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Abstract: One hundred seventeen landslides occurred in Malang Regency throughout 2021, triggering
the need for practical hazard assessments to strengthen the disaster mitigation process. In terms of
providing a solution for investigating the location of landslides more precisely, this research aims to
compare machine learning algorithms to produce an accurate landslide susceptibility model. This
research applies three machine learning algorithms composed of RF (random forest), NB (naïve
Bayes), and KNN (k-nearest neighbor) and 12 conditioning factors. The conditioning factors consist
of slope, elevation, aspect, NDVI, geological type, soil type, distance from the fault, distance from
the river, river density, TWI, land cover, and annual rainfall. This research performs seven models
over three ratios between the training and testing dataset encompassing 50:50, 60:40, and 70:30 for
KNN and NB algorithms and 70:30 for the RF algorithm. This research measures the performance
of each model using eight parameters (ROC, AUC, ACC, SN, SP, BA, GM, CK, and MCC). The
results indicate that RF 70:30 generates the best performance, witnessed by the evaluation parameters
ACC (0.884), SN (0.765), GM (0.863), BA (0.857), CK (0.749), MCC (0.876), and AUC (0.943). Overall,
seven models have reasonably good accuracy, ranging between 0.806 and 0.884. Furthermore, based
on the best model, the study area is dominated by high susceptibility with an area coverage of 51%,
which occurs in the areas with high slopes. This research is expected to improve the quality of
landslide susceptibility maps in the study area as a foundation for mitigation planning. Furthermore,
it can provide recommendations for further research in splitting ratio scenarios between training and
testing data.

Keywords: landslide susceptibility; machine learning; k-nearest neighbor; naïve Bayes; random forest

1. Introduction

Landslides are the phenomena of downslope movements by soil mass and rock slopes.
Landslides occur due to the sliding of a volume above a layer of rock containing clay
after the saturation of water acts as a launcher [1]. A landslide is a natural phenomenon
controlled by geological factors, rainfall, and land use on the slopes [2]. Indonesia is a
country with a high potential for landslides. According to the data from the National Dis-
aster Management Agency of Indonesia (BNPB), throughout 2021, there were 632 incidents
reaching 20% of the total disasters in Indonesia throughout 2021.

Malang Regency is situated in East Java Province and is highly vulnerable to landslides.
The Malang Regency Regional Disaster Management Agency (BPBD) data accounted for
117 landslides in 2021, reaching 44% of the total disasters in Malang Regency throughout
2021. Geographical conditions render the Malang Regency highly vulnerable to landslides.
It is located in a highland area with various slopes, from sloping to very steep, as it is
surrounded by the Tengger Mountains, Mounts Kawi and Kelud, and Mounts Arjuna
and Welirang.
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Landslide susceptibility assessment is a fundamental action for improving the mitiga-
tion process. Periodical assessment is necessary, since landslides occur periodically, and
the conditioning factors change over time. Implementing various methods to investigate
the location of landslides, assess the vulnerability area, and analyze the impacts can be
conducted by using a terrestrial survey [3], satellite monitoring [4], or spatial modeling [5].
Spatial modeling has become a prompt solution, along with the growth of technologies
and the availability of various data sources. It can integrate various data sources through
algorithms to produce maps, such as the machine learning approach. Machine learning
(ML) is a branch of computational algorithms developed and designed to imitate human
intelligence by learning from environmental data [6]. Machine learning is capable of solving
problems regarding predictions and classifications [7]. In terms of landslide susceptibility
modeling, a prediction can utilize machine learning using coordinate data of landslide
occurrence as training data and landslide conditioning factors as the evaluators [8].

