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Abstract: Seismic activities are serious disasters that induce natural hazards resulting in an incal-
culable amount of damage to properties and millions of deaths. Typically, seismic risk assessment
can be performed by means of structural damage information computed based on the maximum
displacement of the structure. In this study, machine learning models based on GPR are developed
in order to estimate the maximum displacement of the structures from seismic activities and then
used to construct fragility curves as an application. During construction of the models, 13 features of
seismic waves are considered, and six wave features are selected to establish the seismic models with
the correlation analysis normalizing the variables with the peak ground acceleration. Two models
for six-floor and 13-floor buildings are developed, and a sensitivity analysis is performed to identify
the relationship between prediction accuracy and sampling size. A 10-fold cross-validation method
is used to evaluate the model performance, using the R-squared, root mean squared error, Nash
criterion, and mean bias. Results of the six-parameter-based model apparently indicate a similar
performance to that of the 13-parameter-based model for the two types of buildings. The model for
the six-floor building affords a steadily enhanced performance by increasing the sampling size, while
the model for the 13-floor building shows a significantly improved performance with a sampling size
of over 200. The results indicate that the heighted structure requires a larger sampling size because
it has more degrees of freedom that can influence the model performance. Finally, the proposed
models are successfully constructed to estimate the maximum displacement, and applied to obtain
fragility curves with various performance levels. Then, the regional seismic damage is assessed in
Gyeonjgu city of South Korea as an application of the developed models. The damage assessment
with the fragility curve provides the structural response from the seismic activities, which can assist
in minimizing damage.

Keywords: regional seismic damage assessment; machine learning; Gaussian process regression;
maximum displacement; fragility curve

1. Introduction

Assessment of seismic building damage has played a significant role in establishing
the earthquake model frameworks with enhanced performances. Moreover, the seismic
probabilistic risk assessment (SPRA) with the maximum displacement estimation in resi-
dential buildings is a crucial step in the improvement of model performances. Based on
the model, prompt structural responses can be provided to reduce damages from natural
disasters such as earthquakes [1–3]. Iervolino and Giorgio [4] investigated building levels,
which are related to the degree of freedom in a structure, to identify the limitation of the
building level using the functionality level for a seismic damage. Burton et al. [5] analyzed
functionality and recovery post-earthquake based on the building-level limit states which
are applied for optimization of a structure and lifecycle seismic performance assessment.

Fragility curves are commonly used for seismic vulnerability assessment by linking
the probability of exceedance of the limit states to ground shaking intensity in order to
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provide structural response. To obtain fragility curves, empirical and analytical fragility
investigations can be carried out using data/information on past damages from earth-
quakes and structural properties correlated with seismic activities. The analytical fragility
approach has been commonly used in estimating fragility curves for seismic analysis,
because the data on structural damage is generally insufficient for the application of the
empirical fragility approach [6,7]. In the fragility analysis, it is important to calculate the
accurate maximum displacement, which represents the earthquake response of a building
and to estimate the performance of the structure affected by seismic excitations [2]. The
seismic fragility analysis can be enhanced by developing the SPRA with an application of
the information derived from the earthquake occurrence. SPRA is examined based on a
conditional probability, where the measure of the damage exceeds a threshold at a given
intensity measure of a structure [8]. Characteristics of structures can be used to determine
structure activities and to assess structural safety for the analysis by SPRA using numerical
analysis, applied to estimate structural fragility and assess the risk of collapse [9–11].

Furthermore, several methodologies have been utilized to improve the maximum
displacement estimation that produces the seismic fragility curve for the responses of
natural disasters. Machine learning techniques, including an artificial neural network,
an integrated fuzzy analytic hierarchy process, and machine learning-based regression
models, were applied for the evaluation of earthquake damages [12–14]. Lagaros and
Fragiadakis [15] used neural networks to conduct a fragility assessment based on steel
frames with seismic activities. Unnikrishnan et al. [16] examined fragility curves using
a high-dimensional model that decomposes the nonlinear relationship between input
and output variables. Saha et al. [17] used a polynomial regression model to analyze the
maximum displacement. Calabrese and Lai [18] and Gehl and D’Ayala [19] applied the
artificial neural networks and Bayesian networks for the multi-risk fragility analysis in
seismic models. More recently, Jung et al. [20] proposed the application of a Gaussian
process regression (GPR) method, wherein they compared various approaches in estimating
the maximum displacement to provide fragility curves for prompt response from natural
disasters. In the analysis, the maximum inter-story drift ratio (MIDR) was used to create
the fragility curve for the seismic vulnerability assessment.

