Spatially Varying Effects of Street Greenery on Walking Time of Older Adults
Abstract
:1. Introduction
2. Literature Review
3. Data
3.1. Travel Data
3.2. Street Greenery Data
3.3. Built Environment Data
4. Methods
4.1. Global Models
4.2. Geographically Weighted Regression (GWR) Models
4.3. Variables
5. Results
5.1. Global Results
5.2. GWR Results
6. Discussion
6.1. Implications for Research
6.2. Implications for Practice
6.3. Research limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Model 4 | Model 5 | Model 6 |
---|---|---|---|
Coef. | Coef. | Coef. | |
Street greenery (400 m) | 0.023 *** | ||
Street greenery (800 m) | 0.017 *** | ||
Street greenery (1600 m) | 0.014 *** | ||
Performance statistic | |||
Log-likelihood | −3584.56 | −3595.46 | −3595.45 |
AIC | 7173.13 | 7192.92 | 7192.90 |
References
- Harper, S. Economic and social implications of aging societies. Science 2014, 346, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Lee, W.M.; Lu, W. Implementing on-site construction waste recycling in Hong Kong: Barriers and facilitators. Sci. Total Environ. 2020, 747, 141091. [Google Scholar] [CrossRef]
- Census and Statistics Department. Hong Kong Population Projections 2020–2069; Hong Kong SAR Government: Hong Kong, 2020.
- Smarzaro, R.; Davis, C.A.; Quintanilha, J.A. Creation of a multimodal urban transportation network through spatial data integration from authoritative and crowdsourced data. ISPRS Int. J. Geo-Inf. 2021, 10, 470. [Google Scholar] [CrossRef]
- Alsnih, R.; Hensher, D.A. The mobility and accessibility expectations of seniors in an aging population. Transp. Res. Part A Policy Pract. 2003, 37, 903–916. [Google Scholar] [CrossRef]
- Su, F.; Bell, M.G. Transport for older people: Characteristics and solutions. Res. Transp. Econ. 2009, 25, 46–55. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, X.; Yang, S.; Cao, Z.; De Vos, J.; Witlox, F. Active travel for active ageing in China: The role of built environment. J. Transp. Geogr. 2019, 76, 142–152. [Google Scholar] [CrossRef]
- Heath, G.W.; Parra, D.C.; Sarmiento, O.L.; Andersen, L.B.; Owen, N.; Goenka, S.; Montes, F.; Brownson, R.C.; Lancet Physical Activity Series Working Group. Evidence-based intervention in physical activity: Lessons from around the world. Lancet 2012, 380, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Bauman, A.E.; Reis, R.S.; Sallis, J.F.; Wells, J.C.; Loos, R.J.; Martin, B.W.; Group, L.P.A.S.W. Correlates of physical activity: Why are some people physically active and others not? Lancet 2012, 380, 258–271. [Google Scholar] [CrossRef]
- Yang, H.; Liang, Y.; Yang, L. Equitable? Exploring ridesourcing waiting time and its determinants. Transp. Res. Part D Transp. Environ. 2021, 93, 102774. [Google Scholar] [CrossRef]
- Li, W.; Zhu, J.; Fu, L.; Zhu, Q.; Guo, Y.; Gong, Y. A rapid 3D reproduction system of dam-break floods constrained by post-disaster information. Environ. Model. Softw. 2021, 139, 104994. [Google Scholar] [CrossRef]
- Li, W.; Zhu, J.; Fu, L.; Zhu, Q.; Xie, Y.; Hu, Y. An augmented representation method of debris flow scenes to improve public perception. Int. J. Geogr. Inf. Sci. 2021, 35, 1521–1544. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Wright, G.; Cheng, J.C.; Li, X.; Liu, R. A state-of-the-art review on the integration of Building Information Modeling (BIM) and Geographic Information System (GIS). ISPRS Int. J. Geo-Inf. 2017, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Zhang, F.; Gao, S.; Lin, H.; Liu, Y. A review of urban physical environment sensing using street view imagery in public health studies. Ann. GIS 2020, 26, 261–275. [Google Scholar] [CrossRef]
