A GeoSPARQL Compliance Benchmark
Abstract
:1. Introduction
2. Related Work
3. GeoSPARQL Compliance Benchmark
- Core component (CORE): Defines the top-level spatial vocabulary components (Requirements 1–3);
- Topology vocabulary extension (TOP): Defines the topological relation vocabular (Requirements 4–6);
- Geometry extension (GEOEXT): Defines the geometry vocabulary and non-topological query functions (Requirements 7–20);
- Geometry topology extension (GTOP): Defines topological query functions for geometry objects (Requirements 21–24);
- RDFS entailment extension (RDFSE): Defines a mechanism for matching implicit (inferred) RDF triples that are derived based on RDF and RDFS semantics, i.e., derived from RDFS reasoning (Requirements 25–27);
- Query rewrite extension (QRW): Defines query transformation rules for computing spatial relations between spatial objects based on their associated geometries (Requirements 28–30).
3.1. Benchmark Dataset
3.2. Benchmark Queries
- Req. 1
- Req. 2
- Implementations shall allow the RDFS [23] class geo:SpatialObject to be used in SPARQL graph patterns.
- Req. 3
- Implementations shall allow the RDFS class geo:Feature to be used in SPARQL graph patterns.
- Req. 4
- Implementations shall allow the properties geo:sfEquals, geo:sfDisjoint, geo:sfIntersects, geo:sfTouches, geo:sfCrosses, geo:sfWithin,geo:sfContains, geo:sfOverlaps to be used in SPARQL graph patterns.
- Req. 5
- Implementations shall allow the properties geo:ehEquals, geo:ehDisjoint,geo:ehContains to be used in SPARQL graph patterns.
- Req. 6
- Implementations shall allow the properties geo:rcc8eq, geo:rcc8dc, geo:rcc8ec, geo:rcc8po, geo:rcc8tppi, geo:rcc8tpp, geo:rcc8ntpp, geo:rcc8ntppi to be used in SPARQL graph patterns.
- Req. 7
- Implementations shall allow the RDFS class geo:Geometry to be used in SPARQL graph patterns.
- Req. 8
- Implementations shall allow the properties geo:hasGeometry and geo:hasDefaultGeometry to be used in SPARQL graph patterns.
- Req. 9
- Implementations shall allow the properties geo:dimension,geo:hasSerialization to be used in SPARQL graph patterns.
- Req. 10
- All RDFS Literals of type geo:wktLiteral shall consist of an optional URI identifying the coordinate reference system followed by Simple Features Well Known Text (WKT) describing a geometric value. Valid geo:wktLiteral instances are formed by concatenating a valid, absolute URI as defined in [25], one or more spaces (Unicode U+0020 character) as a separator, and a WKT string as defined in Simple Features [5].
- Req. 11
- URI <http://www.opengis.net/def/crs/OGC/1.3/CRS84> shall be assumed as the spatial reference system for geo:wktLiterals that do not specify an explicit spatial reference system URI.
- J:
- Polygon((-77.089005 38.913574,-77.029953 38.913574,-77.029953 38.886321,-77.089005 38.886321,-77.089005 38.913574))
- K:
- Polygon((-77.089005 38.913574,-77.029953 38.913574,-77.029953 38.886321,-77.089005 38.886321,-77.089005 38.913574))
- Req. 12
- Coordinate tuples within geo:wktLiterals shall be interpreted using the axis order defined in the spatial reference system used.
- L:
- <http://www.opengis.net/def/crs/OGC/1.3/CRS84> Point(-88.38 31.95)
- M:
- <http://www.opengis.net/def/crs/EPSG/0/4326> Point(31.95 -88.38)
- Req. 13
- An empty RDFS Literal of type geo:wktLiteral shall be interpreted as an empty geometry.
- H:
- I:
- LineString EMPTY
- H:
- I:
- Point EMPTY
- Req. 14
- Implementations shall allow the RDF property geo:asWKT to be used in SPARQL graph patterns.
- Req. 15
- All geo:gmlLiterals shall consist of a valid element from the GML schema that implements a subtype of GM_Object as defined in [27].