Research trends using the keywords landslide susceptibility and machine learning
have grown significantly since 2018 [9]. Research conducted by [10] applied the NB
(naïve Bayes) algorithm, the RBF (radial basis function) classifier, and the RBF network
for Longhai, China, for analysis of landslide susceptibility modeling. It indicated that the
naïve Bayes algorithm showed high performance in predicting landslide susceptibility
with an AUC value of 0.872. Moreover, other research conducted by [11] using ANN
(artificial neural network) and support vector machine (SVM) algorithms, decision trees
(DTs), RF (random forest), and combined models of ANN and SVM was implemented in
the Cameron Highlands district located in the state of Pahang, Malaysia. According to
this research, the RF algorithm produced the best performance, with an AUC value on the
testing data of 0.82. Research conducted by [12] carried out spatial modeling of landslide
susceptibility in the Wayanad district in the southern part of India using RF, SVM, and
K-NN (k-nearest neighbor) algorithms. The K-NN algorithm has a good predictive ability
of landslide susceptibility, with a maximum AUC value of 0.981. The maximum entropy
(MAXENT) algorithm was developed for various spatial analyses with good performance
results as part of the development of machine learning algorithms for spatial analysis. The
Maxent algorithm can perform various spatial analyses, including predictions of urban
waterlogging-prone areas, fire hazards, and land subsidence studies [13–15]. A recent study,
however, showed that using the maximum-entropy algorithm (MAXENT) in the evaluation
of landslide susceptibility produced a lower accuracy than RF [16].

In the study area, research regarding spatial modeling of landslide susceptibility
applied scoring and overlay analysis, logistic regression, and spatial multi-criteria evalu-
ation [17–19]. Those methods are subject-oriented and rely on the consistency of various
experts in the adjustment process and the time-consuming handling of multiple data
sources. In addition, a landslide susceptibility model using the conventional scoring
method, multi-criteria evaluation, and expert judgment generates less accuracy [17]. Con-
sidering the condition of Malang Regency as a mobility center with a high tourist attraction,
a high-accuracy of landslide susceptibility assessment is necessary to mitigate casualties.
Therefore, this research applies machine learning algorithms to assess landslide susceptibil-
ity in the study area. Using a statistical approach and machine learning techniques can help
to reduce the subjectivity of the analysis. The model can be evaluated quantitatively, and
producing the contribution level of each variable can be quantitatively based on [20,21]. RF,
KNN, and NB are three machine-learning algorithms that have produced accurate models
of landslide susceptibility in various case studies.

Therefore, this research will compare the spatial modeling of landslide susceptibility
using three machine learning algorithms (RF, NB, and KNN). This research applies three
splitting ratios for training and testing data comprising 50:50, 60:40, and 70:30 for NB and
KNN. Moreover, the RF only uses 70:30, following the best splitting ratio produced from
previous research [22]. Eight evaluation parameters were sequentially used to test the
performance of seven models. These parameters were comprised of ROC (receiver opera-
tor characteristic), AUC (area under curve), accuracy (ACC), sensitivity (SN), specificity
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(SP), balanced accuracy (BA), geometric mean (GM), Cohen’s kappa (CK), and Matthew’s
correlation coefficient (MCC).

2. Materials and Methods
2.1. Study Area

Figure 1 depicts the study area of this research showing the distribution of landslides
and non-landslide location. The study area was in Malang Regency, which is located
geographically at 112◦17′10.9′′–112◦57′0.0′′ E and 7◦44′55.11′′–8◦26′35.45′′ S. Malang Re-
gency has 33 sub-districts, 12 urban villages, and 378 villages. Malang Regency is the
second largest regency in East Java Province with an area of 334.786 ha. The topography of
Malang Regency varies, with elevation values between 0 and 3660 MASL. It has several
mountains, including Mount Semeru (4676 MASL), Mount Kelud (1731 MASL), Mount
Welirang (3156 MASL), and Mount Arjuno (3339 MASL). Consequently, the slope is varied
between 0◦ and 85.2◦. The geological type is dominated by tuff formation with extrusive
intermediate pyroclastic composition and derived from volcanic deposits. Malang Regency
has a tropical climate with an average surface temperature of 18.25 ◦C to 31.45 ◦C.
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Figure 1. Location of the study area. (A) Elevation of the study area and distribution of training
points. (B) The location of the study area in East Java Province. (C) The location of East Java Province
in Indonesia.