- Xue, F.; Li, X.; Lu, W.; Webster, C.J.; Chen, Z.; Lin, L. Big Data-Driven Pedestrian Analytics: Unsupervised Clustering and Relational Query Based on Tencent Street View Photographs. ISPRS Int. J. Geo-Inf. 2021, 10, 561. [Google Scholar] [CrossRef]
- Cheng, L.; Shi, K.; De Vos, J.; Cao, M.; Witlox, F. Examining the spatially heterogeneous effects of the built environment on walking among older adults. Transp. Policy 2020, 100, 21–30. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Y.; Zhong, L.; Zhang, X.; Ling, Z. Exploring spatial variation of bike sharing trip production and attraction: A study based on Chicago’s Divvy system. Appl. Geogr. 2020, 115, 102130. [Google Scholar] [CrossRef]
- Cerin, E.; Nathan, A.; Van Cauwenberg, J.; Barnett, D.W.; Barnett, A. The neighbourhood physical environment and active travel in older adults: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 15. [Google Scholar] [CrossRef] [Green Version]
- Van Cauwenberg, J.; De Bourdeaudhuij, I.; De Meester, F.; Van Dyck, D.; Salmon, J.; Clarys, P.; Deforche, B. Relationship between the physical environment and physical activity in older adults: A systematic review. Health Place 2011, 17, 458–469. [Google Scholar] [CrossRef]
- Yang, Y.; He, D.; Gou, Z.; Wang, R.; Liu, Y.; Lu, Y. Association between street greenery and walking behavior in older adults in Hong Kong. Sustain. Cities Soc. 2019, 51, 101747. [Google Scholar] [CrossRef]
- Procter-Gray, E.; Leveille, S.G.; Hannan, M.T.; Cheng, J.; Kane, K.; Li, W. Variations in community prevalence and determinants of recreational and utilitarian walking in older age. J. Aging Res. 2015, 2015, 382703. [Google Scholar] [CrossRef] [Green Version]
- Chudyk, A.M.; McKay, H.A.; Winters, M.; Sims-Gould, J.; Ashe, M.C. Neighborhood walkability, physical activity, and walking for transportation: A cross-sectional study of older adults living on low income. BMC Geriatr. 2017, 17, 82. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.M.; Chung, P.-K.; Wang, D.; Liu, J.D. Impact of physical and social environments on the walking behaviour of Hong Kong’s older adults. J. Transp. Health 2018, 9, 299–308. [Google Scholar] [CrossRef]
- Liu, J.; Wang, B.; Xiao, L. Non-linear associations between built environment and active travel for working and shopping: An extreme gradient boosting approach. J. Transp. Geogr. 2021, 92, 103034. [Google Scholar] [CrossRef]
- Shigematsu, R.; Sallis, J.F.; Conway, T.L.; Saelens, B.E.; Frank, L.D.; Cain, K.L.; Chapman, J.E.; King, A.C. Age differences in the relation of perceived neighborhood environment to walking. Med. Sci. Sports Exerc. 2009, 41, 314. [Google Scholar] [CrossRef]
- Yang, L.; Ao, Y.; Ke, J.; Lu, Y.; Liang, Y. To walk or not to walk? Examining non-linear effects of streetscape greenery on walking propensity of older adults. J. Transp. Geogr. 2021, 94, 103099. [Google Scholar] [CrossRef]
- Zang, P.; Liu, X.; Zhao, Y.; Guo, H.; Lu, Y.; Xue, C.Q. Eye-level street greenery and walking behaviors of older adults. Int. J. Environ. Res. Public Health 2020, 17, 6130. [Google Scholar] [CrossRef] [PubMed]
- Zang, P.; Lu, Y.; Ma, J.; Xie, B.; Wang, R.; Liu, Y. Disentangling residential self-selection from impacts of built environment characteristics on travel behaviors for older adults. Soc. Sci. Med. 2019, 238, 112515. [Google Scholar] [CrossRef]
- Handy, S.; Cao, X.; Mokhtarian, P.L. Self-selection in the relationship between the built environment and walking: Empirical evidence from Northern California. J. Am. Plan. Assoc. 2006, 72, 55–74. [Google Scholar] [CrossRef]