The Korean Peninsula is located in East Asia, surrounded by the Eurasian plate
where earthquakes occur. This peninsula has landscapes including plutonic, sedimentary,
and volcanic rocks deposited over a tectonic and geomorphic history [21] and geological
structures including faults and weak crust that have led to concurrent earthquakes [22].
Mountain ranges on the peninsula are featured by erosions and tectonic movements with
an asymmetric topography that has experienced an initial uplift [23]. One of main regions
in the Korean Peninsula affected by seismic activities is Gyeongju, which has suffered from
numerous casualties and damages. For example, the Gyeongju Earthquake, with a local
magnitude (ML) of 5.8 in 2016, occurred five months after the Kumamoto Earthquake,
which had a magnitude (ML) of 7.3 [24]. The earthquake was preceded by a foreshock
with an ML of 5.1, and it induced 601 aftershocks. This earthquake caused damage to
5368 properties, injured 23 people, and subsequently, resulted in 111 casualties in the area.
Although significant national losses have occurred from continuous damages caused by
seismic activities in the peninsula, vulnerability assessment analyses for different types of
buildings in the region, based on advanced seismic models, to reduce potential losses have
been scarce.

This study aimed to develop advanced and robust models for estimating the maximum
displacement to earthquakes. Additionally, the proposed model must help assess the
structural vulnerability to natural disasters by means of fragility curves. In this study, the
model was applied to the Gyeongju region to examine regional seismic damage assessment.
For this purpose, the input variables in the model framework were identified using the
correlation analysis with various seismic magnitudes and waves. A machine learning
technique was applied for a six-floor building and a 13-floor building to improve the
estimation models. The proposed models are based on the peak ground acceleration (PGA).
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Different sampling sets, such as 100, 150, 200, 250, 300, 350, and 400, for the number of the
waves were investigated to determine the appropriate sampling size in establishing the
models using various statistical indices.

2. Methodology
2.1. Estimation Model Based on Gaussian Process Regression

In this study, we employed GPR (also known as Kriging) to develop a seismic model
and to analyze the model performance in estimating the maximum displacement of the
structure and the seismic fragility curves. GPR analysis is a type of regression analysis
that is adopted when the dependent variable follows the Gaussian process [20,25,26]. Phan
et al. [27] and Hoang et al. [28] used the GPR technique for seismic vulnerability and seismic
fragility analysis for storage tanks and reinforced concrete highway bridges. Jung et al. [20]
also investigated several methods in estimating the maximum displacement and found that
the GPR approach showed the best performance. GPR has the structural characteristic of
machine learning techniques, assuming that the model output, Y(x), indicates a realization
of a Gaussian process. The formulation of the model can be obtained as follows:

Y(x) = βT f (x) + Z(x) (1)

where Y(x) means the unknown function of interest, β indicates a vector of unknown
repression coefficient, f (x) implies a vector of known regression function, and Z(x) is a
realization of the Gaussian process based on zero mean and nonzero covariance. The Z(x)
can be expressed as

cov
(
Z(xi), Z(xj)

)
= σ2R

(
xi − xj

∣∣θ) (2)

where σ2 indicates the process variance and R
(
xi − xj

∣∣θ) implies the spatial correlation
function using unknown and known correlation parameters θ. The correlation between
Z(xi) and Z(xj) means the function of a distance between xi and xj. The output, Y(x0),
of the model can be obtained using the input points X = (x1, x2, . . . , xn ) and the corre-
sponding computer output Yn = (Y(x1), Y(x2), . . . , Y(xn) )

T . The related equation can be
formulated as (

Y(x0)
Yn

)
∼ Nn+1

((
f T
0
F

)
β, σ2

(
1 rT

0
r0 R

))
(3)

where f0 = f (x0) is the regression function vector for the estimated data and F = fi(xi)
is the regression function matrix of the training data. r0 is the vector of the correlation
function between Yn and Y(x0) and R indicates the correlation matrix of Yn. The model can
interpolate the n data points based on the various basic functions and correlation functions.
With Equation (3), the best linear unbiased predictor of Y(x0) can be gained as follows:

Ŷ(x0) =

(
f T
0

(
FT R−1F

)−1
FT R−1 + rT

0 R−1
(

In − F
(

FT R−1F
)−1

FT R−1
))

Yn (4)

Additionally, the mean standardized error for the estimate, Ŷ(x0), can be obtained
from

MSE
(
Ŷ(x0)

)
= σ2

(
1 − rT

0 R−1r0 +
(

FT R−1r0 − f0

)T(
FT R−1F

)−1(
FT R−1r0 − f0

))
(5)

The unknown parameter (θ) should be estimated to obtain the model by solving an
optimization problem. The maximum likelihood estimation approach is used to determine
the parameters (β, σ2, and θ) maximizing the quantity in Equation (3). The input variables
and the output variable derived from the model are described in Section 3.1. The cross-
validation method considering the training data and testing data for the model process is
explained in Section 2.3. A comprehensive description of the GPR procedure was presented
by Williams and Rasmussen [29].
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2.2. Seismic Probabilistic Risk Assessment

Once the maximum displacement is estimated using the GPR method, the seismic
probability risk assessment can be performed based on the seismic fragility curve. The
fragility curve is applied for the structural safety analysis [30]. These curves can be used to
evaluate seismic structural performance and obtain the probability of a structure’s safety
or failure against natural disasters.