2.2. Data Sources
2.2.1. Data Training Sample

The training sample consisted of landslides and non-landslide areas [23]. The data
type was a point feature acquired from the Malang Regency Disaster Management Agency’s
daily reports from 2012 to 2021. From the data collected on landslide occurrence during
2012–2021, the number of points was 88. The number of landslides inclined in certain
locations from 2012 to 2021. Hence, it was assumed that past events are still actively
occurring at some locations. Moreover, the non-slide training sample was obtained by
randomly extracting points with a slope of less than 2◦ [24]. The number of non-landslide
training samples, as many as 88 points, was adjusted to the number of landslide points.
Eventually, the total number of training sample points was 176.
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2.2.2. Spatial Data Landslide Conditioning Factors

The selection of landslide conditioning factors is essential to achieving high modeling
accuracy. Standard rules related to the parameters that affect the landslide susceptibility
model do not exist [25]. Landslide conditioning factors depend on the characteristics of
the case study, the type of occurrence of the landslide, and the scale of analysis [26]. This
research proposed 12 landslide conditioning factors to produce landslide susceptibility
maps considering study area conditions, literature studies, and data availability. The
12 parameters consist of topography, land cover, and hydrological and trigger factors.
Topographic factors consist of elevation, slope, and aspect. Moreover, land cover factors
include geological type, soil type, distance from faults, and vegetation density. Hydrological
factors include TWI (Topographic Wetness Index), distance from the river, and river density,
whilst the triggering factor is average annual rainfall in 2012–2021. Figure 2 visualizes the
landslide conditioning factors in the study area.
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Figure 2. Landslide conditioning factors; (A) annual rainfall; (B) geological type; (C) aspect; (D) slope;
(E) distance to fault; (F) elevation; (G) soil type; (H) distance to river; (I) TWI; (J) NDVI; (K) river
density; (L) land cover.
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Elevation Data

This research used DEMNAS as the elevation data with a resolution of 0.27 arc-
second or 8 m, published in 2018 by The Indonesian Geospatial Information Agency
(https://tanahair.indonesia.go.id/demnas, accessed on 26 February 2022) [27]. DEMNAS
was used to extract elevation, aspect, and slope parameters. Based on the DEMNAS, the
study area has an elevation value of 0 to 3660 MASL with a slope ranging from 0◦ to 73◦.
Moreover, the aspect distributes from 0 to 360, indicating that the slope angle direction is
clockwise. It consists of north, northeast, east, southeast, south, southwest, west, northwest,
and flat. Besides extracting topographic factor parameters, elevation data also generated
TWI of the study area. The TWI ranged from 1.8 to 16.8. For modeling purposes, this
research resampled all the data into 30 m. In addition, the resampling process was carried
out to project all datasets into the same coordinate system.

Geological Map Data

Geological map data were acquired from the Geological Agency, Ministry of Energy,
and Mineral Resources Indonesia with the scale of 1:100,000. The latest geological map
was created in 1992 by the Indonesian ministry of energy and mineral resources. The map
was produced from measurements of direct outcrop points in the field, which started in
1921 during the Dutch-Indies period [28]. Geological maps extracted geological type and
fault parameter information. Furthermore, this research proceeded with Euclidean distance
analysis to calculate the distance from the fault location; moreover, the geological type
was converted into a raster format and resampled. According to the geological type, the
study area is dominated by a tuff formation with a coverage area of 16%. The formation is
a pyroclastic extrusive rock originating from volcanic deposits.

The study area consists of 34 geological unit formations. Table 1 represents the
characteristics related to the types of formations, rock formations, and deposits. In general,
the rock conditions are composed of rocks brought by volcanic activity consisting of tuff,
sandy tuff, volcanic breccia, agglomerates, and lava. Moreover, the distance between the
study area and the fault ranges between 0 and 50,000 m. The type of fault which crosses the
study area is a local fault with shear, descending, and horizontal faults [29–31]. The local
faults pass through the Sub-district of Sumbermanjing, Bantur, Gedangan, Gondang Legi,
Turen, Wajak, Poncokusumo, and Dampit. The fault which passes through Sumbermanjing
Sub-district is a descending type, while those passing through Sumbermanjing and Bantur
Sub-district are shear-type and horizontal, respectively.

