Multi-Scenario Model of Plastic Waste Accumulation Potential in Indonesia Using Integrated Remote Sensing, Statistic and Socio-Demographic Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Used in this Study
2.1.1. Household Polygon and Population Data
2.1.2. Remote Sensing-Based Land Use Land Cover Data
2.1.3. VIIRS Stray Light Corrected Night-Time Data
2.1.4. National Waste Management Information System (SIPSN)
2.1.5. River Streamflow Network and Estuary Data
2.1.6. Data for Comparison Study
2.2. Methodology
2.2.1. General Methodology
2.2.2. Estimating Plastic Waste Generation per Administrative Unit
2.2.3. Developing Potential Index of Plastic Waste Disposal
2.2.4. Modelling Marine Debris of Plastic for the Coastal Area
3. Results
3.1. Plastic Waste Generation per Administrative Unit Estimation
3.2. Potential Index of Plastic Waste Disposal
3.3. Plastic Waste Weight per Estuary Location
3.4. Scenarios of Plastic Waste Generation
4. Discussion
4.1. Comparison of Model and Data Existing of Plastic Waste Inputs from River
4.2. Impact of Plastic Waste on the Streamflow
4.3. Limitations
4.4. Further Research Prospects
4.4.1. Improvisation with Hydrological and Basin Modelling
4.4.2. Improvisation in Coastal Region Analysis
4.4.3. Application for Modelling the Movement of Waste in the Sea
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Connecticut Plastics. Perfect Plastic: How Plastic Improves Our Lives. Available online: http://www.pepctplastics.com/resources/connecticut-plastics-learning-center/perfect-plastic-how-plastic-improves-our-lives/ (accessed on 25 April 2020).
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding—A Global Assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gall, S.C.; Thompson, R.C. The impact of debris on marine life. Mar. Pollut. Bull. 2015, 92, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, L.C.M.; van der Zwet, J.; Damsteeg, J.-W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 15611. Available online: https://figshare.com/articles/dataset/River_plastic_emissions_to_the_world_s_oceans/4725541 (accessed on 28 June 2021). [CrossRef] [PubMed]
- Lebreton, L.; Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Brooks, A.L.; Wang, S.; Jambeck, J.R. The Chinese import ban and its impact on global plastic waste trade. Sci. Adv. 2018, 4, eaat0131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rochman, C.M.; Hoh, E.; Kurobe, T.; Teh, S.J. Ingested Plastic Transfers Hazardous Chemicals to Fish and Induces Hepatic Stress. Sci. Rep. 2013, 3, 3263. [Google Scholar] [CrossRef]
- Wilcox, C.; Mallos, N.J.; Leonard, G.H.; Rodriguez, A.; Denise Hardesty, B. Using expert elicitation to estimate the impacts of plastic pollution on marine wildlife. Mar. Policy 2015, 65, 107–114. [Google Scholar] [CrossRef]
- Gillsäter, B. Ocean Sector Profile. Available online: https://www.worldbank.org/en/results/2013/04/13/oceans-results-profile (accessed on 21 October 2020).
- Axelsson, C.; van Sebille, E. Prevention through policy: Urban macroplastic leakages to the marine environment during extreme rainfall events. Mar. Pollut. Bull. 2017, 124, 211–227. [Google Scholar] [CrossRef]
- Kubowicz, S.; Booth, A.M. Biodegradability of plastics: Challenges and misconceptions. Environ. Sci. Technol. 2017, 51, 12058–12060. [Google Scholar] [CrossRef] [PubMed]
- Gallo, F.; Fossi, C.; Weber, R.; Santillo, D.; Sousa, J.; Ingram, I.; Nadal, A.; Romano, D. Marine litter plastics and microplastics and their toxic chemicals components: The need for urgent preventive measures. Envivon. Sci. Eur. 2018, 30, 13. [Google Scholar] [CrossRef] [PubMed]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.U.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R.; et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B 2009, 364, 2027–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, M.R. Environmental implications of plastic debris in marine settings: Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B 2009, 364, 2013–2025. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Browne, M.A.; Underwood, A.J.; van Franeker, J.A.; Thompson, R.C. The ecological impacts of marine debris: Unraveling the demonstrated evidence from what is perceived. Ecology 2015, 97, 302–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, B.G.; Koizumi, K.; Chung, S.-Y.; Kodera, Y.; Kim, J.-O.; Saido, K. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution. J. Hazard. Mater. 2015, 300, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “Plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 2013, 47, 7137–7146. [Google Scholar] [CrossRef] [PubMed]
- Simeonova, A.; Chuturkova, R. Macroplastic distribution (Single-use plastics and some Fishing gear) from the northern to the southern Bulgarian Black Sea coast. Reg. Stud. Mar. Sci. 2020, 37, 101329. [Google Scholar] [CrossRef]
- Severini, M.D.F.; Villagran, D.M.; Buzzi, N.S.; Sartor, G.C. Microplastics in oysters (Crassostrea gigas) and water at the Bahía Blanca Estuary (Southwestern Atlantic): An emerging issue of global concern. Reg. Stud. Mar. Sci. 2019, 32, 100829. [Google Scholar] [CrossRef]
- Gago, J.; Portela, S.; Filgueiras, A.V.; Pauly Salinas, M.; Macías, D. Ingestion of plastic debris (macro and micro) by longnose lancetfish (Alepisaurus ferox) in the North Atlantic Ocean. Reg. Stud. Mar. Sci. 2020, 33, 100977. [Google Scholar] [CrossRef]
- Pravettoni, R. Plastic Waste Produced and Mismanaged. Available online: https://www.grida.no/resources/6931 (accessed on 19 April 2020).
