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Abstract: Since pairwise registration is a necessary step for the seamless fusion of point clouds from
neighboring stations, a closed-form solution to planar feature-based registration of LiDAR (Light
Detection and Ranging) point clouds is proposed in this paper. Based on the Plücker coordinate-based
representation of linear features in three-dimensional space, a quad tuple-based representation of
planar features is introduced, which makes it possible to directly determine the difference between
any two planar features. Dual quaternions are employed to represent spatial transformation and
operations between dual quaternions and the quad tuple-based representation of planar features
are given, with which an error norm is constructed. Based on L2-norm-minimization, detailed
derivations of the proposed solution are explained step by step. Two experiments were designed in
which simulated data and real data were both used to verify the correctness and the feasibility of the
proposed solution. With the simulated data, the calculated registration results were consistent with
the pre-established parameters, which verifies the correctness of the presented solution. With the
real data, the calculated registration results were consistent with the results calculated by iterative
methods. Conclusions can be drawn from the two experiments: (1) The proposed solution does not
require any initial estimates of the unknown parameters in advance, which assures the stability and
robustness of the solution; (2) Using dual quaternions to represent spatial transformation greatly
reduces the additional constraints in the estimation process.

Keywords: similarity transformation; point cloud registration; LiDAR; closed-form solution; dual
quaternion

1. Introduction

With the fast development of Light Detection and Ranging (LiDAR) techniques and
their successful application in three-dimensional data acquisition, point cloud registra-
tion has attracted significant attention for its role in the fusion of LiDAR point clouds
from two neighboring stations. The essence of point cloud registration is to estimate the
transformation parameters between the two neighboring stations, which is also known as
spatial transformation. As is known, a spatial transformation can be explained as a rotation
around the x, y, and z axes, a translation along the three axes, and a scale factor based on
the centroid of the coordinate system.

Based on the different registration primitives used for the estimation of unknown trans-
formation parameters, the available methods can be categorized into point feature-based
methods [1,2], linear feature-based methods [3–5], planar feature-based methods [6–8], and
hybrid feature-based methods [9–11]. Until now, point features are still the most popular
and widely used registration primitives for simple mathematical expressions. However,
affected by the characteristics of LiDAR technology, the extraction of point features from
point clouds often has low accuracy without pre-established man-made reflectors. Except
for point features, linear features are another popular registration primitive. Compared
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to point and linear features, the extraction of planar features from point clouds is more
convenient and often has higher accuracy. However, fewer available methods use planar
features as registration primitives; this may be due to the diverse mathematical expressions,
which make it difficult for us to compare and determine the differences between two planar
features.

Moreover, according to whether the initial approximate estimates of those unknown
transformation parameters are needed in advance, the available registration methods can be
divided into two categories: iterative methods [1,2,5,9,12] and closed-form methods [13–16].
Most available methods obtain the registration results by iterative computation; however,
their disadvantages must be treated properly. First, the nonlinear registration model must
be linearized before it can be calculated by computers, and the initial approximate estimates
of those unknown parameters must be determined in advance to assist the linearization.
Second, the number of iterations is closely related to the choice of those initial estimates;
that is, when they are not close to the maximum likelihood values, iterations will increase.
Comparatively, closed-form methods do not need any initial approximate estimates of
the unknown transformation parameters, more importantly, the optimal transformation
parameters can be obtained in only one step. A detailed comparison of the iterative
methods and closed-form method is shown in Table 1.

Table 1. Advantages and disadvantages of the iterative methods and the closed-form methods.

Registration Methods Advantages Disadvantages

Iterative Methods (1) The most popular and widely used;
(2) The derivation of the formulas is simple.

(1) Initial approximate estimates of those unknown
parameters must be determined in advance;
(2) The number of iterations is closely related to
the choice of those initial estimates.

Closed-form Methods

(1) No initial estimates of the unknown
transformation parameters are needed
in advance;
(2) Registration results can be obtained in only
one step.

(1) The derivation of the formulas is complex.

Based on the abovementioned analysis, a closed-form solution to planar feature-based
registration of point clouds is proposed. Firstly, a quad tuple-based representation of
planar features is given and dual quaternions are then employed to represent the spatial
transformation. After the operations between the dual quaternions and the quad tuple are
explained, an error norm (error function) is constructed by supposing that the two conjugate
planar features are equivalent after registration. Based on L2-norm-minimization, detailed
derivations of the proposed solution are given step by step. Lastly, two experiments
are designed to verify the correctness and feasibility of the proposed method, in which
simulated and real data are both incorporated.