To generate the fragility curve, we performed a simulation analysis by increasing
the magnitude of earthquakes in buildings. Then, the maximum displacement derived
from the simulation was validated using the immediate occupancy (IO), life safety (LS),
and collapse prevention (CP) levels. With the maximum displacement, the fragility curve
is expressed as a log-normal distribution function, which can indicate the probability of
seismic damages related to seismic intensity. The distribution function within the intensity
ranges implies the function of the seismic intensity, indicating the performance of the
seismic analysis. In the analysis, the maximum likelihood estimation method is used to
obtain statistical parameters of the fragility curve, i.e., mean and standard deviation of
log-normal distribution function. The maximum likelihood function can be expressed as
follows:

L =
N

∏
i=1

[F(ai)]
xi [1 − F(ai)]

1−xi (6)

where F(·) represents the fragility curve generated from the maximum displacement
and ai implies the seismic intensity, the peak ground acceleration (PGA) adopted in this
study. Here, xi = 1, if a seismic damage occurs at the ith site, whereas xi = 0 when
there is no damage to a structure. N indicates the total number of sites observed for
the investigation. In the equation, F(·) can be written as follows based on the following
log-normal assumption:

F(a) = Φ

[
ln
( a

c
)

ζ

]
(7)

where a represents the PGA, c denotes the median value in the fragility curve, ζ indicates
the standard deviation of the curve, and Φ[·] denotes the function of the standardized
normal distribution.

2.3. Evaluation Criteria

To evaluate the model performance, cross-validation resampling techniques have been
commonly used by comparing observed variables with estimated variables [20,31–33]. In
this study, the k-fold cross-validation approach is applied for validating the displacement
estimation by obtaining boundaries of errors and estimated errors [34]. When k represents
a value of 10 as used in this study, 10% of the data are temporarily excluded for testing and
the remaining data is used for training by structuring a model. In other words, the data
are divided into 10 groups of the same or similar size. One of the groups is designated as
the test set, and remaining groups are used for the training set. Each group is repeatedly
excluded in the 10 groups considering the error variability. The estimated displacement is
then evaluated based on statistical indices with the measured displacement to conduct a
model performance analysis. Several studies were conducted for sensitivity analysis based
on k-fold cross-validation, including 10-fold cross-validation [35,36]. This 10-fold cross
validation was also used in this study because other cross-validation methods, such as
Jackknife, apparently reduce the accuracy of the model owing to the large number of data
sets.

The evaluation methods employing statistical analysis used in the study are the R-
squared (R2), the root mean squared error (RMSE), the Nash criterion (NASH), and the
mean bias (BIAS). We attempted to evaluate the estimated values based on four criteria—R2,
RMSE, NASH, and BIAS. These criteria can assess the accuracy and bias of the model’s
results. In this study, we used the RMSE for the model accuracy instead of the MAE,
because the RMSE were applied for the evaluation of model performance in several studies
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as one of the general methods in evaluation criteria [20,32,37,38]. The indices are calculated
using the following equations:

R2 = 1 − RSS
TSS

(8)

RMSE =

√
1
n

n

∑
i=1

(qi − q̂i)
2 (9)

NASH = 1 − ∑n
i=1(qi − q̂i)

2

∑n
i=1(qi − q)2 (10)

BIAS =
1
n

n

∑
i=1

(qi − q̂i) (11)

where RSS is the residual sum of squares and TSS is the total sum of squares. The total
number of data is expressed as n, the at-site estimate for location i is denoted as qi, and the
estimate based on the proposed model for location i is presented as q̂i. A simple diagram
for estimating the maximum displacement and obtaining the fragility curves is shown in
Figure 1.
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Figure 1. Procedure for obtaining the maximum displacement and fragility curves.