Table 1. Geological unit, Malang Regency.

Code Formation Rock Formation Deposit Area (km2)

Qvtm1 Malang tuff E: I: PA Volcanism: subaerial—Volcanism 633.995
Qpkb Kawi-butak volcanic rock E: I: PC Volcanism: subaerial—Volcanism 446.265

Tomm3 Mandalika formation E: I: L Volcanism: subaerial—Volcanism 401.839
Qpj Jombang formation ST: CC: CE: B Volcanism: subaerial—Volcanism: 331.369

Tmn5 Nampol formation ST: CC: M: S Sedimentation: transitional—Sed 277.764
Qvt2 Tengger volcanic rock E: I: PA Volcanism: subaerial—Volcanism 238.221

Qvaw Arjuna-Welirang volcanic rock E: I: PC Volcanism: subaerial—Volcanism 184.673
Tmw1 Wuni formation ST: CC: CE: B — 184.217

Qp Western volcanic rock E: I: PC Volcanism: subaerial—Volcanism 171.113
Qpat Anjasmara old volcanic rock E: I: PC Volcanism: subaerial—Volcanism 160.352
Qvs2 Semeru volcanic deposit E: I: L Volcanism: subaerial—Volcanism 96.447
Qpva Anjasmara young volcano E: I: PC Volcanism: subaerial—Volcanism 87.365
Tomt Tuff member E: I: PA Volcanism: subaerial—Volcanism 70.339
Tmcl Campurdarat formation ST: CC: LS Sedimentation: littoral—Sedimen 45.227

Qpvb1 Buring volcanic deposit E: MC: L Volcanism: subaerial—Volcanism 39.199
Qas Swamp and river deposits S: CC: M: S Sedimentation: terrestrial: fluv 26.346
Non Lake - - 20.240

Tmwl1 Wonosari formation ST: R: LS Sedimentation: littoral: reef—S 15.264
Qvk4 Kelud young volcano E: I: PC Volcanism: subaerial—Volcanism: 13.200
Qpvk Kelud old volcanic rock E: I: L Volcanism: subaerial—Volcanism 11.789

https://tanahair.indonesia.go.id/demnas
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Table 1. Cont.

Code Formation Rock Formation Deposit Area (km2)

Tomi Rock intrusion IE: I Plutonism: sub-volcanic—Plutoni 11.564
Qpvp Marikeng volcanic rock IE: I Plutonism: sub-volcanic—Plutoni 6.937
Qvlh Lava deposit E: I: PC Volcanism: subaerial—Volcanism 5.602
Qvs Tengger volcanic sand E: I: PA Volcanism: subaerial—Volcanism 4.173

Qvk5 Kepolo volcanic deposit E: I: L Volcanism: subaerial—Volcanism 3.084
Qpw Welang formation ST: CC: M: S Sedimentation: terrestrial: allu 2.546
Qvj Jembangan volcanic deposit E: MC: L Volcanism: subaerial—Volcanism 2.225
Qt5 Terrace deposit ST: CC: A Sedimentation: terrestrial: allu 2.179
Qlk Katu’s peak lava E: I: L Volcanism: subaerial—Volcanism 1.829
Qal Aluvial and coastal deposit ST: CC: A Sedimentation: terrestrial: fluv 1.130

Qvb5 Bromo volcanic rock E: I: PC Volcanism: subaerial—Volcanism: 0.810
Qlks Lava Parasite Kepolo Mt. Semeru E: I: L Volcanism: subaerial—Volcanism 0.727
Qlk1 Lava andesit parasit E: I: L Volcanism: subaerial—Volcanism 0.058
Qlv Avalanche deposits from volcanoes E: I: PC Volcanism: subaerial—Volcanism 0.035

Qpk1 Kalipucang formation ST: CC: CE: CL Sedimentation: terrestrial: fluv 0.001

Rock Formation: ST = sediment, CC= clastic, E = extrusive, I = intermediate, L = lava, PC = polymic, A = alluvium,
M = medium, PA = pyrocla, R = reef: LS = limestone, S = sands, CE = coarse, B = brecc, MC = mafic.