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Petrlik, J.; Ismawati, Y.; DiGangi, J.; Arisandi, P.; Bell, L.; Beeler, B. Plastic Waste Poisons Indonesia’s Food Chain: Indonesia Egg Report. November 2019, pp. 1–20. Available online: https://ipen.org/documents/plastic-waste-poisons-indonesia-food-chain (accessed on 28 June 2021).
- European Commissioner for Environment (ECC). Maritime Affairs and Fisheries; Report. Our Ocean; EU: Brussels, Belgium, 2016. [Google Scholar]
- Direktorat Pengelolaan Sampah; Direktorat Jenderal Pengelolaan Sampah; Limbah, dan B3 Kementrian Lingkungan Hidup dan Kehutanan. Sistem Informasi Pengelolaan Sampah Nasional; Kementerian Lingkungan Hidup dan Kehutanan: Jakarta, Indonesia, 2021.
- Kementerian Perencanaan Pembangunan Nasional Republik Indonesia; Badan Perencanaan Pembangunan Nasional. Sustainable Development Goals; Badan Perencanaan Pembangunan Nasional: Jakarta, Indonesia, 2017.
- United Nations. Sustainable Development Goals; UN: New York, NY, USA, 2018. [Google Scholar]
- Waste Atlas. Available online: http://www.atlas.d-waste.com/ (accessed on 10 May 2020).
- Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, Á.T.; Navarro, S.; García-de-Lomas, J.; Ruiz, A.; et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef] [Green Version]
- Moy, K.; Neilson, B.; Chung, A.; Meadows, A.; Castrence, M.; Ambagis, S.; Davidson, K. Mapping coastal marine debris using aerial imagery and spatial analysis. Mar. Pollut. Bull. 2018, 132, 52–59. [Google Scholar] [CrossRef]
- Cordova, M.R.; Nurhati, I.S. Major sources and monthly variations in the release of landderived marine debris from the Greater Jakarta area, Indonesia. Sci. Rep. 2019, 9, 18730. [Google Scholar] [CrossRef]
- Open Street Map. GEOFABRIK Downloads: Asia. Available online: http://download.geofabrik.de/asia.html (accessed on 24 March 2020).
- Facebook Connectivity Lab and Center for International Earth Science Information Network—CIESIN—Columbia University. High Resolution Settlement Layer (HRSL). Source Imagery for HRSL © 2021 DigitalGlobe. 2016. Available online: https://www.ciesin.columbia.edu/data/hrsl/ (accessed on 1 May 2020).
- ESA Climate Change Initiative. CCI-LC Products. Available online: https://www.esa-landcover-cci.org/?q=node/164 (accessed on 21 January 2020).
- MODIS. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. Available online: https://catalog.data.gov/dataset/modis-terraaqua-land-cover-type-yearly-l3-global-500m-sin-grid-v006 (accessed on 1 May 2020).
- United Nations Office for Outer Space Affairs. Global Map-Global Land Cover (GLCNMO) (ISCGM). Available online: http://www.un-spider.org/links-and-resources/data-sources/global-map-global-land-cover-glcnmo-iscgm (accessed on 1 May 2020).
- National Oceanic and Atmospheric Administration. Earth Engine Catalog: VIIRS Nighttime Day/Night Band Composites Version 1. Available online: https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_MONTHLY_V1_VCMCFG?hl=en (accessed on 9 February 2020).
- Badan Informasi Geospasial. Peta Rupabumi Indonesia. Available online: https://tanahair.indonesia.go.id/portal-web (accessed on 10 January 2020).
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Natural Earth. Coastline. Available online: https://www.naturalearthdata.com/downloads/ (accessed on 22 January 2020).
