] [CrossRef]
- Senousi, A.M.; Liu, X.; Zhang, J.; Huang, J.; Shi, W. An Empirical Analysis of Public Transit Networks Using Smart Card Data in Beijing, China. Geocarto Int. 2020, 1–24. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, S.; Zhang, W.; Liu, F.; Zhang, W.; Wang, Y. Statistical Properties of Urban Mobility from Location-Based Travel Networks. Phys. A Stat. Mech. Appl. 2016, 461, 694–707. [Google Scholar] [CrossRef]
- Ritsema van Eck, J.; Koomen, E. Characterising Urban Concentration and Land-Use Diversity in Simulations of Future Land Use. Ann. Reg. Sci. 2008, 42, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Qiyue, C. Structure Entropy Weight Method to Confirm the Weight of Evaluating Index. Syst. Eng. Theory Pract. 2010, 30, 1225–1228. [Google Scholar]
- Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding; Stanford University: Stanford, CA, USA, 2006. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- An, D.; Tong, X.; Liu, K.; Chan, E.H.W. Understanding the Impact of Built Environment on Metro Ridership Using Open Source in Shanghai. Cities 2019, 93, 177–187. [Google Scholar] [CrossRef]
- Ding, C.; Cao, X.; Liu, C. How Does the Station-Area Built Environment Influence Metrorail Ridership? Using Gradient Boosting Decision Trees to Identify Non-Linear Thresholds. J. Transp. Geogr. 2019, 77, 70–78. [Google Scholar] [CrossRef]
- Zhao, P.; Cao, Y. Commuting Inequity and Its Determinants in Shanghai: New Findings from Big-Data Analytics. Transp. Policy 2020, 92, 20–37. [Google Scholar] [CrossRef]
- Dark, S.J.; Bram, D. The Modifiable Areal Unit Problem (MAUP) in Physical Geography. Prog. Phys. Geogr. Earth Environ. 2007, 31, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Yeh, A.G.O. Understanding the Modifiable Areal Unit Problem and Identifying Appropriate Spatial Unit in Jobs–Housing Balance and Employment Self-Containment Using Big Data. Transportation 2021, 48, 1267–1283. [Google Scholar] [CrossRef]
- D’Urso, M.G.; Masi, D.; Zuccaro, G.; De Gregorio, D. Multicriteria Fuzzy Analysis for a GIS-Based Management of Earthquake Scenarios. Comput. Aided Civ. Inf. 2018, 33, 165–179. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Y.; Dong, S. Public Traffic Congestion Estimation Using an Artificial Neural Network. ISPRS Int. J. Geo-Inf. 2020, 9, 152. [Google Scholar] [CrossRef] [Green Version]
Node Index | Description |
---|---|
Rail | |
Number of directions served by metro | n1 = number of metro services offered at station |
Daily frequency of metro services | n2 = number of metro departing from station on working day |
Number of stations within 20 min of travel | n3 = number of stations reachable within 20 min by metro |
Feeder transport | |
Number of directions served by other public transport | n4 = number of public transport services offered at station |
Number of car parking places | n5 = number of car parking within 600 m. |
Distance from the closest motorway access | n6 = distance to closest motorway access |
Place Index | Description |
---|---|
Density | |
Population density | p1 = density of population within 600 m |
Number of residences | p2 = number of establishments in residence within 600 m |
Number of workers in business | p3 = number of establishments in business within 600 m |
Number of workers in green space | p4 = number of establishments in green space within 600 m |
Number of workers in transportation | p5 = number of establishments in transportation within 600 m |
Number of workers in public service | p6 = number of establishments in public service within 600 m |
Number of workers in industry | p7 = number of establishments in industry within 600 m |