The remainder of the paper is organized as follows. Section 2 reviews some related
work. Section 3 gives the operations between dual quaternions and the quad tuple-based
representation of planar features in three-dimensional space. Section 4 explains the pro-
posed solution, in which the detailed derivations of all formulas are given step by step.
Section 5 shows the experiments and the results. Section 6 discusses the proposed solution
and gives suggestions for future work. Section 7 concludes the paper.

2. Related Work
2.1. Quaternion and Its Application in Point Cloud Registration

Quaternion was first proposed by Hamilton W. R., which has been proved to be a
convenient and effective way to describe rotation in three-dimensional space [17]. Due
to its compactness and high efficiency, quaternion has attracted considerable attention
from researchers working in different fields. The representative work can be summarized
as follows: Horn introduced unit quaternion to solve the absolute orientation problem
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in photogrammetry [13]; Shen et al. used unit quaternion in the transformation of two
sets of three-dimensional coordinates [12]; Zeng et al. presented a unit quaternion-based,
iterative solution to coordinate transformation in geodesy [18]; Joseph et al. introduced
unit quaternion in robot arm manipulation and presented an extended Kalman filter-based
algorithm for the estimation of human motion [19]; Kim et al. presented a similar algorithm
to Joseph et al., which employed unit quaternion for the real-time estimation of orientation
in robot arm manipulation [20].

As is known, spatial transformation mainly consists of a rotation and a translation.
However, unit quaternion can only represent the spatial rotation in three-dimensional
space, as shown in Figure 1. Later, dual quaternion was presented to represent spatial
rotation and translation simultaneously, as shown in Figure 2, in which two quaternions
are integrated with the aid of a dual number. The first successful application of dual
quaternion in estimating the unknown spatial transformation parameters was introduced
by Walker et al. [15]. Based on the analysis of correspondences between dual quaternion-
based and matrix-based representations, a single cost function was formulated, which
enabled the simultaneous calculation of six parameters in point feature-based registration.
Instead of estimating only the six transformation parameters, Wang et al. added the scale
parameter to a single cost function, which enabled the simultaneous derivation of rotation,
translation, and scale parameters [16]. Prošková et al. also introduced dual quaternion
to represent spatial transformation; the presented approach was successfully applied for
deriving the seven parameter-based transformation between two sets of three-dimensional
coordinates [21,22].
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Figure 1. Quaternion-based rotation. The vector
→
r is taken into

→
r
′

by a rotation of angle δ about

the axis
→
h . If we establish a quaternion as

.
q = q0 +

→
q = cos δ

2 +
(

sin δ
2

)→
n , then the rotation can be

expressed as
→
r
′
=

.
q
→
r

.
q∗ = (cosδ)

→
r + (sinδ)

(→
n ×→r

)
+
(→

r ·→n
)
(1− cosδ)

→
n .

Based on the above analysis, conclusions can be drawn that unit quaternion can only
represent rotation in three-dimensional space; when it is applied in spatial transformation,
such as the seven parameter-based Helmert transform, the rotation parameters must be
estimated first, on which basis the translation parameters and the scale factor will later
be estimated. In the case of errors being introduced into the estimation of the rotation
parameters, the accuracy of the translation parameters and the scale factor will certainly
be affected, which makes it a tendency that dual quaternions are introduced to represent
spatial transformation.
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Figure 2. Dual quaternion-based rotation and translation. Where
→
n is a unit vector that specifies

the direction of the rotation axis and the direction of the translation, with the rotation involving the
line with direction

→
n passing through point P with a rotation angle of θ, and d is the distance of

translation along the direction specified by
→
n . A dual quaternion q̂ =

.
r + ε

.
s is interpreted as real

quaternions q̂ =
[
cos θ̂

2 ,
(

sin θ̂
2

)
n̂
]
, where the dual vector n̂ =

→
n + ε

(→
p ×→n

)
represents a line in the

three-dimensional space from which the coordinate system is rotated and translated, and θ̂ = θ + εd
is the dual angle of the rotation and the translation.