- Req. 16
- An empty geo:gmlLiteral shall be interpreted as an empty geometry.
- H:
- I:
- <LineString><posList></posList></LineString>
- H:
- I:
- <Point><pos></pos></Point>
- Req. 17
- Implementations shall document supported GML profiles.
- Req. 18
- Implementations shall allow the RDF property geo:asGML to be used in SPARQL graph patterns.
- Req. 19
- Implementations shall support geof:distance, geof:buffer, geof:convexHull, geof:intersection, geof:union, geof:difference, geof:symDifference,geof:envelope and geof:boundary as SPARQL extension functions, consistent with the definitions of the corresponding functions (distance, buffer, convexHull, intersection, difference, symDifference, envelope and boundary respectively) in Simple Features [5].
- Req. 20
- Implementations shall support geof:getSRID as a SPARQL extension function.
- Req. 21
- Implementations shall support geof:relate as a SPARQL extension function, consistent with the relate operator defined in Simple Features [5].
- Req. 22
- Implementations shall support geof:sfEquals, geof:sfDisjoint,geof:sfContains, geof:sfOverlaps as SPARQL extension functions, consistent with their corresponding DE-9IM intersection patterns [28], as defined by Simple Features [5].
- Req. 23
- Implementations shall support geof:ehEquals, geof:ehDisjoint, geof:ehMeet, geof:ehOverlap, geof:ehCovers, geof:ehCoveredBy, geof:ehInside,geof:ehContains as SPARQL extension functions, consistent with their corresponding DE-9IM intersection patterns, as defined by Simple Features [5].
- Req. 24
- geof:rcc8po, geof:rcc8tppi, geof:rcc8tpp, geof:rcc8ntpp, geof:rcc8ntppi as SPARQL extension functions, consistent with their corresponding DE-9IM intersection patterns [28], as defined by Simple Features [5].
- Req. 25
- Basic graph pattern matching shall use the semantics defined by the RDFS Entailment Regime [29].
- Req. 26
- Req. 27
- Implementations shall support graph patterns involving terms from an RDFS/OWL class hierarchy of geometry types consistent with the GML schema that implements GM_Object using the specified version of GML [27].
- Req. 28
- Basic graph pattern matching shall use the semantics defined by the RIF Core Entailment Regime [W3C SPARQL Entailment] for the RIF rules [31] geor:sfEquals, geor:sfDisjoint, geor:sfIntersects, geor:sfTouches, geor:sfCrosses,
- Req. 29
- Basic graph pattern matching shall use the semantics defined by the RIF Core Entailment Regime [W3C SPARQL Entailment] for the RIF rules [31] geor:ehEquals, geor:ehDisjoint, geor:ehMeet, geor:ehOverlap,
- Req. 30
- Basic graph pattern matching shall use the semantics defined by the RIF Core Entailment Regime [W3C SPARQL Entailment] for the RIF rules [31] geor:rcc8eq, geor:rcc8dc, geor:rcc8ec, geor:rcc8po, geor:rcc8tppi,
3.3. Benchmark Results
- Correct answers: The number of correct answers out of all GeoSPARQL queries, i.e., tests.
- GeoSPARQL compliance percentage: The percentage of compliance with the requirements of the GeoSPARQL standard.
3.4. Benchmark Considerations
3.4.1. Geometry Literals
- geof:boundary(ogc:geomLiteral):ogc:geomLiteral
3.4.2. Variations between Literal Serializations
3.4.3. Alternative Answers
3.5. Implementation
4. Experimental Setup
5. Results and Discussion
5.1. Overall Results
5.2. Discussion on the Results for Each Triplestore
6. Limitations of the Benchmark
7. Conclusions
Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CORE | Core Component |
CRS | Coordinate Reference System |
GEOEXT | Geometry Extension |
GML | Geography Markup Language |
GTOP | Geometry Topology Extension |
OGC | Open Geospatial Consortium |
QRW | Query Rewrite Extension |
RDF | Resource Description Framework |
RDFS | RDF Schema |
RDFSE | RDFS Entailment Extension |
SPARQL | SPARQL Protocol and RDF Query Language |
TOP | Topology Vocabulary Extension |
WKT | Well-Known Text |
References
- Fonseca, F. The Geospatial Semantic Web. In The Handbook of Geographic Information Science; Blackwell Publishing: Malden, MA, USA, 2008; pp. 367–376. [Google Scholar]
- Berners-Lee, T.; Hendler, J.; Lassila, O. The Semantic Web. Sci. Am. 2001, 284, 34–43. [Google Scholar] [CrossRef]
- Battle, R.; Kolas, D. GeoSPARQL: Enabling a GeoSpatial Semantic Web. Semant. Web J. 2011, 3, 355–370. [Google Scholar] [CrossRef]
- Perry, M.; Herring, J. OGC GeoSPARQL—A Geographic Query Language for RDF Data. OGC Standard, Open Geospatial Consortium, Wayland, MA, USA. 2012. Available online: https://www.ogc.org/standards/geosparql (accessed on 22 May 2021).