- Larrañaga, A.M.; Rizzi, L.I.; Arellana, J.; Strambi, O.; Cybis, H.B.B. The influence of built environment and travel attitudes on walking: A case study of Porto Alegre, Brazil. Int. J. Sustain. Transp. 2016, 10, 332–342. [Google Scholar] [CrossRef]
- Cheng, L.; De Vos, J.; Shi, K.; Yang, M.; Chen, X.; Witlox, F. Do residential location effects on travel behavior differ between the elderly and younger adults? Transp. Res. Part D Transp. Environ. 2019, 73, 367–380. [Google Scholar] [CrossRef]
- Biljecki, F.; Ito, K. Street view imagery in urban analytics and GIS: A review. Landsc. Urban Plan. 2021, 215, 104217. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the built environment: A meta-analysis. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Osborne, J. Improving your data transformations: Applying the Box-Cox transformation. Pract. Assess. Res. Eval. 2010, 15, 12. [Google Scholar]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Chichester, UK, 2002. [Google Scholar]
- Tang, J.; Gao, F.; Han, C.; Cen, X.; Li, Z. Uncovering the spatially heterogeneous effects of shared mobility on public transit and taxi. J. Transp. Geogr. 2021, 95, 103134. [Google Scholar] [CrossRef]
- Xuan, W.; Zhang, F.; Zhou, H.; Du, Z.; Liu, R. Improving geographically weighted regression considering directional nonstationary for ground-Level PM2.5 estimation. ISPRS Int. J. Geo-Inf. 2021, 10, 413. [Google Scholar] [CrossRef]
- Zhao, R.; Zhan, L.; Yao, M.; Yang, L. A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2.5. Sustain. Cities Soc. 2020, 56, 102106. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Xu, P.; Huang, H. Modeling crash spatial heterogeneity: Random parameter versus geographically weighting. Accid. Anal. Prev. 2015, 75, 16–25. [Google Scholar] [CrossRef]
- Pan, R.; Yang, H.; Xie, K.; Wen, Y. Exploring the equity of traditional and ride-hailing taxi services during peak hours. Transp. Res. Rec. 2020, 2674, 266–278. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.; Lu, Y.; Ao, Y.; Guo, Y.; Huang, W.; Zhao, R.; Wang, R. Global and local associations between urban greenery and travel propensity of older adults in Hong Kong. Sustain. Cities Soc. 2020, 63, 102442. [Google Scholar] [CrossRef]
- Liu, J.; Shi, W. A cross-boundary travel tale: Unraveling Hong Kong residents’ mobility pattern in Shenzhen by using metro smart card data. Appl. Geogr. 2021, 130, 102416. [Google Scholar] [CrossRef]
- Feng, J.; Dijst, M.; Wissink, B.; Prillwitz, J. The impacts of household structure on the travel behaviour of seniors and young parents in China. J. Transp. Geogr. 2013, 30, 117–126. [Google Scholar] [CrossRef]
- Saelens, B.E.; Sallis, J.F.; Frank, L.D. Environmental correlates of walking and cycling: Findings from the transportation, urban design, and planning literatures. Ann. Behav. Med. 2003, 25, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Cerin, E.; Lee, K.-Y.; Barnett, A.; Sit, C.H.; Cheung, M.-C.; Chan, W.-M. Objectively-measured neighborhood environments and leisure-time physical activity in Chinese urban elders. Prev. Med. 2013, 56, 86–89. [Google Scholar] [CrossRef]
- James, P.; Banay, R.F.; Hart, J.E.; Laden, F. A review of the health benefits of greenness. Curr. Epidemiol. Rep. 2015, 2, 131–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, C.; Bryan-Kinns, N.; Yang, S.; Zhi, J.; Zhang, J. The influence of mobile phone location and screen orientation on driving safety and the usability of car-sharing software in-car use. Int. J. Ind. Ergon. 2021, 84, 103168. [Google Scholar] [CrossRef]