2.2. Planar Feature-Based Registration Methods

Compared to point and linear features, planar features exist widely in those point
clouds acquired from man-made buildings. On the condition that no specific man-made
reflectors are used, point and linear features are often extracted by fitting and the intersec-
tion of adjacent planar features. Therefore, if planar features can be used directly in point
cloud registration, the amount of calculation will be reduced greatly. In other words, the
employment of planar features in point cloud registration will provide more conditions
for estimating the transformation parameters than using point and linear features only.
Of all existing planar feature-based registration methods, some use the distance between
the point and its corresponding planar feature to construct error norms [6,23], others use
the parallelism between the two normal vectors and the distance between the two con-
jugate planar features to construct error norms [7,24–28]. Detailed explanations are as
follows: Grant et al. presented an iterative solution to pairwise point cloud registration,
which is based on the correspondences between point and planar features [23]. Pavan
et al. presented a closed-form solution to planar feature-based registration of terrestrial
LiDAR point clouds [27], which was later applied in the global refinement for the terrestrial
laser scanner (TLS) data registration [7]. Moreover, Wang et al. [24], Zhang et al. [25],
and Previtali et al. [26] separately presented a planar feature-based registration algorithm
based on the correspondences between each pair of planar features in which the Rodriguez
matrix, Euler angles, and quaternions were, respectively, employed to represent spatial
rotation. In addition, Khoshelham presented a closed-form solution to planar feature-based
pairwise point cloud registration [6] in which the Kronecker product was employed to
linearize the nonlinear equations; rigid transformation and similarity transformation are
both given in detail; the parallelism between normal vectors of the two conjugate planar
features was not fully utilized. Föstner and Khoshelham presented an optimal solution and
three direct solutions for efficient motion estimation from plane-to-plane correspondences
and provided an analysis of the accuracy of the solutions, comparing their performance
with the classical iterative closest point (ICP) algorithm [28].

In general, few of the available methods incorporate the scale parameter in planar
feature-based registration, which makes it difficult to apply them in the fusion of data from
different sources. Moreover, some methods use point and planar features as registration
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primitives; the role of normal directions is neglected in the estimation of transformation
parameters.

To summarize: (1) When unit quaternion is introduced to represent spatial rotation
in point cloud registration, the accuracy of the translation parameters and the scale factor
will surely be affected in the case of the introduction of errors in the estimation of rotation
parameters; (2) Planar feature is a good alternative in point cloud registration, however, the
determination of the difference between each corresponding planar feature is difficult with
traditional mathematical expressions; (3) Few methods incorporate the scale parameters
in the planar feature-based registration, which makes it difficult to apply them in the
fusion of data from different sources; (4) Most available methods estimate the registration
parameters by iterative calculation, the initial approximate estimates of the unknown
parameters must be determined in advance to assist the linearization. Based on the
above analysis, our goal was to develop a closed-form solution to a planar feature-based
registration algorithm in which a quad tuple-based representation of planar features
in three-dimensional space is given, which made it possible to directly determine the
difference between each pair of corresponding planar features; dual quaternions were
employed to represent the spatial transformation in three-dimensional space which made
it possible to estimate all the registration parameters simultaneously. The scale factor was
also considered in our registration methods, which made it possible to apply our method
in the fusion of data from different sources.

3. Dual Quaternion-Based Transformation of Planar Features
3.1. Representation of a Plane in Three-Dimensional Space

Traditionally, a plane is represented by the normal vector
→
n and any one point

→
p lying

on it. Since the selection of the point
→
p is random, there is more than one representation for

a single plane, which makes it difficult to compare and determine the difference between
two planes. To ensure the unique representation of a plane in three-dimensional space, a
quad tuple-based representation method was employed, as shown in Figure 3, in which a
plane can be represented as a quad tuple Γ̂, as shown in Equation (1):

Γ̂ =

(→
l , m

)
(1)

where
→
l represents the normalized normal vector that forms

→
l =

→
n /‖→n‖, and m represents

the plane moment, that is, the distance between the origin and the plane that forms

m =
→
p ·
→
l .
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3.2. Definition of a Dual Quaternion

A quaternion is a composite of four real numbers, which is generally represented in
the form of a quad tuple

.
r, as shown in Equation (2):

.
r =

(
r0 r1 r2 r3

)T (2)

on the condition that
.
rT .

r = 1,
.
r is usually called a unit quaternion.

A dual quaternion is a composite of two quaternions and a dual number ε, as shown
in Equation (3):

q̂ =
.
r + ε

.
s (3)

where
.
r and

.
s are both quaternions, each of which corresponds to the real part and the

dual part of q̂ separately; when
.
rT .

r = 1, q̂ is a unit dual quaternion, which is the default
definition of a dual quaternion.