3. Data Set
3.1. Feature Selection of Seismic Waves

Thirteen seismic wave properties were considered in establishing the GPR model to
estimate the maximum displacement. The seismic waves obtained using the magnitude of
over 6.5 with far-fault and near-fault in the Pacific Earthquake Engineering Research Center
(PEER) were investigated. The considered features include Arias intensity, cumulative
absolute velocity (CAV), characteristic intensity, the difference between the maximum
seismic wave and the minimum seismic wave, total cumulative energy (ECUM), Fourier
amplitude spectrum (FM), PGA, peak ground velocity (PGV), peak ground displacement
(PGD), peak velocity and acceleration ratio (PVA), duration (5% and 95%), significant
duration (Td), and mean period (Tm). The total number of the seismic waves was 400, and
the seismic wave characteristics were calculated based on the scaling of PGA in the present



ISPRS Int. J. Geo-Inf. 2021, 10, 574 6 of 20

study. The 400 waves are normalized and scaled using the PGA. The nonlinear examination
with the normalized PGA is then conducted for each of the seismic intensity levels ranging
from 0.0g to 3.5 g for 150 points. Figure 2 presents the 400 seismic waves for the response
spectrum used in the study. Table 1 shows the 13 seismic wave features for the statistical
analysis. Generally, there are two types of seismic intensity, namely, PGA and spectral
acceleration (SA). In this study, PGA was selected as earthquake intensity. The PGA is a
magnitude of the ground acceleration that occurred during the earthquake, and SA is a
magnitude of the degree of shaking considering a building’s natural frequency. The PGA
is adopted in this study because it can easily express how much the seismic wave shakes
the ground. Detailed procedures for the estimation of the wave feature are presented in the
analysis by Papazafeiropoulos and Plevris [37].
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Based on the aforementioned 13 wave properties obtained for this study, a correlation
analysis among the features was performed to determine important variables for struc-
turing the seismic model. The Pearson correlation coefficient was used for the correlation
analysis. The Pearson correlation coefficient is used to examine the correlation between
different variables. Jung et al. [20] carried out the principal component analysis (PCA) by
extracting new features to estimate the maximum displacement, and they identified that
the PCA provides the best estimation. Therefore, we focused on the correlation analysis
based on the Pearson correlation in this study. Table 2 presents these 13 seismic wave
characteristics and Table 3 shows the results based on the Pearson correlation coefficient.
In Table 3, O indicates “use”, × means “not use”, and N implies “not use due to the extra
simulation". The feature with the symbol of N is not used although the correlation is
high because the extra simulation is required. On the basis of the correlation analysis, we
selected Arias intensity, CAV, ECUM, FM, PGA, and Tm. The PGV and PGD are excluded
because additional calculation (i.e., time history dynamic analysis) is required to use these
variables. The selected six features were applied for the development of the seismic model,
and the proposed model was compared with the model based on 13 features to assess the
performance of the former. Additionally, sampling sets based on various numbers of the
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seismic waves, including 100, 150, 200, 250, 300, 350, and 400, were used for sensitivity
analysis.

Table 1. The 13 seismic wave features with the statistical analysis.

Name Min Max Average

Arias Intensity (m/s2) 5.584 × 10−12 1.903 0.104

CAV (g.sec) 0.017 16.428 3.264

Characteristic Intensity (m/s2) 3.550 × 10−9 2.545 0.234

Abs Min/Max difference of PGA 0.00083 3.029 0.309

Cumulative Energy 5.744 × 10−5 12.913 1.142

Mean Frequency (Hz) 0.668 9.710 3.666

PGA (g) 0.020 3.500 0.894

PGV (m/s) 1.724 × 10−6 0.005 0.00061

PGD (m) 7.340 × 10−10 5.825 × 10−5 3.341 × 10−6

PVA ratio 8.620 × 10−5 0.007 0.00087

Total Duration (sec) 3.560 147.590 19.353

Significant duration (sec) 3.570 147.595 19.361

Mean period (Hz) 0.165 2.076 0.557

Table 2. Seismic wave features used in the study.

ID Feature Name

1 Arias intensity
2 CAV
3 Characteristic intensity
4 Difference between min and max
5 ECUM
6 FM
7 PGA
8 PGV
9 PGD

10 PVA ratio
11 Duration (5% and 95%)
12 Td
13 Tm

Table 3. Correlation analysis for the characteristics based on Pearson coefficients.