- Bao, Z.; Lu, W.; Hao, J. Tackling the “last mile” problem in renovation waste management: A case study in China. Sci. Total Environ. 2021, 790, 148261. [Google Scholar] [CrossRef]
- Wang, H.; Huang, J.; Li, Y.; Yan, X.; Xu, W.A. Evaluating and mapping the walking accessibility, bus availability and car dependence in urban space: A case study of Xiamen, China. Acta Geogr. Sin. 2013, 68, 477–490. [Google Scholar]
- Feng, J. The influence of built environment on travel behavior of the elderly in urban China. Transp. Res. Part D Transp. Environ. 2017, 52, 619–633. [Google Scholar] [CrossRef]
- Cheng, L.; Caset, F.; De Vos, J.; Derudder, B.; Witlox, F. Investigating walking accessibility to recreational amenities for elderly people in Nanjing, China. Transp. Res. Part D Transp. Environ. 2019, 76, 85–99. [Google Scholar] [CrossRef]
- Handy, S.L.; Niemeier, D.A. Measuring accessibility: An exploration of issues and alternatives. Environ. Plan. A 1997, 29, 1175–1194. [Google Scholar] [CrossRef]
Variable | Category | Description | Mean/Percentage | Std. Dev. |
---|---|---|---|---|
Socioeconomic characteristics | ||||
Family size | Number of persons in the family. Discrete variable. | 2.83 | 1.44 | |
Male | Dummy variable. = 1 for male, = 0 for female | 0.47 | ||
Age | Unit: year. Discrete variable. | 74.24 | 7.00 | |
Family income | Total monthly family income (including all incomes and Mandatory Provident Fund contributions). Ordinal variable ranging from 1 (<HK $4000/month) to 19 (≥HK $150,000/month) | 6.18 | 4.49 | |
Built environment | ||||
Population density | Density | Neighborhood-level population density. Continuous variable (unit: 104 people/km2) | 5.08 | 3.33 |
Land use mix | Diversity | Neighborhood-level land use entropy. Continuous variable ranging from 0 to 1 (no units). Three types of land use, including residential, office, and retail, are considered. | 0.54 | 0.27 |
Intersection density | Design | Neighborhood-level street intersection density. Continuous variable (unit: 1/km2) | 63.82 | 28.85 |
Access to the metro | Distance to transit | Number of metro stations within 400 m. Discrete variable. | 0.36 | 0.49 |
Access to recreational facilities | Destination accessibility | Number of recreational facilities within 400 m. Discrete variable. | 60.99 | 28.75 |
Street greenery (400 m) | Design | Green view index within 400 m. Continuous variable ranging from 0 to 1 (no units) | 0.15 | 0.05 |
Street greenery (800 m) | Design | Green view index within 800 m. Continuous variable ranging from 0 to 1 (no units) | 0.15 | 0.04 |
Street greenery (1600 m) | Design | Green view index within 1600 m. Continuous variable ranging from 0 to 1 (no units) | 0.15 | 0.04 |
Sample size | 1083 |
Variable | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
Coef. | t-stat. | Coef. | t-stat. | Coef. | t-stat. | |
Family size | −0.827 * | −1.70 | −0.813 * | −1.67 | −0.806 * | −1.65 |
Male | −0.504 | −0.49 | −0.386 | −0.37 | −0.370 | −0.36 |
Age | −0.180 ** | −2.42 | −0.185 ** | −2.50 | −0.185 ** | −2.49 |
Family income | −0.222 | −1.42 | −0.239 | −1.53 | −0.241 | −1.54 |
Population density | 0.322 | 1.44 | 0.373 * | 1.66 | 0.346 | 1.54 |
Land use mix | 4.162 | 1.27 | 4.294 | 1.31 | 3.639 | 1.11 |
Intersection density | −0.043 | −0.24 | −0.023 | −0.12 | −0.056 | −0.30 |
Access to the metro | −0.908 | −0.81 | −0.970 | −0.87 | −1.098 | −0.98 |
Access to recreational facilities | 0.266 *** | 4.19 | 0.293 *** | 4.58 | 0.287 *** | 4.49 |
Street greenery (400 m) | 32.949 ** | 2.48 | ||||