3.3. Operation Rules for Dual Quaternions

Given two dual quaternions q̂1 =
.
r1 + ε

.
s1 and q̂2 =

.
r2 + ε

.
s2, the addition, subtraction,

and multiplication between them can be expressed as shown in Equation (4):
q̂1 + q̂2 =

( .
r1 +

.
r2
)
+ ε
( .
s1 +

.
s2
)

q̂1 − q̂2 =
( .
r1 −

.
r2
)
+ ε
( .
s1 −

.
s2
)

q̂1q̂2 =
( .
r1 + ε

.
s1
)( .

r2 + ε
.
s2
)
=

.
r1

.
r2 + ε

( .
r1

.
s2 +

.
r2

.
s1
) (4)

Furthermore, multiplication between
.
r1 and

.
r2 can also be represented as shown in

Equation (5):
.
r1

.
r2 = Q

( .
r1
) .
r2 = W

( .
r2
) .
r1 (5)

where Q
( .
r
)
=


r0 −r1 −r2 −r3
r1 r0 −r3 r2
r2 r3 r0 −r1
r3 −r2 r1 r0

, W
( .
r
)
=


r0 −r1 −r2 −r3
r1 r0 r3 −r2
r2 −r3 r0 r1
r3 r2 −r1 r0

.

3.4. Dual Quaternion-Based Transformation of Planar Features

According to the definition of a dual quaternion, the spatial transformation of a plane
in three-dimensional space can be expressed as shown in Equation (6):

Γ̂a = q̂Γ̂b q̂∗ (6)

where q̂ is the dual quaternion corresponding to the spatial transformation; q̂∗ is the conju-
gate of q̂ that forms q̂∗ =

.
r∗ + ε

.
s∗; Γ̂a and Γ̂b represent a pair of conjugate planar features,

Γ̂a represents the one before transformation and Γ̂b represents the one after transformation.
To realize the dual quaternion-based similarity transformation, a plane should be

represented as shown in Equation (7):

Γ̂ =
.
l +

.
m (7)

where
.
l =

(
0,
→
l

T)T

, which corresponds the normal vector of the plane, and
.

m =

(
m,
→
0

T)T

,

which corresponds to the moment of the plane.
According to Chasles’ theorem [29], when the scale parameter is not considered, six

independent parameters are needed to represent the transformation between two different
coordinate frames. However, when a dual quaternion is used, there are eight parameters in
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total. Two constraints should be added to estimate the unknown parameters for the spatial
similarity transformation, as shown in Equation (8):{ .

rT .
r = 1

.
rT .

s = 0
(8)

where
.
r is the quaternion that represents the spatial rotation and

.
s is the quaternion

that represents the spatial translation. The explanation in Equation (8) is that
.
r is a unit

quaternion and it is orthogonal to
.
s.

4. Planar Features-Based Registration Model
4.1. Construction of the Objective Functions

In three-dimensional space, the transformation of a plane can be expressed as shown
in Equation (9): 

→
l a = R

→
l b

ma =
→
p a ·

→
l a = µmb +

→
t ·R

→
l b

(9)

where
→
l b and mb represent the normal vector and the moment of the plane before trans-

formation, respectively;
→
l a and ma represent the normal vector and the moment after

transformation, respectively; R,
→
t , and µ separately represent the transformation matrix,

the translation vector, and the scale factor between the two coordinate systems.
With a dual quaternion, Equation (9) can be further expressed as Equation (10):{ .

la =
.
r

.
lb

.
r∗

.
ma = µ

.
mb +

1
2

( .
r

.
lb

.
r∗

.
t
∗
−

.
t

.
r

.
lb

.
r∗
) (10)

where
.
r is the unit quaternion corresponding to the rotation matrix R,

.
r∗ is the conjugate of

.
r,

.
la =

(
0,
→
l a

)
,

.
lb =

(
0,
→
l b

)
,

.
ma =

(
ma,

→
0
)

, and
.

mb =

(
mb,

→
0
)

.

Making
.
s = 1

2

.
t

.
r, Equation (10) can be rewritten as Equation (11):{ .

la =
.
r

.
lb

.
r∗

.
ma = µ

.
mb −

.
s

.
lb

.
r∗ +

.
r

.
lb

.
s∗

(11)

where
.
s∗ is the conjugate of

.
s.