- Herring, J. OpenGIS® Implementation Standard for Geographic Information—Simple Feature Access—Part 1: Common Architecture. OpenGIS Implementation Standard, Open Geospatial Consortium, Wayland, MA, USA. 2011. Available online: https://www.ogc.org/standards/sfa (accessed on 22 May 2021).
- Portele, C. OGC Geography Markup Language (GML)—Extended Schemas and Encoding Rules. OpenGIS Implementation Standard, Open Geospatial Consortium, Wayland, MA, USA. 2012. Available online: https://www.ogc.org/standards/gml (accessed on 22 May 2021).
- Prud’hommeaux, E.; Seaborne, A. SPARQL Query Language for RDF. W3C Recommendation, W3C. 2008. Available online: https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/ (accessed on 22 May 2021).
- Battle, R.; Kolas, D. Enabling the Geospatial Semantic Web with Parliament and GeoSPARQL. Semant. Web 2012, 3, 355–370. [Google Scholar] [CrossRef]
- Albiston, G.L.; Osman, T.; Chen, H. GeoSPARQL-Jena: Implementation and Benchmarking of a GeoSPARQL Graphstore. Semant. Web J. 2019. under review. [Google Scholar]
- Janssen, V. Understanding Coordinate Reference Systems, Datums and Transformations. Int. J. Geoinformatics 2009, 5, 41–53. [Google Scholar]
- Decker, B.L. World Geodetic System 1984; Technical Report; Defense Mapping Agency Aerospace Center: St Louis, MO, USA, 1986. [Google Scholar]
- Garbis, G.; Kyzirakos, K.; Koubarakis, M. Geographica: A Benchmark for GeoSpatial RDF Stores (long version). In Proceedings of the International Semantic Web Conference, Sydney, NSW, Australia, 21–25 October 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 343–359. [Google Scholar]
- Ioannidis, T.; Garbis, G.; Kyzirakos, K.; Bereta, K.; Koubarakis, M. Evaluating Geospatial RDF stores Using the Benchmark Geographica 2. arXiv 2019, arXiv:1906.01933. [Google Scholar]
- Huang, W.; Raza, S.A.; Mirzov, O.; Harrie, L. Assessment and Benchmarking of Spatially Enabled RDF Stores for the Next Generation of Spatial Data Infrastructure. ISPRS Int. J. Geo-Inf. 2019, 8, 310. [Google Scholar] [CrossRef] [Green Version]
- Rafes, K.; Nauroy, J.; Germain, C. TFT, Tests For Triplestores. In Proceedings of the Semantic Web Challenge, Part of the International Semantic Web Conference, Riva del Garda, Italy, 19–23 October 2014. [Google Scholar]
- Ngomo, A.C.N.; Garcia Rojas, A.; Fundulaki, I. HOBBIT: Holistic Benchmarking for Big Linked Data. ERCIM News 2016. [Google Scholar]
- Röder, M.; Kuchelev, D.; Ngonga Ngomo, A.C. HOBBIT: A Platform for Benchmarking Big Linked Data. Data Sci. 2020, 3, 15–35. [Google Scholar] [CrossRef] [Green Version]
- Jovanovik, M.; Homburg, T.; Spasić, M. GeoSPARQL Compliance Benchmark. Available online: https://github.com/OpenLinkSoftware/GeoSPARQLBenchmark (accessed on 8 July 2021).