Soil Type Data

The Indonesian Ministry of Agriculture Indonesia produced soil-type map data with
a scale of 1:50,000 in 2014. The rasterization proceeded to convert the data into a raster
format. Then, this research resampled the map with 30 m. According to the soil type,
cambisol dominates the study area with a coverage area of 60%. Cambisol soil types are
rich in mineral matter and vary in drainage, depth, and base saturation [32].

Landsat-8 OLI TIRS Imagery Data

Landsat-8 OLI TIRS Imagery data were acquired from the USGS (United States Geo-
logical Survey) directory using the Google Earth engine (https://developers.google.com/
earth-engine/datasets, accessed on 24 March 2022). The acquisition time of imagery was
19 August 2021, with a cloud cover of 5.51%. Land-cover analysis and NDVI were chosen
in 2021 and on a specific date, as this research tried to utilize the latest and best data
specifications with a relatively low cloud cover. Since to produce a good landslide hazard
prediction model, the latest land cover and NDVI data are necessary [33]. The imagery has
a spatial resolution of 30 m on a multispectral sensor [34]. The Landsat-8 OLI TIRS imagery
data were used to extract land cover and triggering factor parameters. The extracted land
cover factor was the vegetation index using the NDVI algorithm. NDVI can be used to
estimate the level of greenery density in an area of land [35]. The NDVI algorithm can be
seen in Equation (1), where NIR is the near infrared band, and R is the red band of the
Landsat-8 [36].

NDVI =
NIR− R
NIR + R

(1)

This research applied the supervised classification random forest method to generate
land cover. It comprised water bodies, forests, vegetation (including agricultural land),
built-up land, and bare land. The classification was reasonably well-accepted, with overall
accuracy and kappa accuracy values of 0.89 and 0.86, respectively. The classification results
indicated that forests cover 38% of the study area. According to the vegetation density, the
result showed that the vegetation includes a variety of land cover, namely, water bodies,
low-density vegetation, medium-density vegetation, and high-density vegetation, with a
density index between −0.46 and 0.83 [37].

Annual Rainfall Data

Annual rainfall data were acquired by calculating daily CHIRPS data with a resolution
of 5 km retrieved from 2012 to 2021. This research used CHIRPS data as a database for
annual rainfall because the number of rain gauge station points covering the study area
is very limited. Consequently, the rain gauge station data were less representative. While

https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
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CHIRPS is a terrestrial rainfall database that combining three types of rainfall information
(global climatology, satellite-based rainfall estimates, and in-situ rainfall observations) [38].
It can be accessed at https://data.chc.ucsb.edu/products/CHIRPS-2.0/ (accessed on 24
March 2022). Retrieval and processing of this dataset were carried out using the Google
Earth engine. Following the process, raster extraction produced 190 rainfall grid points,
which were assumed to be rainfall measuring points. Then, this research applied ordinary
kriging to generate rainfall value over the study area. Based on the average annual rainfall
data, the study area has 1750.56–3338.21 mm/year.

River Net Data

River net data were obtained from a topographic map produced by the Indonesian
Geospatial Information Agency. The river net data have a scale of 1:25,000 and were
published in 1999. These data are the latest data owned by the Indonesian Geospatial
Information Agency. River net data were used to extract the hydrological factor parameters
composed of the distance from the river and the density of the river. Euclidean distance
analysis was carried out to measure the distance parameter from the river. Based on
the distance parameter from the river, the study area has a distance value from the river
between 0 and 5055.16 m. A line density analysis proceeded with units of km/km2 to
generate river density. The result demonstrated that the river density has a value of
0–6.58 km/km2.