- Barbarossa, V.; Huijbregts, M.A.J.; Beusen, A.H.W.; Beck, H.E.; King, H.; Schipper, A.M. FLO1K, global maps of mean, maximum, and minimum annual streamflow at 1km resolution from 1960 through 2015. Sci. Data 2017, 5, 180052. Available online: https://figshare.com/articles/dataset/FLO1K_-_Maximum_Annual_Flow_Time_Series_1960-2015/5688919 (accessed on 28 June 2021). [CrossRef] [PubMed]
- Mills, L.S.; Zimova, M.; Oyler, J.; Running, S.; Abatzoglou, J.T.; Lukacs, P.M. Camouflage mismatch in seasonal coat color due to decreased snow duration. Proc. Natl. Acad. Sci. USA 2013, 110, 11660–11661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyer, R.C.M. South Asia Economic Focus, Fall 2017: Growth Out of The Blue; World Bank: Washington, DC, USA; pp. 1–22.
- Dai, Z.; Hu, Y.; Zhao, G. The Suitability of Different Nighttime Light Data for GDP Estimation at Different Spatial Scales and Regional Levels. Sustainability 2017, 9, 305. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Yao, J. Illuminating Economic Growth; 2019 International Monetary Fund Working Paper/19/77; International Monetary Fund: Washington, DC, USA, 2019; pp. 1–56. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- SNI 10-3983-1995. Spesifikasi Timbulan Sampah Kota Sedang dan Kota Kecil; Badan Standardisasi Nasional: Jakarta, Indonesia, 1995; Available online: https://pesta.bsn.go.id/produk/detail/4328-sni19-3983-1995 (accessed on 28 June 2021).
- Badan Pusat Statistik. Statistik Indonesia 2018. Available online: https://www.bps.go.id/ (accessed on 10 January 2020).
- Rinasti, A.N.; Sakti, A.D.; Agustina, E.; Wikantika, K. Developing data approaches for accumulation of plastic waste modelling using environment and socio-economic data product. IOP Conf. Ser. Earth Environ. Sci. 2020, 592, 012013. [Google Scholar] [CrossRef]
- SNI 03-1733-2004. Tata Cara Perencanaan Lingkungan Perumahan di Perkotaan; Badan Standardisasi Nasional: Jakarta, Indonesia, 2004. [Google Scholar]
- Olanrewaju, L.; Babatunde, N.O. Spatial Modelling of Economic Activity in Nigeria Using Gross Domestic Product of Economically Active Population. IOSR J. Humanit. Soc. Sci. (IOSR-JHSS) 2015, 20, 66–72. [Google Scholar]
- Shuker, I.G.; Cadman, C.A. Indonesia—Marine Debris Hotspot Rapid Assessment: Synthesis Report; Working Paper Report No. 126686; World Bank Group: Washington, DC, USA, 2018; Volume 1, pp. 1–46. [Google Scholar]
- World Bank. OECD National Accounts. GDP Growth (Annual %)—Indonesia. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=ID (accessed on 19 May 2020).
- ICRAF; World Agroforestry Centre. Rewarding Farmers for Reducing Sedimentation, Indonesia [pdf]. Available online: https://oppla.eu/casestudy/17593 (accessed on 20 May 2020).
- Zeraatpishe, M.; Khaledian, Y.; Ebrahimi, S.; Sheikhpour, H.; Behtarinejad, B. The Effect of Deforestation on Soil Erosion, Sediment and Some Water Quality Indicates. In Proceedings of the 1st International Conference on Environmental Crisis and its Solutions, Kish Island, Iran, 13 February 2013; pp. 602–607. [Google Scholar]
- Restrepo, J.D.; Kettner, A.J.; Syvitski, J.P.M. Recent deforestation causes rapid increase in river sediment load in the Colombian Andes. Anthropocene 2015, 10, 13–28. [Google Scholar] [CrossRef]
- Lebreton, L.; Egger, M.; Slat, B. A global mass budget for positively buoyant macroplastic debris in the ocean. Sci. Rep. 2019, 9, 12922. [Google Scholar] [CrossRef] [Green Version]
- Shepard, F.P. Submarine Geology, 3rd ed.; Harper & Row: New York, NY, USA, 1973. [Google Scholar]
- Cruz, R.V.; Harasawa, H.; Lal, M.; Wu, S.; Anokhin, Y.; Punsalmaa, B.; Honda, Y.; Jafari, M.; Li, C.; Huu Ninh, N. Asia. Climate Change: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 469–506. [Google Scholar]
No | Data | Product | Phase | Source | Type of Data |
