Considerations for Developing Predictive Spatial Models of Crime and New Methods for Measuring Their Accuracy
Abstract
:1. Introduction
2. Predictive Crime Models and Measures—A Review
2.1. A Brief Review of Crime Prediction Models
2.2. Measures for Comparing Crime Models
3. A New Measure for Crime Models—Penalized Predictive Accuracy Index (PPAI)
- As goes to 0, PPAI will converge to the hit rate,
- As goes to 1, PPAI will converge to PAI,
- Hit rate < PPAI < PAI, when .
4. Using Expected Utility to Combine Multiple Measures
4.1. Cost Matrix Approach
4.2. Replacing Probabilities with Weights
4.3. Using Ranks
5. Additional Considerations When Choosing and Comparing Models
5.1. Technical Considerations
5.2. Other Considerations
6. Discussion and Summary
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, Y.; SooHyun, O.; Eck, J.E. A Theory-driven algorithm for real-time crime hot spot forecasting. Police Q. 2020, 23, 174–201. [Google Scholar] [CrossRef]
- Santos, R.B. Predictive Policing: Where is the Evidence? In Police Innovation: Contrasting Perspectives; Cambridge University Press: Cambridge, UK, 2019; p. 366. [Google Scholar]
- Ratcliffe, J.H. Predictive Policing. In Police Innovation; Wesiburd, D., Braga, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Chainey, S.; Tompson, L.; Uhlig, S. The utility of hotspot mapping for predicting spatial patterns of crime. Secur. J. 2008, 21, 4–28. [Google Scholar] [CrossRef]
- Chainey, S.P. Examining the influence of cell size and bandwidth size on kernel density estimation crime hotspot maps for predicting spatial patterns of crime. Bull. Geogr. Soc. Liege 2013, 60, 7–19. [Google Scholar]
- Rummens, A.; Hardyns, W.; Pauwels, L. The use of predictive analysis in spatiotemporal crime forecasting: Building and testing a model in an urban context. Appl. Geogr. 2017, 86, 255–261. [Google Scholar] [CrossRef]
- Lee, Y.; Eck, J.E.; SooHyun, O.; Martinez, N.N. A Theory-driven algorithm for real-time crime hot spot forecasting. Crime Sci. 2017, 6, 23. [Google Scholar] [CrossRef]
- Braga, A.A.; Turchan, B.; Papachristos, A.V.; Hureau, D.M. Hot spots policing of small geographic areas effects on crime. Campbell Syst. Rev. 2019, 15, e1046. [Google Scholar] [CrossRef] [Green Version]
- Kounadi, O.; Ristea, A.; Araujo, A.; Leitner, M. A systematic review on spatial crime forecasting. Crime Sci. 2020, 9, 1–22. [Google Scholar] [CrossRef]
- Adams-Fuller, T. Historical hOmicide Hot Spots: The Case of Three Cities. Ph.D. Thesis, Howard University, Washington, DC, USA, 2001. [Google Scholar]
- Cantor, D.; Land, K.C. Unemployment and crime rates in the post-World War II United States: A theoretical and empirical analysis. Am. Sociol. Rev. 1985, 50, 317–332. [Google Scholar] [CrossRef]
- Corman, H.; Mocan, H.N. A time-series analysis of crime, deterrence, and drug abuse in New York City. Am. Econ. Rev. 2000, 90, 584–604. [Google Scholar] [CrossRef]
- Sridharan, S.; Vujic, S.; Koopman, S.J. Intervention Time Series Analysis of Crime Rates; Technical Report, Tinbergen Institute Discussion Paper; TI2003-040/4; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Greenberg, D. Time series analysis of crime rates. J. Quant. Criminol. 2001, 17, 291–328. [Google Scholar] [CrossRef]
- Caplan, J.M.; Kennedy, L.W.; Miller, J. Risk terrain modeling: Brokering criminological theory and GIS methods for crime forecasting. Justice Q. 2011, 28, 360–381. [Google Scholar] [CrossRef]
- Johnson, S.D.; Birks, D.J.; McLaughlin, L.; Bowers, K.J.; Pease, K. Prospective crime mapping in operational context: Final report. In Home Office; Great Britain Home Office Research Development and Statistics: London, UK, 2007. [Google Scholar]
- Spelman, W. The severity of intermediate sanctions. J. Res. Crime Delinq. 1995, 32, 107–135. [Google Scholar] [CrossRef]
- Gorr, W.; Olligschlaeger, A.; Thompson, Y. Assessment of crime forecasting accuracy for deployment of police. Int. J. Forecast. 2000, 743–754. [Google Scholar] [CrossRef]