2.3. Methods

This research applied three machine learning algorithms composed of random forest,
naïve Bayes, and k-nearest neighbor to compare their performance in generating landslide
susceptibility analysis. Figure 3 illustrates the workflow of this research. In general,
the landslide susceptibility analysis consisted of 3 major steps: (1) conditioning factor
parameters preparation, (2) modelling, and (3) model evaluation.
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Random forest is an ensemble learning model from a set of decision trees (DTs). Each
DT depends on a sample of independent data values, and the distribution of each decision
tree is the same [39]. RF is effective for predictions, as it uses the strength of each DT and its
correlation and is less sensitive to the problem of over-fitting [40]. It works by performing
a majority voting of the overall results of each DT. Equation (2) denotes the RF algorithm,
where Ĉr f is the class of random forest results, and the hat operator in Ĉ indicates that the
class is the estimated class; x is an input vector; and Ĉn is the predictive class of the nth tree
in a random forest [41].

Ĉr f = majority vote
{

Ĉn(x)
}N

n=1 (2)

The k-nearest neighbor (KNN) is a machine learning algorithm utilizing neighboring
techniques in determining the class of a point [42]. A point is classified based on its closest
neighbors to the training data. KNN is categorized as a non-parametric ML model because
the computational process does not depend on data distribution [12]. The determination
of the shortest distance between the new data and the training data commonly utilizes
Euclidean distance (Equation (3)), where Xiv is the individual characteristic of i; Xjv is an
individual characteristic of j; p is the number of sample partitions; and v is an individual
sample [43].

dij =
√

∑p
v=1

(
Xiv − Xjv

)2 (3)

Naïve Bayes (NB) is a supervised learning method based on statistical measurement
for classifying purposes. NB works based on the Bayesian theorem, which is well suited for
when the data have a high dimension and is not affected by the distribution of the data [44].
NB is a simple form of a Bayesian network, with all variables considered independent
of each other [45]. Equation (4) denotes the NB algorithm for landslide susceptibility
modeling, where x is the parameter of the factors causing landslides; y is the classification
variable for landslides and non-landslides; P(yi) is the probability of yi; and P(xi/yi) is a
posterior probability that can be calculated by Equation (5) [10].

y =
argmaxP(yi)

yi = (landslide, non− landslide

14

∏
i=1

P(xi/yi) (4)

P(xi/yi) =
1√
2πσ

e
−(xi−µ)2

2σ2 (5)

For landslide susceptibility modelling, a stack raster ensures that all parameters are
in the exact resolution. Therefore, this research extracts landslide occurrence points for
each parameter and conducts a normalization process using the z-score calculation so that
all numeric data are in the same dimension (Equation (6)), where X is the value of data,
namely, the average value of all the data; and S is the standard deviation of the overall
data [46].

Z =
X− X

S
(6)

Following the normalization process, splitting is performed to separate training and
testing data. The training data are used to generate prediction models, while testing
is used to evaluate the built models. The ratios between training and testing are 70:30,
60:40, and 50:50 for applying the NB and K-NN algorithms. Moreover, the RF algorithm
uses a ratio of 70:30. In general, specific rules in determining the splitting ratio scenario
between training and testing data do not exist, since each machine learning algorithm
has its optimum splitting ratio to perform the best model. However, some splitting ratio
schemes which are commonly used are 50:50, 60:40, and 70:30. The KNN and NB algorithms
use these three scenarios to obtain optimum model accuracy [10,22,41,47,48]. Unlike the RF
algorithm, previous research with the same physical area characteristics showed that the
RF algorithm had maximum accuracy when using a splitting ratio of 70:30 [22]. Therefore,
the RF algorithm only used a splitting ratio of 70:30 in this research.
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After the modeling process, eight evaluation parameters comprising ROC (receiver op-
erator characteristic), AUC (area under curve), accuracy (ACC), sensitivity (SN), specificity
(SP), balanced accuracy (BA), geometric mean (GM), Cohen’s kappa (CK), and Matthew’s
correlation coefficient (MCC) were used to assess the performance of each model. The
evaluation values were obtained based on the confusion matrix of four predicted labels,
which consisted of tp and fp for the number of positive data samples and tn and fn for
the number of negative data samples. Table 2 denotes the equations and objectives of
each evaluator.

Table 2. Metric evaluator equation and each objective.

Metric Equation Objective

ACC tp + tn
tp + f p + tn + f n

Indicates the ratio of correct prediction to the total
number of evaluation samples [49].