- Jovanovik, M.; Homburg, T.; Spasić, M. Software for the GeoSPARQL Compliance Benchmark. Softw. Impacts 2021, 8, 100071. [Google Scholar] [CrossRef]
- Butler, H.; Daly, M.; Doyle, A.; Gillies, S.; Hagen, S.; Schaub, T. The GeoJSON Format; Technical Report 7946; IETF: Fremont, CA, USA, 2016. [Google Scholar]
- Clark, K.; Feigenbaum, L.; Torres, E. SPARQL Protocol for RDF. W3C Recommendation, W3C. 2008. Available online: https://www.w3.org/TR/2008/REC-rdf-sparql-protocol-20080115/ (accessed on 22 May 2021).
- Beckett, D.; Broekstra, J. SPARQL Query Results XML Format. W3C Recommendation, W3C. 2008. Available online: https://www.w3.org/TR/2008/REC-rdf-sparql-XMLres-20080115/ (accessed on 22 May 2021).
- Brickley, D.; Guha, R. RDF Schema 1.1. W3C Recommendation, W3C. 2014. Available online: https://www.w3.org/TR/2014/REC-rdf-schema-20140225/ (accessed on 22 May 2021).
- Kifer, M.; Boley, H. RIF Overview (Second Edition). W3C Note, W3C. 2013. Available online: https://www.w3.org/TR/2013/NOTE-rif-overview-20130205/ (accessed on 22 May 2021).
- Berners-Lee, T.; Masinter, L.M.; Fielding, R.T. Uniform Resource Identifiers (URI): Generic Syntax; Technical Report 2396; IETF: Fremont, CA, USA, 1998. [Google Scholar]
- Nicolai, R.; Simensen, G. The New EPSG Geodetic Parameter Registry. In Proceedings of the 70th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2008, Rome, Italy, 9–12 January 2008; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Portele, C. OpenGIS® Geography Markup Language (GML) Encoding Standard. OpenGIS Standard, Open Geospatial Consortium, Wayland, MA, USA. 2007. Available online: https://www.ogc.org/standards/gml (accessed on 22 May 2021).
- Strobl, C. Dimensionally Extended Nine-Intersection Model (DE-9IM). In Encyclopedia of GIS; Shekhar, S., Xiong, H., Zhou, X., Eds.; Springer: Cham, Switzerland, 2017; pp. 470–476. [Google Scholar] [CrossRef]
- Glimm, B.; Ogbuji, C. SPARQL 1.1 Entailment Regimes. W3C Recommendation. 2013. Available online: https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/ (accessed on 22 May 2021).
- McGuinness, D.; van Harmelen, F. OWL Web Ontology Language Overview. W3C Recommendation, W3C. 2004. Available online: https://www.w3.org/TR/2004/REC-owl-features-20040210/ (accessed on 22 May 2021).
- Boley, H.; Hallmark, G.; Kifer, M.; Paschke, A.; Polleres, A.; Reynolds, D. RIF Core Dialect. W3C Recommendation, W3C. 2010. Available online: https://www.w3.org/TR/2010/REC-rif-core-20100622/ (accessed on 22 May 2021).
- Apache Marmotta. Available online: http://marmotta.apache.org (accessed on 22 May 2021).
- Blazegraph. Available online: https://blazegraph.com (accessed on 22 May 2021).
- Eclipse RDF4J. Available online: https://rdf4j.org (accessed on 22 May 2021).
- GeoSPARQL Fuseki. Available online: https://jena.apache.org/documentation/geosparql/geosparql-fuseki (accessed on 22 May 2021).
- Jena Fuseki. Available online: https://jena.apache.org/documentation/fuseki2/ (accessed on 22 May 2021).
- GraphDB. Available online: https://graphdb.ontotext.com (accessed on 22 May 2021).
- Erling, O. Virtuoso, a Hybrid RDBMS/Graph Column Store. IEEE Data Eng. Bull. 2012, 35, 3–8. [Google Scholar]
- Virtuoso. Available online: https://virtuoso.openlinksw.com (accessed on 22 May 2021).