Based on Equation (7), Equation (11) can be further rewritten as Equation (12):{ .
la = W

( .
r
)TQ

( .
r
) .
lb

.
ma = µ

.
mb −W

( .
r
)TQ

( .
s
) .
lb + W

( .
s
)TQ

( .
r
) .
lb

(12)

Considering the existence of random errors, the planar feature-based registration

approach aims to minimize the difference between
(→

l a, ma

)
and

(→
l b, mb

)
. The quadratic

form of the difference between
(→

l a, ma

)
and

(→
l b, mb

)
is introduced as the error equations

according to the least squares criteria, as shown in Equations (13) and (14):

f1
2 = ∑

( .
la −W

( .
r
)TQ

( .
r
) .
lb

)2
(13)

f2
2 = ∑

( .
ma − µ

.
mb + W

( .
r
)TQ

( .
s
) .
lb −W

( .
s
)TQ

( .
r
) .
lb

)2
(14)
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The transformation parameters can be obtained when the expression f = f1
2 + f2

2

reaches its minimum. Considering that f1
2 and f2

2 are both positive, when each term
reaches its minimum, f will be minimal. The optimal value of

.
r will be obtained by the min-

imization of Equation (13);
.
s and µ will be obtained by the minimization of Equation (14).

4.2. Solution of Rotation Quaternions
.
r

Making Cl1 = ∑
( .

la
T

.
la +

.
lb

T
.
lb

)
, Cl = −2∑ Q

( .
la

)T
W
( .

lb

)
, Equation (13) can be de-

composed as Equation (15):
f1

2 = Cl1 +
.
rTCl

.
r (15)

Using Equation (5) as the restriction, the error function can be expressed as Equation (16):

F1 = Cl1 +
.
rTCl

.
r + λ1

( .
rT .

r− 1
)

(16)

where λ1 is a Lagrange multiplier constant.
Taking the partial derivative of Equation (16) yields Equation (17):

∂F1

∂
.
r

=
(

Cl + CT
l

) .
r + 2λ1

.
r = 0 (17)

Making A = − 1
2

(
Cl + CT

l

)
, Equation (17) can be further expressed as Equation (18):

A
.
r = λ1

.
r (18)

According to the definition of the eigenvalues and eigenvectors of a matrix,
.
r repre-

sents one of the four eigenvectors of A, and λ1 represents the corresponding eigenvalue
of

.
r. Among the four eigenvectors that satisfy Equation (18), the optimal solution can be

determined by referring back to Equation (17).
Multiplying Equation (17) with

.
rT yields Equation (19):

.
rTCl

.
r =

1
2

.
rT
(

Cl + CT
l

) .
r = −λ1 (19)

Substituting Equation (19) into Equation (16) yields Equation (20):

F1 = Cl1 − λ1 (20)

When λ1 reaches its maximum, Equation (20) will be minimized. The conclusion
can be drawn that the optimal solution of

.
r equals to the eigenvector corresponding to

maximum eigenvalue of A.

4.3. Solution of the Translation Quaternions
.
s and the Scale Factor µ

Making C1 = ∑
.

ma
T .

ma, C2 = ∑
.

mb
T .

mb, C3 = −2∑
.

ma
T .

mb, Cm1 = 2∑ I, Cm2 =

2∑ Q
( .
ma
)TW

( .
lb

)
, Cm3 = −2∑ W

( .
lb

)T
Q
( .
ma
)
, Cm4

1×4
= −2∑

.
mb

TW
( .
r
)TW

( .
lb

)
, Cm5

1×4
=

2∑
.

mb
TQ
( .
r
)
W′
( .

lb

)
, Cm6 = −2∑ W

( .
lb

)T
W
( .
r
)
Q
( .
r
)
W′
( .

lb

)
, and decomposing Equation (14),

we can obtain Equation (21):

f2
2 = C1 + C2µ2 +

.
sT
(Cm1 + Cm6)

.
s + C3µ +

.
rT
(Cm2 + Cm3)

.
s + µ(Cm4 + Cm5)

.
s (21)

Using Equation (5) as the restriction, the best quaternion
.
s to represent the translation

can be obtained when Equation (22) is minimized:

F2 = f2
2 + λ2

( .
rT .

s
)

(22)
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where λ2 is a Lagrange multiplier constant.
Taking the partial derivative of Equation (22), with respect to