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10 ID11 ID12 ID13 Use

ID1 1.00 0.76 0.97 0.48 0.86 0.20 0.70 0.47 0.28 0.15 0.03 0.03 0.28 O

ID2 1.00 0.75 0.56 0.89 0.25 0.78 0.59 0.40 0.11 0.17 0.17 0.27 O

ID3 1.00 0.53 0.84 0.23 0.75 0.51 0.30 0.17 0.07 0.07 0.31 ×

ID4 1.00 0.62 0.50 0.76 0.73 0.49 0.05 0.19 0.19 0.41 ×

ID5 1.00 0.29 0.83 0.57 0.37 0.17 0.06 0.06 0.35 O

ID6 1.00 0.47 0.14 0.09 0.35 0.29 0.29 0.66 O

ID7 1.00 0.59 0.28 0.28 0.21 0.21 0.46 O

ID8 1.00 0.83 0.35 0.06 0.06 0.14 N

ID9 1.00 0.45 0.05 0.05 0.08 N

ID10 1.00 0.30 0.30 0.56 ×

ID11 1.00 0.99 0.46 ×

ID12 1.00 0.46 ×

ID13 1.00 O
The bold values indicate the high correlation (more than 0.80). O indicates “use”, × means “not use”, and N
implies “not use due to the extra simulation”.
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3.2. Six- and Thirteen-Floor Buildings

For the maximum displacement estimation and development of fragility curve, we
used two types of steel moment-frame buildings with six floors and 13 floors. The six-
floor building was designed with the 1973 Uniform Building Code (UBC) requirements in
1976 [34,39]. The building is characterized by a rectangular plan of 36.6×36.6 m with 25.3 m
in height, and an 8.2 centimeter thick concrete slab. Features of sections are estimated
using A-36 steel and the yield stress of 303MP. The weight of the structure is approximately
34,644 kN. The plan view and member types for the six-floor building is shown in Figure 3a.
Detailed descriptions of the target building were presented by Kunnath et al. [40] and
Kalkan and Kunnath [41].
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The thirteen-story structure is considered as a second illustrative example in this
study. It is composed of a basement and 13 floors above the ground. This structure was
built in 1975 and designed according to the 1973 UBC requirements. The floor plan of the
structure is shown in Figure 3b with elevation view. The building has a rectangular plan of
48.8 × 48.8 m. The exterior frames are moment-resisting frames, and the interior frames
are for load bearing. It has been instrumented as part of the Strong Motion Instrumentation
Program for six-floor and 13-floor buildings [41–43]. Additionally, Song et al. [44] examined
ground motion intensity measures and component seismic demand parameters to conduct
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a probabilistic seismic demand analysis of bridges. In the study, we used the Opensees
to carry out the nonlinear dynamic analysis and perform the Newmark beta method for
structural analysis. This study focused on developing a structural response estimation
model. Detailed structural analysis, including the implementation of a nonlinear time
history analysis, the type of method used, nonlinear material parameters and its model,
and the nonstructural components, plays an important role in the structural analysis.
However, these aspects are beyond the scope of this study. Therefore, the details of related
information are briefly mentioned herein. The data for the analysis are obtained from
https://www.quakelogic.net/research (accessed on 1 June 2020).

4. Results
4.1. Six-Floor Building Analysis for Development of the Rapid Prediction Model

In this study, the simulation model of the buildings was developed based on the
designed data, and the movement of the real building can be represented by the model by
adjusting the parameters. The purpose of the study was to develop the estimation model
using the maximum displacement, which does not focus on the accuracy analysis and
analysis methods. With this data, we estimated the maximum displacement and developed
fragility curve using different sampling sets, including 100, 150, 200, 250, 300, 350, and
400. By changing the sampling sizes, the appropriate sampling size can be identified to
provide the best performance with the proposed seismic model. In this section, we focus
on the six-floor building to estimate the displacement and the fragility curve. To analyze
the performance of the selected seismic features in the process, we obtain results from the
models based on six selected properties and 13 (full) properties. The variables applied
for the simulation are also transformed to obtain standardization and normality; then, the
transformed variables are used in the six-parameter-based model and the 13-parameter-
based model. The performance of the model is validated using the statistical indices, such
as RMSE, R2, NASH, and BIAS.

Figure 4 shows the results from various statistical indices for the different sampling
size based on the model with six features and 13 features. The six-parameter-based model
presents a relatively high performance compared to the 13-parameter-based model. For
the RMSE, R2, and NASH, the performance seems to slightly decrease between 150 and
300 sampling sizes with the six features. However, the overall performance appears to be
improved when the sampling size increases for the 13 parameter-based model. Based on
the observation, we can conclude that the six-parameter-based model for estimating the
maximum displacement in seismic analysis tends to provide a satisfactory performance
with more accuracy. Table 4 presents the values of the statistical indices for six-parameter-
based model and 13-parameter-based model. From the table, we can observe that both
models with 400 sampling size produce the best performance, while a sampling size of 100
in both models generates the worst performance.

Table 4. Statistical results for different parameters and various sampling sizes based on the six-floor
building.