Number of POIs | p8 = number of points of interest (POIs) within 600 m |
Diversity | |
Land use mix | p9 = where is the normalization of |
Design | |
Intersection density | p10 = density of intersections per hectare |
Accessible network length | p11 = length of the accessible network (meters) |
Dimensions | Independent Variables | Rank | Relative Importance (%) |
---|---|---|---|
Node | n1: Number of directions served by metro | 1 | 23 |
n2: Daily frequency of metro services | 3 | 16 | |
n3: Number of stations within 20 min of travel | 2 | 27 | |
n4: Number of directions served by other public transport | 5 | 14 | |
n5: Number of car parking places | 4 | 15 | |
Place | p1: Population density | 3 | 10 |
p2: Number of residences | 1 | 15 | |
p3: Number of workers in business | 3 | 10 | |
p4: Number of workers in green space | 6 | 9 | |
p5: Number of workers in transportation | 2 | 11 | |
p6: Number of workers in public service | 3 | 10 | |
p7: Number of workers in industry | 6 | 9 | |
p8: Number of POIs | 8 | 8 | |
p9: Land use mix | 9 | 7 | |
p10: Intersection density | 11 | 4 | |
p11: Accessible network length | 9 | 7 | |
Network | c1: Degree | 1 | 50 |
c2: Betweenness | 1 | 50 |
Index | Minimum | Maximum | Mean | Std. Deviation |
---|---|---|---|---|
Node | 0.1480 | 0.8674 | 0.4908 | 0.0204 |
Place | 0.1135 | 0.8167 | 0.5351 | 0.0231 |
Network | 0.1556 | 1 | 0.5235 | 0.0457 |
ID | Num | Example of Stations | Node (Avg.) | Place (Avg.) | All (Avg.) |
---|---|---|---|---|---|
1 | 62 | People’s Square, Jing’an Temple | 0.67 | 0.72 | 0.69 |
2 | 80 | Hongqiao railway station, Xinzhuang | 0.57 | 0.59 | 0.58 |
3 | 70 | Jiuting, Huinan | 0.44 | 0.49 | 0.47 |
4 | 48 | An’ting, Nanxiang | 0.32 | 0.41 | 0.36 |
5 | 26 | Xinchang, Zhoupu east | 0.27 | 0.22 | 0.25 |
ID | No. | Stations | Node (Avg.) | Place (Avg.) | Network (Avg.) | All (Avg.) |
---|---|---|---|---|---|---|
1 | 57 | People’s Square, Jing’an Temple | 0.65 | 0.70 | 0.79 | 0.71 |
2 | 84 | Baoshan Road, Longqiao Road | 0.60 | 0.62 | 0.56 | 0.59 |
3 | 49 | Jiuting, Zhuanqiao | 0.39 | 0.46 | 0.61 | 0.48 |
4 | 61 | An’ting, Longhua | 0.41 | 0.47 | 0.36 | 0.41 |
5 | 35 | Longyao Road, Luoshan Road | 0.28 | 0.28 | 0.16 | 0.23 |
Station | Clusters (NPN) | Clusters (NP) | Score (NPN) | Score (NP) | CP |
---|---|---|---|---|---|
Hesha Hangcheng | 3 | 5 | 0.37 | 0.26 | 1.46 |
Xinchang | 3 | 5 | 0.33 | 0.23 | 1.40 |
Zhoupu East | 3 | 5 | 0.36 | 0.26 | 1.39 |
Sijing | 3 | 4 | 0.51 | 0.38 | 1.36 |
Shenshe Road | 3 | 4 | 0.51 | 0.38 | 1.33 |
Nanxiang | 3 | 4 | 0.53 | 0.41 | 1.30 |
Jiuting | 3 | 3 | 0.59 | 0.47 | 1.27 |
Guanglan | 3 | 3 | 0.53 | 0.42 | 1.26 |
Jiading North | 3 | 4 | 0.45 | 0.36 | 1.26 |
Jiading Xincheng | 3 | 4 | 0.40 | 0.32 | 1.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, M.; Wang, Y.; Dong, S. Integrating Network Centrality and Node-Place Model to Evaluate and Classify Station Areas in Shanghai. ISPRS Int. J. Geo-Inf. 2021, 10, 414. https://doi.org/10.3390/ijgi10060414
Dou M, Wang Y, Dong S. Integrating Network Centrality and Node-Place Model to Evaluate and Classify Station Areas in Shanghai. ISPRS International Journal of Geo-Information. 2021; 10(6):414. https://doi.org/10.3390/ijgi10060414
Chicago/Turabian StyleDou, Mingxuan, Yandong Wang, and Shihai Dong. 2021. "Integrating Network Centrality and Node-Place Model to Evaluate and Classify Station Areas in Shanghai" ISPRS International Journal of Geo-Information 10, no. 6: 414. https://doi.org/10.3390/ijgi10060414
APA StyleDou, M., Wang, Y., & Dong, S. (2021). Integrating Network Centrality and Node-Place Model to Evaluate and Classify Station Areas in Shanghai. ISPRS International Journal of Geo-Information, 10(6), 414. https://doi.org/10.3390/ijgi10060414