.
s and µ, and making

them equal to zero, we obtain Equations (23) and (24):
∂F2

∂
.
s

=
(

Cm1 + CT
m1

) .
s +

(
Cm6 + CT

m6

) .
s +

(
Cm2

T + Cm3
T
) .

r + µ
(

Cm4
T + Cm5

T
)
+ λ2

.
r = 0 (23)

∂F2

∂µ
= 2C2µ + C3 + (Cm4 + Cm5)

.
s = 0 (24)

Based on Equation (24), the scale factor µ can be expressed as Equation (25):

µ = −C3 + (Cm4 + Cm5)
.
s

2C2
(25)

Substituting Equation (25) into Equation (23) yields Equation (26):

.
s = −Cs

−1
(

Cm2
T + Cm3

T
) .

r +
C3

2C2
Cs
−1
(

Cm4
T + Cm5

T
)
− λ2Cs

−1 .
r (26)

where Cs =
(

Cm1 + CT
m1

)
+
(

Cm6 + CT
m6

)
− (Cm4

T+Cm5
T)(Cm4+Cm5)

2C2
.

Multiplying Equation (26) with
.
rT, we obtain Equation (27):

.
rT .

s = − .
rTCs

−1
(

Cm2
T + Cm3

T
) .

r +
C3

2C2

.
rTCs

−1
(

Cm4
T + Cm5

T
)
− λ2

.
rTCs

−1 .
r = 0 (27)

With Equation (27), λ2 can be expressed as Equation (28):

λ2 =
.
rT
(

Cm2
T + Cm3

T
) .

r +
C3

2C2

.
rT
(

Cm4
T + Cm5

T
)

(28)

Since
(
Cm2

T + Cm3
T) is a skew-symmetric matrix, the first item of Equation (28) will

be zero, that is,
.
rT(Cm2

T + Cm3
T) .

r = 0. Equation (28) can be simplified, as shown in
Equation (29):

λ2 =
C3

2C2

.
rT
(

Cm4
T + Cm5

T
)

(29)

The quaternion corresponding to the translation between the two neighboring LiDAR
stations can be obtained using Equation (30):

.
t = 2

.
s

.
r∗ (30)

4.4. Implementation of the Proposed Solution

As in Figure 4, the given point clouds from the two neighboring LiDAR stations,

namely the reference station and the unregistered station, suppose that
(→

l a, ma

)
and(→

l b, mb

)
represent the two pairs of conjugate planar features separately extracted from

them, where
( .

la,
.

ma

)
and

( .
lb,

.
mb

)
are quaternion-based representations corresponding to(→

l a, ma

)
and

(→
l b, mb

)
. In the implementation of the proposed algorithm, the following

steps are suggested to obtain the seven unknown parameters:

(1) Based on the normal vectors of each pair of conjugate planar features, construct matrix
A and calculate the maximum eigenvalue and its corresponding eigenvector

.
r of A;

(2) Calculate the quaternion
.
s using Equation (26);

(3) Calculate the scale factor µ using Equation (25);
(4) Calculate the quaternion

.
t using Equation (30).
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Figure 4. Flow chart of the proposed solution’s implementation.

Using
.
r,

.
s, and µ, a plane in three-dimensional space can be transformed from one

coordinate system to another. More importantly, since each pair of conjugate planar features
is extracted from the two neighboring LiDAR stations, point clouds will be merged using

.
r,

.
s, and µ.

5. Experiments and Results

The proposed planar feature-based registration algorithm was implemented using
Matlab. Two experiments were designed to verify the correctness and the feasibility in
which simulated data and real data were both incorporated.

5.1. Simulated Data

The first experiment was designed to verify the correctness of the proposed algorithm.
Five pairs of simulated planar features were designed as shown in Figure 5. Mathematical
descriptions of the simulated planar features were as shown in Table 2. The pre-established
spatial similarity transformation parameters were as shown in Table 3.
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Table 2. Mathematical descriptions of the simulated planar features.

Station
Normal

→
l Passing Point

→
p

lx ly lz px (m) py (m) pz (m)

Reference Station

0.8503 0.4794 −0.2173 3.2755 3.7191 3.6741
−0.4946 0.8689 −0.0184 1.5054 3.8689 3.9816
0.1768 0.4856 0.2443 2.6377 3.3596 3.8370
−0.3844 0.1692 0.3877 1.5549 3.7820 3.9834
0.5032 −0.0879 0.2564 2.4251 3.2397 3.8914

Unregistered
Station

1.0000 0.0000 0.0000 3.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 2.0000 0.0000
0.3300 0.3300 0.3300 1.5000 0.0000 0.0000
−0.3300 0.3300 0.3300 0.0000 1.8000 0.0000
0.3300 −0.3300 0.3300 1.0000 0.0000 0.0000

Table 3. Pre-established spatial similarity transformation parameters.