100 150 200 250 300 350 400

RMSE
6 params 5.4300 5.2541 3.8081 3.2979 3.2358 2.2118 0.0774
13 params 5.5045 5.4602 5.0244 4.8633 3.3894 2.6728 0.1866

R2 6 params 0.6881 0.7214 0.7839 0.8235 0.8325 0.9121 0.9999
13 params 0.6991 0.7183 0.7219 0.7461 0.8330 0.8866 0.9999

NASH
6 params 0.4389 0.4730 0.7232 0.7926 0.8017 0.9067 0.9999
13 params 0.4216 0.4312 0.5181 0.5490 0.7807 0.8636 0.9993

BIAS
6 params −1.2174 −0.8205 −0.7758 −0.6096 −0.2774 0.0073 0.0006
13 params −1.0639 −1.0049 −0.9237 −0.6630 −0.4363 −0.3272 0.0000

https://www.quakelogic.net/research
https://www.quakelogic.net/research
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In addition, we developed the seismic fragility curve derived from the maximum dis-
placement for the six-parameter-based model and the 13-parameter-based model. Fragility
curves based on IO, LS, and CP levels are shown in Figure 4 by comparing their perfor-
mance. In the work, we used the MIDR as a performance criterion, while the fragility curve
is calculated based on the two data sets (the exact data from simulation and estimation data
from the proposed model) with the seismic waves. The levels for IO, LS, and CP determine
the acceptance range of MIDR using the maximum height. The performance levels have
threshold values considering the IO (0.7%), LS (2.5%), and CP (5.0%) to provide the MIDR
limits [27,28,45,46]. Generally, the structural analysis that produces the fragility curve is
conducted based on the PGA of 0.0 g in the fragility function. For the analysis, we used
the three performance levels (IO, LS, and CP); among the three levels, the CP indicates the
entire destruction that we want to obtain by increasing the PGA to 3.5 g. The fragility curve
is then estimated based on the log-normal distribution. In other words, the CP requires
the point of the entire collapse of the target structures. Therefore, the simulations (e.g.,
nonlinear dynamic time history analysis) are conducted by increasing the PGA until the
structure is collapsed. In the study, the PGA of 3.5 g is selected for the upper limits of
the PGA range for the simulation. Figure 5 also presents the results for the model with
100 sampling size and the model with 400 sampling size. A maximum inter-story drift ratio
is used for the performance criterion, and the exact data based on results of simulation and
the estimated data based on the proposed model are examined for the seismic wave. Most
of the figures appear to be the S-curve shape, and the result of the level based on IO tends
to show the best performance among different levels. Moreover, the values of the fragility
curve function based on the IO level for 100 sampling size show the exact data of −1.2173
and 0.7735, the six-feature data of −1.2103 and 0.8494, and the 13-feature data of −1.2213
and 0.7192 for the median and standard deviation statistics. On the other hand, the values
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for 400 sampling size present the exact data of −1.2173 and 0.7735, the six-feature data
of −1.2170 and 0.7735, and the 13-feature data of −1.2177 and 0.7741 for the median and
standard deviation statistics, respectively.
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4.2. Thirteen Floor Building Analysis for Development of the Rapid Prediction Model

The GPR model is also examined for the 13-floor building, which has more degrees
of freedom than the six-floor building. The six-parameter-based and 13-parameter-based
models are used to produce the maximum displacement with fragility curve. To assess the
model performance, four statistical indices are applied for the results obtained from the
seismic model. Figure 6 shows the statistical results using RMSE, R2, NASH, and BIAS,
and they show a better estimation as the sampling sizes increase from 100 to 400. As shown
in the figure, the model with six features seems to have similar results to the model with
13 features. Furthermore, we can identify that model performance tends to be largely
enhanced with the model based on 150 sampling size for the six and 13 features. These
results conclude that the six-parameter-based model would be sufficient for estimating the
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displacement of the 13-floor structure in the seismic analysis. Table 5 presents the values
of the indices for both models with various sampling sizes. Among the different sizes,
400 sampling size shows the best performance with the proposed models.
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Table 5. Statistical results for different parameters and various sampling sizes based on the 13-floor
building.