- Gorr, W.; Olligschlaeger, A. Crime Hot Spot Forecasting: Modeling and Comparative Evaluation, Final Project Report; US Department of Justice: Washington, DC, USA, 2001. [Google Scholar]
- Groff, E.R.; La Vigne, N.G. Forecasting the future of predictive crime mapping. Crime Prev. Stud. 2002, 13, 29–58. [Google Scholar]
- Mohler, G.O.; Short, M.B.; Brantingham, P.J.; Schoenberg, F.P.; Tita, G.E. Self-exciting point process modeling of crime. J. Am. Stat. Assoc. 2011, 106, 100–108. [Google Scholar] [CrossRef]
- Johnson, S.D.; Bowers, K.J.; Birks, D.J.; Pease, K. Predictive mapping of crime by ProMap: Accuracy, units of analysis, and the environmental backcloth. In Putting Crime in Its Place; Springer: New York, NY, USA, 2009; pp. 171–198. [Google Scholar]
- Marchment, Z.; Gill, P. Systematic review and meta-analysis of risk terrain modelling (RTM) as a spatial forecasting method. Crime Sci. 2021, 10, 12. [Google Scholar] [CrossRef]
- Wheeler, A.P.; Steenbeek, W. Mapping the risk terrain for crime using machine learning. J. Quant. Criminol. 2021, 37, 445–480. [Google Scholar] [CrossRef] [Green Version]
- Ratcliffe, J.H.; Taylor, R.B.; Perenzin, A. Predictive Modeling Combining Short and Long-Term Crime Risk Potential (Final Report); U.S. Department of Justice: Washington, DC, USA, 2016. [Google Scholar]
- Dobson, A.J.; Barnett, A.G. An Introduction to Generalized Linear Models, 3rd ed.; Chapman and Hall/CRC: London, UK, 2008. [Google Scholar]
- Shmueli, G. To explain or to predict? Stat. Sci. 2010, 25, 289–310. [Google Scholar] [CrossRef]
- Chun, S.A.; Avinash Paturu, V.; Yuan, S.; Pathak, R.; Atluri, V.; Adam, N.R. Crime prediction model using deep neural networks. In Proceedings of the 20th Annual International Conference on Digital Government Research, Dubai, United Arab Emirates, 18–20 June 2019; pp. 512–514.
- Tumulak, J.A.U.; Espinosa, K.J.P. Crime modelling and prediction using neural networks. In Theory and Practice of Computation: Proceedings of Workshop on Computation: Theory and Practice WCTP2015; World Scientific: Singapore, 2017; pp. 218–228. [Google Scholar]
- Wang, B.; Zhang, D.; Zhang, D.; Brantingham, P.J.; Bertozzi, A.L. Deep learning for real time crime forecasting. In International Symposium on Nonlinear Theory and Its Applications, NOLTA; Cornell University: Ithaca, NY, USA, 2017. [Google Scholar]
- Perry, W.L. Predictive Policing: The Role of Crime Forecasting in Law Enforcement Operations; Rand Corporation: Santa Monica, CA, USA, 2013. [Google Scholar]
- Uchida, C.D. Predictive policing. In Encyclopedia of Criminology and Criminal Justice; Springer: Berlin, Germany, 2014; pp. 3871–3880. [Google Scholar]
- Bennett Moses, L.; Chan, J. Algorithmic prediction in policing: Assumptions, evaluation, and accountability. Polic. Soc. 2018, 28, 806–822. [Google Scholar] [CrossRef]
- Meijer, A.; Wessels, M. Predictive policing: Review of benefits and drawbacks. Int. J. Public Adm. 2019, 42, 1031–1039. [Google Scholar] [CrossRef] [Green Version]
- Ratcliffe, J.H.; Taylor, R.B.; Askey, A.P.; Thomas, K.; Grasso, J.; Bethel, K.J.; Fisher, R.; Koehnlein, J. The Philadelphia predictive policing experiment. J. Exp. Criminol. 2020, 17, 1–27. [Google Scholar] [CrossRef]
- Adepeju, M.; Rosser, G.; Cheng, T. Novel evaluation metrics for sparse spatio-temporal point process hotspot predictions-a crime case study. Int. J. Geogr. Inf. Sci. 2016, 30, 2133–2154. [Google Scholar] [CrossRef]
- Good, I. Rational Decisions. J. R. Stat. Soc. Ser. B 1952, 14, 107–114. [Google Scholar] [CrossRef]
- Gneiting, T.; Raftery, A.E. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 2007, 102, 359–378. [Google Scholar] [CrossRef]
- Zhou, Z.; Matteson, D.S. Predicting ambulance demand: A spatio-temporal kernel approach. In Proceedings of the 21th ACM SIGKDD International Conference On Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015; pp. 2297–2303. [Google Scholar]