Street greenery (800 m) | 46.642 *** | 2.79 | ||||
Street greenery (1600 m) | 37.851 ** | 2.11 | ||||
Constant | 22.082 *** | 3.41 | 19.406 *** | 2.87 | 21.363 *** | 3.13 |
Performance statistic | ||||||
Log-likelihood | −4592.63 | −4591.80 | −4593.48 | |||
AIC | 9207.25 | 9205.61 | 9208.97 | |||
AICc | 9209.54 | 9207.90 | 9211.26 |
Variable | Coef. | ||||
---|---|---|---|---|---|
Mean | Std. Dev. | Min | Median | Max | |
GWR model 1 | |||||
Family size | −0.96 | 0.26 | −1.64 | −1.04 | −0.00 |
Male | −0.27 | 0.45 | −2.10 | −0.24 | 0.49 |
Age | −0.21 | 0.04 | −0.28 | −0.22 | 0.11 |
Family income | −0.17 | 0.08 | −0.43 | −0.16 | 0.13 |
Population density | 0.27 | 0.42 | −0.33 | 0.13 | 1.31 |
Land use mix | 3.38 | 3.18 | −2.19 | 2.79 | 9.85 |
Intersection density | −0.01 | 0.11 | −0.42 | 0.01 | 0.40 |
Access to the metro | −1.07 | 0.68 | −4.08 | −0.90 | 0.26 |
Access to recreational facilities | 0.23 | 0.03 | 0.17 | 0.22 | 0.35 |
Street greenery (400 m) | 21.10 | 23.42 | −52.83 | 21.84 | 75.38 |
Constant | 27.14 | 6.07 | 13.03 | 28.19 | 39.86 |
Performance statistic | |||||
Log-likelihood | −4570.43 | ||||
AIC | 9198.06 | ||||
AICc | 9199.67 | ||||
GWR model 2 | |||||
Family size | −0.96 | 0.27 | −1.70 | −1.04 | 0.03 |
Male | −0.19 | 0.40 | −2.28 | −0.16 | 0.53 |
Age | −0.21 | 0.04 | −0.30 | −0.22 | 0.14 |
Family income | −0.18 | 0.08 | −0.43 | −0.16 | 0.08 |
Population density | 0.29 | 0.46 | −0.31 | 0.13 | 1.46 |
Land use mix | 3.42 | 3.41 | −1.88 | 2.53 | 10.56 |
Intersection density | 0.02 | 0.11 | −0.45 | 0.03 | 0.45 |
Access to the metro | −1.14 | 0.68 | −3.79 | −1.06 | 1.11 |
Access to recreational facilities | 0.24 | 0.05 | 0.17 | 0.22 | 0.41 |
Street greenery (800 m) | 30.23 | 30.16 | −43.46 | 29.81 | 95.69 |
Constant | 25.56 | 7.12 | 2.25 | 26.98 | 38.26 |
Performance statistic | |||||
Log-likelihood | −4568.26 | ||||
AIC | 9195.47 | ||||
AICc | 9197.18 | ||||
GWR model 3 | |||||
Family size | −0.94 | 0.26 | −1.46 | −1.02 | 0.03 |
Male | −0.20 | 0.38 | −2.05 | −0.19 | 0.52 |
Age | −0.21 | 0.04 | −0.29 | −0.21 | 0.11 |
Family income | −0.18 | 0.08 | −0.41 | −0.16 | 0.03 |
Population density | 0.26 | 0.46 | −0.33 | 0.10 | 1.48 |
Land use mix | 3.07 | 3.14 | −1.11 | 2.01 | 9.81 |
Intersection density | −0.04 | 0.11 | −0.34 | −0.04 | 0.45 |
Access to the metro | −1.27 | 0.78 | −4.38 | −1.15 | 1.11 |
Access to recreational facilities | 0.24 | 0.05 | 0.18 | 0.22 | 0.36 |
Street greenery (1600 m) | 12.18 | 33.87 | −63.36 | 17.27 | 85.90 |
Constant | 28.73 | 8.38 | 4.05 | 31.10 | 40.95 |
Performance statistic | |||||
Log-likelihood | −4570.83 | ||||
AIC | 9199.12 | ||||
AICc | 9200.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Liu, J.; Liang, Y.; Lu, Y.; Yang, H. Spatially Varying Effects of Street Greenery on Walking Time of Older Adults. ISPRS Int. J. Geo-Inf. 2021, 10, 596. https://doi.org/10.3390/ijgi10090596
Yang L, Liu J, Liang Y, Lu Y, Yang H. Spatially Varying Effects of Street Greenery on Walking Time of Older Adults. ISPRS International Journal of Geo-Information. 2021; 10(9):596. https://doi.org/10.3390/ijgi10090596
Chicago/Turabian StyleYang, Linchuan, Jixiang Liu, Yuan Liang, Yi Lu, and Hongtai Yang. 2021. "Spatially Varying Effects of Street Greenery on Walking Time of Older Adults" ISPRS International Journal of Geo-Information 10, no. 9: 596. https://doi.org/10.3390/ijgi10090596
APA StyleYang, L., Liu, J., Liang, Y., Lu, Y., & Yang, H. (2021). Spatially Varying Effects of Street Greenery on Walking Time of Older Adults. ISPRS International Journal of Geo-Information, 10(9), 596. https://doi.org/10.3390/ijgi10090596