100 150 200 250 300 350 400

RMSE
6 params 61.7917 54.1377 22.3553 18.4622 16.5705 12.3378 0.3505
13 params 46.6716 22.7955 21.4977 17.6729 14.3694 7.3180 1.0307

R2 6 params 0.5297 0.5402 0.6232 0.6643 0.7003 0.7828 0.9997
13 params 0.5711 0.6528 0.6594 0.7131 0.7297 0.8961 0.9976

NASH
6 params −7.6522 −5.7187 −0.1437 0.2195 0.3714 0.6520 0.9997
13 params −3.6343 −0.1890 −0.0562 0.2852 0.5276 0.8774 0.9976

BIAS
6 params −8.9402 −8.8389 −3.4629 −3.4605 −1.3888 −0.3119 0.0008
13 params −14.7187 −5.0456 −4.0346 −1.9865 −1.1869 −0.4691 −0.0017

The analysis for the fragility curve is carried out for the 13-floor building based on
the IO, LS, and CP levels with the exact data and the estimated data, as performed in the
model for the six-floor building. Figure 7 represents the curves for the different levels and
different data sampling sizes, including 100 and 400. The curves appear to be the S-curve,
and the model with the IO level seems to produce the best performance, compared to
the LS and CP levels. The values of the fragility curve function using the IO level with
100 sampling size have the exact data of −0.9051 and 0.9779, the six-feature data of −0.9735
and 1.1005, and the 13-feature data of −1.0502 and 1.1109 for the median and standard
deviation statistics, respectively. The values for 400 sampling size have the exact data of
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−0.9051 and 0.9779, the six-feature data of −0.9045 and 0.9774, and the 13-feature data of
−0.9062 and 0.9791 for the median and standard deviation statistics, respectively.
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Based on the model with six features, we compare the performance of the six-floor
structure to the 13-floor structure in estimating the maximum displacement to identify
their trend and the appropriate sampling size. The results for the RMSE, R2, NASH, and
BIAS based on the two types of buildings are presented in Figure 8 for different sampling
sizes, ranging from 100 to 400. For the six-floor structure, the model performance improves
gradually with increasing sampling sizes from the four statistical indices. In estimating the
displacement of the six-floor structure, represented as the low height building, a smaller
sampling size tends to be sufficient. On the other hand, for the 13-floor structure, we can
clearly determine that the model performance largely increases from 100 to 200 sampling
size based on the RMSE, NASH, and BIAS. The value of R2 significantly increases from
250 to 350 sampling sizes. This behavior shows that the 13-floor structure, representing
a high height building, requires a large sampling size of more than 200. This result is
expected because a structure with more complexity (e.g., the 13-floor structure) has more



ISPRS Int. J. Geo-Inf. 2021, 10, 574 14 of 20

degrees of freedom, which can affect the model performance compared to a lower structure.
Table 6 shows the values of the statistical indices for the six-floor and 13-floor structures
with various sampling sizes.
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Table 6. Statistical results for six parameters and various sampling sizes based on the six-floor and
13-floor buildings.

100 150 200 250 300 350 400

RMSE
6 floors 5.4300 5.2541 3.8081 3.2979 3.2358 2.2118 0.0774

13 floors 61.7917 54.1377 22.3553 18.4622 16.5705 12.3378 0.3505

R2 6 floors 0.6881 0.7214 0.7839 0.8235 0.8325 0.9121 0.9999
13 floors 0.5297 0.5402 0.6232 0.6643 0.7003 0.7828 0.9997

NASH
6 floors 0.4389 0.4730 0.7232 0.7926 0.8017 0.9067 0.9999

13 floors −3.6343 −0.1890 −0.0562 0.2852 0.5276 0.8774 0.9976

BIAS
6 floors −1.2174 −0.8205 −0.7758 −0.6096 −0.2774 0.0073 0.0006

13 floors −8.9402 −8.8389 −3.4629 −3.4605 −1.3888 −0.3119 0.0008

5. Discussion with Regional Seismic Damage Assessment

We investigated the structural response (i.e., the maximum displacement) and then
performed a seismic vulnerability assessment at Gyeongju by applying the proposed
prediction model. The GIS analysis and estimation of structural response were performed.
There is a lack of information, such as a prediction model of other structures. However, the
proposed approach can be applied to different structural types, and the omitted information
can be easily obtained. The US building data can be used as training to conduct the seismic
analysis in Gyeongju, because it is based on the results from the simulation model.
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5.1. GIS Analysis

The regional seismic damage assessment is performed using the data set provided by
Korea National Spatial Data Infrastructure Portal (http://www.nsdi.go.kr/, accessed on 1
July 2021). Based on the GIS data derived from National Hub Open Data, we combine topo-
graphical information of geo-spatial information with GIS integrated building information.
Then, the topographical information and the integrated/combined building information
are extracted for the analysis of the target region, Gyeongju. The estimation model is
developed, in the present study, based on a steel-frame structure, and it is expected to
achieve structural responses with maximum displacement for the structures in the area.
Among various types of structures in Gyeongju, the steel-frame structure occupies 26.52%.
Other structures, such as masonry-frame, concrete-frame, and wood-frame structures,
occupy 29.64, 19.53, and 24.19%, respectively. Figure 9 shows the locations of all types of
structures in Gyeongju and the locations of the steel-frame structure used for the analysis.
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5.2. Estimation of Structural Responses