- Bowers, K.J.; Johnson, S.D.; Pease, K. Prospective hot-spotting: The future of crime mapping? Br. J. Criminol. 2004, 44, 641–658. [Google Scholar] [CrossRef]
- Hart, T.C.; Zandbergen, P.A. Effects of Data Quality on Predictive Hotspot Mapping; National Criminal Justice Reference Service: Washington, DC, USA, 2012. [Google Scholar]
- Kennedy, L.W.; Caplan, J.M.; Piza, E. Risk clusters, hotspots, and spatial intelligence: Risk terrain modeling as an algorithm for police resource allocation strategies. J. Quant. Criminol. 2011, 27, 339–362. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Gong, J.; Li, S. Exploring spatiotemporal clusters based on extended kernel estimation methods. Int. J. Geogr. Inf. Sci. 2017, 31, 1154–1177. [Google Scholar]
- Brown, C.D.; Davis, H.T. Receiver operating characteristics curves and related decision measures: A tutorial. Chemom. Intell. Lab. Syst. 2006, 80, 24–38. [Google Scholar] [CrossRef]
- Araújo, A.; Cacho, N.; Bezerra, L.; Vieira, C.; Borges, J. Towards a crime hotspot detection framework for patrol planning. In Proceedings of the 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018; pp. 1256–1263. [Google Scholar]
- Malik, A.; Maciejewski, R.; Towers, S.; McCullough, S.; Ebert, D.S. Proactive spatiotemporal resource allocation and predictive visual analytics for community policing and law enforcement. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Ding, W.; Morabito, M.; Tao, D. Empirical discriminative tensor analysis for crime forecasting. In Proceedings of the International Conference on Knowledge Science, Engineering and Management; Springer: Berlin/Heidelberg, Germany, 2011; pp. 293–304. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Drawve, G. A metric comparison of predictive hot spot techniques and RTM. Justice Q. 2016, 33, 369–397. [Google Scholar] [CrossRef]
- Harrell, K. The Predictive Accuracy of Hotspot Mapping of Robbery Over Time And Space. Ph.D. Thesis, University of Salford, Manchester, UK, 2014. [Google Scholar]
- Hart, T.; Zandbergen, P. Kernel density estimation and hotspot mapping. Polic. Int. J. Police Strateg. Manag. 2014, 37, 305–323. [Google Scholar] [CrossRef]
- Levine, N. The “Hottest” part of a hotspot: Comments on “The utility of hotspot mapping for predicting spatial patterns of crime”. Secur. J. 2008, 21, 295–302. [Google Scholar] [CrossRef]
- Van Patten, I.T.; McKeldin-Coner, J.; Cox, D. A microspatial analysis of robbery: Prospective hot spotting in a small city. Crime Mapp. A J. Res. Pract. 2009, 1, 7–32. [Google Scholar]
- Turner, M.G. Landscape ecology: The effect of pattern on process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Levine, N. Chapter 5: Distance Analysis I and II. In CrimeStat IV: A Spatial Statistics Program for the Analysis of Crime Incident Locations, Version 4; U.S. Department of Justice: Washington, DC, USA, 2013; Volume 4. [Google Scholar]
- Drawve, G.; Moak, S.C.; Berthelot, E.R. Predictability of gun crimes: A comparison of hot spot and risk terrain modelling techniques. Polic. Soc. 2016, 26, 312–331. [Google Scholar] [CrossRef]
- Caplan, J.M.; Kennedy, L.W.; Piza, E.L. Joint utility of event-dependent and environmental crime analysis techniques for violent crime forecasting. Crime Delinq. 2013, 59, 243–270. [Google Scholar] [CrossRef] [Green Version]
- Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 1947. [Google Scholar]
- Barber, D. Bayesian Reasoning and Machine Learning; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Peterson, M. An Introduction to Decision Theory; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Robert, C.P. Bayesian Point Estimation. In The Bayesian Choice, 2nd ed.; Springer: New York, NY, USA, 2007; pp. 165–221. [Google Scholar]
- Lomax, S.; Vadera, S. A Cost-Sensitive Decision Tree Learning Algorithm Based on a Multi-Armed Bandit Framework. Comput. J. 2016, 60, 941–956. [Google Scholar] [CrossRef] [Green Version]