---|---|---|---|---|---|
1. | Household Polygon | Geofabrik.de 2020 | Plastic Waste Generation Index on Land-based | [33] | Raster—300 m |
2. | Population | CIESIN and Facebook Connectivity Lab 2016 | [34] | Raster—30 m | |
3. | LULC | ESA CCI-LC 2015 | [35] | Raster—300 m | |
4. | MODIS 2020 | [36] | Raster—500 m | ||
5. | GLCNMO 2020 | [37] | Raster—500 m | ||
6. | Nightlight | VIIRS 2019 | [38] | Raster—300 m | |
7. | Administration Boundaries | Indonesia Topographical map | [39] | Polygon | |
8. | Plastic Waste Input Data | SIPSN 2018 | [26] | Data Statistic | |
9. | River | Global Surface Water | Streamflow and Estuary Analysis | [40] | Polyline |
10. | Coastline | Natural Earth Data | [41] | Polyline | |
11. | Annual Streamflow | FLO1K | Comparison Study | [42] | Raster—1 km |
12. | Plastic Inputs | Modelling inputs of plastic from rivers | [5] | Point | |
13. | Survey-based plastic releases in Jakarta Bay | [32] | Data Statistic |
Area Classification | Density | |||
---|---|---|---|---|
Low | Moderate | High | Very High | |
Population Density | <150 persons/ha | 151–200 persons/ha | 201–400 persons/ha | >400 persons/ha |
No | City/Regency | Province | Plastic Waste Weight (Tonne/Day) | ||
---|---|---|---|---|---|
High Scenario (45%) | Mid Scenario (30%) | Low Scenario (15%) | |||
1 | Bekasi | West Java | 11.94 | 7.96 | 3.98 |
2 | Semarang City | Central Java | 9.15 | 6.10 | 3.05 |
3 | Demak | Central Java | 6.35 | 4.23 | 2.12 |
4 | North Jakarta City | Special Region Jakarta | 5.19 | 3.46 | 1.73 |
5 | East Lombok | Lombok | 5.17 | 3.45 | 1.72 |
6 | Batam City | Riau Islands | 4.86 | 3.24 | 1.62 |
7 | Karawang | West Java | 3.60 | 2.40 | 1.20 |
8 | Raja Ampat | West Papua | 3.52 | 2.34 | 1.17 |
9 | Sitaro Islands | North Sulawesi | 3.28 | 2.18 | 1.09 |
10 | Surabaya City | East Java | 3.02 | 2.01 | 1.01 |
11 | Banggai Islands | Central Sulawesi | 3.01 | 2.01 | 1.00 |
12 | Serang | Banten | 2.28 | 1.52 | 0.76 |
13 | Kendal | Central Java | 2.20 | 1.47 | 0.73 |
14 | Indramayu | West Java | 2.15 | 1.43 | 0.72 |
15 | Cilangkahan | Banten | 2.11 | 1.41 | 0.70 |
16 | Brebes | Central Java | 2.10 | 1.40 | 0.70 |
17 | Banggai | Central Sulawesi | 2.06 | 1.37 | 0.69 |
18 | Gresik | East Java | 2.00 | 1.33 | 0.67 |
19 | Jepara | Central Java | 1.99 | 1.32 | 0.66 |
20 | Cirebon | West Java | 1.95 | 1.30 | 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakti, A.D.; Rinasti, A.N.; Agustina, E.; Diastomo, H.; Muhammad, F.; Anna, Z.; Wikantika, K. Multi-Scenario Model of Plastic Waste Accumulation Potential in Indonesia Using Integrated Remote Sensing, Statistic and Socio-Demographic Data. ISPRS Int. J. Geo-Inf. 2021, 10, 481. https://doi.org/10.3390/ijgi10070481
Sakti AD, Rinasti AN, Agustina E, Diastomo H, Muhammad F, Anna Z, Wikantika K. Multi-Scenario Model of Plastic Waste Accumulation Potential in Indonesia Using Integrated Remote Sensing, Statistic and Socio-Demographic Data. ISPRS International Journal of Geo-Information. 2021; 10(7):481. https://doi.org/10.3390/ijgi10070481
Chicago/Turabian StyleSakti, Anjar Dimara, Aprilia Nidia Rinasti, Elprida Agustina, Hanif Diastomo, Fickrie Muhammad, Zuzy Anna, and Ketut Wikantika. 2021. "Multi-Scenario Model of Plastic Waste Accumulation Potential in Indonesia Using Integrated Remote Sensing, Statistic and Socio-Demographic Data" ISPRS International Journal of Geo-Information 10, no. 7: 481. https://doi.org/10.3390/ijgi10070481
APA StyleSakti, A. D., Rinasti, A. N., Agustina, E., Diastomo, H., Muhammad, F., Anna, Z., & Wikantika, K. (2021). Multi-Scenario Model of Plastic Waste Accumulation Potential in Indonesia Using Integrated Remote Sensing, Statistic and Socio-Demographic Data. ISPRS International Journal of Geo-Information, 10(7), 481. https://doi.org/10.3390/ijgi10070481