To estimate the structural response, we use the seismic information based on the
earthquake at Gyeongju in 2016. The reduction in magnitude for seismic activities is
conducted to consider the location of earthquakes and individual buildings in the study
region [47]. The reduction equations considered for the analysis follow the equations of
Noh and Lee [48], Toro et al. [49], and Jo and Baag [50]. Each equation is applied considering
the weight based on 20, 40, and 40%, respectively, to solve uncertainly problems. The entire
process for the structural response estimation is shown in Figure 10.
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0.11 with the return period of 500, and the traditional design standard for earthquake of 
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Figure 10. Process for the prediction of the structural response considering the reduction in magni-
tude for seismic activities.

Based on the presented procedure, we estimate the damages from the seismic waves
at Gyeongju with the GPR model. From the national and architectural seismic design
standard, Gyeongju characterizes the seismic district I, the seismic district coefficient of
0.11 with the return period of 500, and the traditional design standard for earthquake
of 0.147 g. The result of the maximum displacement estimation based on the traditional
standard is shown in Figure 11 for the steel-frame structures in Gyeongju. Note that there
are 32 buildings with more than six floors and 19,984 buildings with fewer than six floors
in a total number of 20,016 buildings at the study area.

The maximum PGA derived from the occurrence of the Gyeongju earthquake in 2016
is 0.404g. In this study, the maximum displacement estimated using this maximum PGA is
obtained, and the result is presented in Figure 12. From this figure, we can identify that the
displacement from the earthquake provides information on the magnitude of the damages
occurred due to natural disasters. As a result, the proposed model can be used to generate
accurate and rapid responses based on the regional seismic damage assessment utilizing the
maximum displacement estimation. In this study, we developed two estimation models,
and we applied these models to structures in Gyeongju. The results demonstrate the
effectiveness of the proposed models pertaining to vulnerability assessment, and they
can be used to developing estimated models in future studies. Additionally, the HAZUS
and other tools can be applied for vulnerability assessment after further developing the
estimation models.
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6. Conclusions

The machine learning framework for the estimation of the maximum displacement
and fragility curve is presented in this paper. The GPR model was applied to two types
of buildings, i.e., six-floor and 13-floor structures. Additionally, 13 seismic wave features
were considered to establish the model, and six features were selected from the correlation
analysis using the Pearson correlation coefficient. The six-parameter-based model and
13-parameter-based model were compared to assess the model performance in estimating
the maximum displacement. The performance was validated using the RMSE, R2, NASH,
and BIAS with 10-fold cross validation, and sensitivity analyses with various sampling
sizes of 100, 150, 200, 250, 300, 350, and 400 were performed to determine the proper
sampling number for the two structure types.

In the analysis of the models with different numbers of features, the six-parameter-
based model presented a similar performance to that of a 13-parameter-based model for
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both types of the buildings, based on the four statistical indices. The six-parameter-based
model seems to provide an acceptable performance in estimating the seismic maximum
displacement by reducing the computing cost for the development of estimation models.
In the sensitivity analysis of the six-floor building, the model performance improves
steadily with the increase in the sampling size. For the 13-floor building, the performance
significantly increases for sampling sizes greater than 200. A short building tends to require
a smaller sampling size, whereas a tall building tends to require a large sampling size. This
might be because a high height structure has more degrees of freedom, which can affect
the sampling size.

Furthermore, we examined the development of seismic response models to rapidly
estimate seismic damages based on the fragility curve and regional damage assessment.
The seismic fragility curve was examined based on the three performance levels, namely,
IO, LS, and CP in MIDR. We compared the fragility curves derived from the actual data
and estimated data and verified the accuracy of the estimated curve. Regional seismic
damage assessment was also investigated by determining the structural response with
the maximum displacement. The GPR model based on seismic information on Gyeongju
earthquake estimated the maximum displacement considering the maximum PGA of 0.404g.
The result apparently indicates that the estimation of structural response can establish
advanced seismic models with the displacement estimation and can assist in political
decisions by providing robust and prompt responses from seismic activities. The maximum
structural displacement, playing an important role in seismic risk assessment, can be
quickly and accurately estimated using the proposed models based on seismic activities and
then easily applied for constructing fragility curves by providing a probabilistic damage
information and regional seismic damage prediction. Potentially, the estimated structural
damage information can be helpful for decision-makers, city planners, etc. Future work
should focus on various structural types by applying for the GPR or other techniques to
obtain an accurate estimation of the maximum seismic displacement.
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