Rotation Matrix R
Translator

→
T Scale

Parameter µTx (m) Ty (m) Tz (m) 0.8503 −0.4946 0.1800
0.4794 0.8689 0.1231
−0.2173 −0.0183 0.9759

 2.000 3.000 4.000 0.5

The obtained transformation parameters were as shown in Table 4; the residuals
between each pair of conjugate planar features after registration are also given.

Table 4. Registration results and residuals between each pair of conjugate planar features after registration.

Rotation Matrix R

Translator
→
T

Scale
Parameter µ

Residuals and RMSE

Tx (m) Ty (m) Tz (m)

Normal Moment

∆lx ∆lx ∆lz
m∆l

(×10−4) ∆m (m) m∆m
(×10−4)

 0.8503 −0.4946 0.1800
0.4794 0.8689 0.1231
−0.2173 −0.0184 0.9759

 2.0001 3.0000 4.0001 0.5000

0.0191 0.0609 0.2090

3.0000

0.4399

6.2000
−0.1243 −0.0714 −0.0289 −0.7919
0.1743 −0.1594 0.1906 0.3048
0.1149 0.3019 −0.0178 0.3810
0.0886 0.2668 −0.0824 −0.6858

Based on the results given in Table 4, the calculated rotation matrix and the scale
factor were both consistent with the pre-established ones. The small deviation between the
calculated translation vector and the pre-established one can be attributed to the rounding
errors in the calculation, which can largely be ignored in practical applications. The
conclusion can be drawn that the proposed solution is correct and the obtained result is as
expected.

5.2. Real Data

The second experiment was designed to verify the feasibility of the proposed algo-
rithm. The point clouds were collected by a model Riegl LMS-Z420i terrestrial laser scanner.
In order to collect the complete point cloud data of the building, a total of eight observation
stations were set up around it. The average distance between each observation station and
the building was about 100 m, and the average sampling interval was set to 4 cm. Seven
pairs of conjugate planar features were extracted from the two neighboring point clouds as
shown in Figure 6, and the extracted planar features were as shown in Table 5.
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Figure 6. Acquired point clouds of the same building from two different LiDAR stations. (a) The
point cloud from the reference station; (b) the point cloud from the unregistered station.

Table 5. Planar features extracted by least squares fitting.

Station
Normal

→
l Passing Point

→
p

lx ly lz px (m) py (m) pz (m)

Reference
Station

−0.706 0.7081 −0.0128 −70.7593 −6.3887 26.4681
−0.7062 0.7079 −0.0108 −50.433 13.7874 22.2993
−0.7103 −0.7039 −0.0006 −50.5877 14.9477 22.2911
−0.006 0.009 0.9999 −61.8226 24.8605 25.7601
−0.7044 0.7097 −0.0113 −63.6772 26.7793 16.8218
−0.7072 −0.707 0.0013 −63.2206 27.6485 16.8952
−0.0024 0.0142 0.9999 −61.5702 25.1852 22.593

Unregistered
Station

−0.2579 0.9648 −0.0522 −63.6731 −7.892 15.175
−0.2586 0.9647 −0.0503 −36.1147 −0.441 16.7593
−0.9412 −0.2605 −0.2152 −35.7476 0.6642 17.2299
−0.2194 −0.0081 0.9756 −41.3592 13.9261 19.8014
−0.256 0.9654 −0.0508 −40.0006 17.5009 10.9515
−0.9401 −0.2659 −0.2132 −39.2034 18.0633 11.1137
−0.2123 −0.0054 0.9772 −40.4619 14.6743 16.7639

The obtained transformation parameters and residuals between each pair of conjugate
planar features are both given in Table 6. To further verify the correctness and the feasibility
of the proposed solution, a unit quaternion-based, iterative method [8] was employed to
estimate the transformation parameters; the results are also shown in Table 6.

Table 6. Registration results and residuals between each pair of conjugate planar features.