- Gil, C.; Rios Insua, D.; Rios, J. Adversarial risk analysis for urban security resource allocation. Risk Anal. 2016, 36, 727–741. [Google Scholar] [CrossRef] [PubMed]
- Joshi, C.; Aliaga, J.R.; Insua, D.R. Insider threat modeling: An adversarial risk analysis approach. IEEE Trans. Inf. Forensics Secur. 2020, 16, 1131–1142. [Google Scholar] [CrossRef]
- Rios Insua, D.; Ríos, J.; Banks, D. Adversarial risk analysis. J. Am. Stat. Assoc. 2009, 104, 841–854. [Google Scholar] [CrossRef]
- Rios, J.; Insua, D.R. Adversarial risk analysis for counterterrorism modeling. Risk Anal. Int. J. 2012, 32, 894–915. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, A.G. Predictive Policing Theory in the Cambridge Handbook of Policing in the United States; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Richardson, R.; Schultz, J.M.; Crawford, K. Dirty data, bad predictions: How civil rights violations impact police data, predictive policing systems, and justice. NYUL Rev. Online 2019, 94, 15. [Google Scholar]
- Philips, P.J.; Pohl, G. Algorithms, human decision-making and predictive policing. SN Soc. Sci. 2021, 1, 1–21. [Google Scholar] [CrossRef]
Hotspot | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.03 | |
0.1 | 0.09 | 0.08 | 0.07 | 0.06 | 0.06 | 0.05 | 0.05 | |
Hotspot | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Total |
0.03 | 0.03 | 0.04 | 0.04 | 0.05 | 0.05 | 0.05 | 0.42 | |
0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 | 0.83 |
Models | Hotspots Identified | PAI | ||
---|---|---|---|---|
M-I | 1, 2, 3 | 0.03 | 0.27 | 9.00 |
M-II | 1, | 0.01 | 0.10 | 10.00 |
M-III | 1, 5, 10, 15 | 0.11 | 0.23 | 2.09 |
M-IV | 13, 14, 15 | 0.15 | 0.10 | 0.67 |
Hotspot | Cumulative | Cumulative | PAI | PPAI () | ||
---|---|---|---|---|---|---|
1 | 0.01 | 0.1 | 0.01 | 0.1 | 10.00 | 6.31 |
2 | 0.01 | 0.09 | 0.02 | 0.19 | 9.50 | 6.42 |
3 | 0.01 | 0.08 | 0.03 | 0.27 | 9.00 | 6.34 |
4 | 0.01 | 0.07 | 0.04 | 0.34 | 8.50 | 6.16 |
5 | 0.02 | 0.06 | 0.06 | 0.4 | 6.67 | 5.03 |
6 | 0.02 | 0.06 | 0.08 | 0.46 | 5.75 | 4.47 |
7 | 0.02 | 0.05 | 0.1 | 0.51 | 5.10 | 4.05 |
8 | 0.03 | 0.05 | 0.13 | 0.56 | 4.31 | 3.51 |
9 | 0.03 | 0.05 | 0.16 | 0.61 | 3.81 | 3.17 |
10 | 0.03 | 0.04 | 0.19 | 0.65 | 3.42 | 2.90 |
11 | 0.04 | 0.04 | 0.23 | 0.69 | 3.00 | 2.59 |
12 | 0.04 | 0.04 | 0.27 | 0.73 | 2.70 | 2.37 |
13 | 0.05 | 0.04 | 0.32 | 0.77 | 2.41 | 2.15 |
14 | 0.05 | 0.03 | 0.37 | 0.8 | 2.16 | 1.96 |
15 | 0.05 | 0.03 | 0.42 | 0.83 | 1.98 | 1.81 |
Model | TP% | FP% | TN% | FN% |
---|---|---|---|---|
Model A | 85 | 15 | 30 | 70 |
Model B | 75 | 25 | 45 | 55 |
Model | Hit Rate | Precision |
---|---|---|
Model A | 0.06 | 0.85 |
Model B | 0.067 | 0.75 |
Model | PPAI Rank | ALS Rank | Weighted Aggregate Rank |
---|---|---|---|
Model M-I | 1 | 2 | 1.4 |
Model M-II | 2 | 1 | 1.6 |
Model M-III | 3 | 4 | 3.4 |
Model M-IV | 4 | 3 | 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, C.; Curtis-Ham, S.; D’Ath, C.; Searle, D. Considerations for Developing Predictive Spatial Models of Crime and New Methods for Measuring Their Accuracy. ISPRS Int. J. Geo-Inf. 2021, 10, 597. https://doi.org/10.3390/ijgi10090597
Joshi C, Curtis-Ham S, D’Ath C, Searle D. Considerations for Developing Predictive Spatial Models of Crime and New Methods for Measuring Their Accuracy. ISPRS International Journal of Geo-Information. 2021; 10(9):597. https://doi.org/10.3390/ijgi10090597
Chicago/Turabian StyleJoshi, Chaitanya, Sophie Curtis-Ham, Clayton D’Ath, and Deane Searle. 2021. "Considerations for Developing Predictive Spatial Models of Crime and New Methods for Measuring Their Accuracy" ISPRS International Journal of Geo-Information 10, no. 9: 597. https://doi.org/10.3390/ijgi10090597
APA StyleJoshi, C., Curtis-Ham, S., D’Ath, C., & Searle, D. (2021). Considerations for Developing Predictive Spatial Models of Crime and New Methods for Measuring Their Accuracy. ISPRS International Journal of Geo-Information, 10(9), 597. https://doi.org/10.3390/ijgi10090597