- Stardog. Available online: https://www.stardog.com (accessed on 22 May 2021).
- TriplyDB. Available online: https://triplydb.com (accessed on 8 July 2021).
- Abhayaratna, J.; van den Brink, L.; Car, N.; Atkinson, R.; Homburg, T.; Knibbe, F.; McGlinn, K.; Wagner, A.; Bonduel, M.; Holten Rasmussen, M.; et al. OGC Benefits of Representing Spatial Data Using Semantic and Graph Technologies. OGC White Paper, Open Geospatial Consortium, Wayland, MA, USA. 2020. Available online: http://docs.ogc.org/wp/19-078r1/19-078r1.html (accessed on 22 May 2021).
- Abhayaratna, J.; van den Brink, L.; Car, N.; Homburg, T.; Knibbe, F. OGC GeoSPARQL 2.0 SWG Charter. Available online: https://github.com/opengeospatial/geosemantics-dwg/tree/master/geosparql_2.0_swg_charter (accessed on 22 May 2021).
Triplestore | Version | Reference |
---|---|---|
Apache Marmotta | 3.4.0 | [32] |
Blazegraph | 3.1.5 | [33] |
Eclipse RDF4J | 3.4.0 | [34] |
GeoSPARQL Fuseki | 3.17.0 | [9,35] |
Jena Fuseki | 3.14.0 | [36] |
Ontotext GraphDB | 9.3.3 | [37] |
OpenLink Virtuoso | 7.2 | [38,39] |
Stardog | 7.4.0 | [40] |
TriplyDB | 3.5 | [41] |
Triplestore | Correct Answers (out of 206) | GeoSPARQL Compliance |
---|---|---|
GeoSPARQL Fuseki 3.17 | 177 | 82.75% |
Ontotext GraphDB 9.3.3 | 80 | 69.75% |
OpenLink Virtuoso 7.2 | 73 | 63.46% |
TriplyDB 3.5 | 73 | 63.46% |
Eclipse RDF4J 3.4.0 | 47 | 58.33% |
Stardog 7.4.0 | 46 | 56.67% |
Blazegraph 2.1.5 | 46 | 56.67% |
Jena Fuseki 3.14 | 46 | 56.67% |
Apache Marmotta 3.4.0 | 40 | 46.67% |
Triplestore | CORE | TOP | GEOEXT | GTOP | RDFSE | QRW |
---|---|---|---|---|---|---|
GeoSPARQL Fuseki | Full | Full | Full/E | Full | Full | Full/E |
Ontotext GraphDB | Full | Full | Partial [WKT] | Partial [WKT] | Full | None |
OpenLink Virtuoso | Full | Full | Partial [WKT] | Partial [WKT] | Full | None |
TriplyDB | Full | Full | Partial [WKT] | Partial [WKT] | Full | None |
Eclipse RDF4J | Full | Full | Partial [WKT CRS84] | Partial [WKT CRS84] | Full | None |
Stardog | Full | Full | None | None | Full | None |
Blazegraph | Full | Full | None | None | Full | None |
Jena Fuseki | Full | Full | None | None | Full | None |
Apache Marmotta | Full | Full | None | None | None | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanovik, M.; Homburg, T.; Spasić, M. A GeoSPARQL Compliance Benchmark. ISPRS Int. J. Geo-Inf. 2021, 10, 487. https://doi.org/10.3390/ijgi10070487
Jovanovik M, Homburg T, Spasić M. A GeoSPARQL Compliance Benchmark. ISPRS International Journal of Geo-Information. 2021; 10(7):487. https://doi.org/10.3390/ijgi10070487
Chicago/Turabian StyleJovanovik, Milos, Timo Homburg, and Mirko Spasić. 2021. "A GeoSPARQL Compliance Benchmark" ISPRS International Journal of Geo-Information 10, no. 7: 487. https://doi.org/10.3390/ijgi10070487
APA StyleJovanovik, M., Homburg, T., & Spasić, M. (2021). A GeoSPARQL Compliance Benchmark. ISPRS International Journal of Geo-Information, 10(7), 487. https://doi.org/10.3390/ijgi10070487