Scheme Rotation Matrix R

Translator
→
T

Scale
Parameter µ

Residuals and RMSE

Tx (m) Ty (m) Tz (m)
Normal Moment

∆lx ∆lx ∆lz m∆l ∆m (m) m∆m

Closed-form
Solution

 0.8503 −0.4944 0.1802
0.4791 0.8690 0.1235
−0.2177 −0.0186 0.9758

 −23.0132 29.3729 −2.2901 1.0000

−0.0003 −0.0003 0.0000

0.0008

0.0012

0.0307

−0.0003 −0.0003 0.0000 −0.0071
0.0000 0.0000 0.0003 −0.0391
0.0007 0.0007 0.0000 −0.0352
−0.0003 −0.0003 0.0005 0.0062
−0.0008 0.0008 −0.0002 0.0394
−0.0007 0.0000 0.0000 0.0352

Iterative
Solution

 0.8504 −0.4943 0.1802
0.4790 0.8691 0.1234
−0.2176 −0.0186 0.9759

 −23.0085 29.3766 −2.2902 1.0000

−0.0004 −0.0004 0.0000

0.0008

0.0012

0.0307

−0.0004 −0.0004 0.0000 −0.0071
0.0001 −0.0001 −0.0002 −0.0391
0.0008 0.0008 0.0000 −0.0352
−0.0004 −0.0004 0.0005 0.0062
−0.0007 0.0007 −0.0001 0.0394
−0.0006 0.0000 0.0000 0.0352
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The visual effects of the point clouds from the two neighboring LiDAR stations before
and after registration were as shown in Figure 5.

As shown in Table 6 and Figure 7, by using the obtained transformation parameters
to register the two neighboring stations, there were no significant residuals between
each pair of conjugate planar features after registration. More importantly, there were
also no significant differences between the results obtained by our method and by the
unit quaternion-based iterative method [8]; the root mean square error (RMSE) of the
normal and moment’s differences between conjugate planar features were exactly the same.
The conclusion can be drawn that the newly proposed closed-form solution to pairwise
registration of LiDAR point clouds is correct and feasible.
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6. Discussion

On the assumption that the normal directions of each pair of conjugate planar features
are the same, the proposed quad tuple-based representation method can provide a unique
mathematical expression of any planar feature in three-dimensional space; the differences
between two planar features can be determined by direct comparison, which makes it
convenient to propose and implement a closed-form solution to planar feature-based point
cloud registration. The results of the two designed experiments were both correct, which
proves that the proposed closed-form solution is capable of dealing with point cloud
registration problems on the condition that sufficient corresponding planar features are
provided as registration primitives.

It should be noted that any vector in three-dimensional space can be expressed in
another form with the same module and an opposite direction; however, the prerequisite
of our solution is that normal directions of each pair of conjugate planar features should be
exactly the same after registration. On the condition that the prerequisite is not fulfilled,
ensuring the proper run of the proposed solution will be one of our objectives in the future.

7. Conclusions

On the condition that point and linear features are not sufficient, planar features
are good alternatives to ensure the proper run of the point cloud registration algorithm.
Compared to point and linear features, extracting planar features from point clouds is more
convenient. Furthermore, the impact of random errors can be significantly reduced by least
squares fitting. Based on the quad tuple-based representation method of planar features
in three-dimensional space, a closed-form solution to planar feature-based registration of
point clouds is proposed. Two experiments were designed, in which both simulated data
and real data were used to verify the correctness and effectiveness of the proposed solution.
With the simulated data, the calculated registration results were consistent with the pre-
established parameters and with the real data, there were also no significant differences
between the results obtained by our method and by the available iterative method [8]; the
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root mean square error (RMSE) of the normal and moment’s differences between conjugate
planar features were the same.

The conclusion can be drawn that the newly proposed closed-form solution to pairwise
registration of LiDAR point clouds is correct and feasible. Moreover, the advantages of the
proposed solution can be summarized as follows: (1) By using eigenvalue decomposition
to replace the linearization of the objective function, the presented solution does not require
any initial estimates of unknown transformation parameters in advance, which assures the
stability and robustness of the algorithm; (2) On the condition that no man-made reflectors
are used, planar features are directly extracted from point clouds using least squares fitting,
the impact of random errors can be reduced significantly and the reliability of the estimated
transformation parameters is higher than point and linear feature-based methods; (3) In
contrast to Euler angle-based and rotation matrix-based methods, using dual quaternions
to represent spatial rotation greatly reduces additional constraints in the estimation of
similarity transformation parameters.
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