SN tp
tp + f n

Measures the fraction of correctly classified
positive patterns [49].

SP tn
tn + f p

Measures the fraction of correctly classified
negative patterns [49].

GM sn + sp
2

Measures the average sensitivity (sn) obtained
under each class [50].

BA
√

sn× sp Measures the roots of the products sn and sp [50].

CK 2 × ((TP × TN) − (FP × FN))
((TP + FP)×(FP + TN)) + ((TP + FN) × (FN + TN))

Consistency value between 2 raters (observation
and prediction) [51].

MCC (TP × TN) − (FP × FN)√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

Measures the performance of the classification
algorithm through the correlation between

observations and predictions [51].

ROC-AUC AUC =
Sp − np(nn + 1)/2

npnn

The ROC curve is built based on sn (sb-Y) with sp
(sb-X), and AUC is an integral ROC [10].

3. Results
3.1. Continuous Data Parameter Normality Characteristics

Some machine learning algorithms assume that the training data are normally dis-
tributed, so that identifying the normality characteristics of the data for evaluating the ap-
plication of machine learning algorithms is necessary. This research uses a non-parametric
alternative statistical Kolmogorov–Smirnov test (K-S) to display the normality characteris-
tics. The K-S test uses the cumulative distribution to determine the distribution level of
data [52]. Moreover, the K-S test is reliable for various purposes to efficiently establish
Goodness of Fit [53]. Table 3 denotes the results of the K-S test from the landslide and
non-landslide training dataset.

Table 3. Result of K-S test training dataset.

Parameter

Landslide Training Point Non-Landslide Training Point

D-Value p-Value Normal
Distribution D-Value p-Value Normal

Distribution

River Density 0.167 2.32 × 10−6 No 0.096 0.04519 No
Annual Rainfall 0.165 3.47 × 10−6 No 0.104 0.01946 No
Distance to Fault 0.258 6.76 × 10−16 No 0.151 3.92 × 10−5 No

Elevation 0.107 0.01467 No 0.101 0.02766 No
Distance to River 0.192 5.39 × 10−7 No 0.152 3.03 × 10−5 No

NDVI 0.175 5.39 × 10−7 No 0.149 4.74 × 10−5 No
Slope 0.140 2.04 × 10−4 No 0.113 7.78 × 10−3 No
TWI 0.088 9.00 × 10−2 Yes 0.205 8.66 × 10−10 No

Hypothesis: H0 = normally distributed; H1 = not normally distributed.
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The error rate in decision making is set to 5% = 0.05, with the decision-making criteria
using sig.α or p-value. If sig.α < α, then H0 is rejected [54]. The results of the K-S test shows
that all parameters in non-landslide training are not normally distributed. Moreover, in
the landslide training data, only the TWI parameter is normally distributed with a p-value
of 0.09.

3.2. Landslide Susceptibility Modeling Results

Before performing KNN for the landslide susceptibility model, it is required estimating
the value of k to generate the number of nearest neighbors considered from a point. The
estimation of the k-value used the cross-validation technique. Cross-validation is performed
with three iterations to optimize the accuracy. Figure 4 illustrates the results of the measure
of the k-value. Based on the cross-validation results for the estimated k-value for the 50:50
KNN model, the optimum k-value was 3, with a maximum accuracy of 0.814, while for
the 60:40 KNN model, the value of k produces a maximum accuracy of 3 with a maximum
accuracy of 0.796. The KNN 70:30 model had a maximum accuracy when the k value was 7,
with a maximum accuracy value of 0.817.
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The KNN yields probability values of landslides from 0 to 1. The average probability
values of the KNN 50:50, KNN 60:40, and KNN 70:30 models are 0.449, 0.338, and 0.365,
respectively. The probability values are then classified into low susceptibility (0–0.3), mod-
erate susceptibility (0.3–0.6), and high susceptibility (0.6–1) [42]. Figure 5 illustrates the
result of each scenario, where (A), (B), and (C) demonstrate the results of landslide suscep-
tibility modeling using the KNN. The 50:50 KNN model indicates that high susceptibility
dominates the study area with an area of 147,319.29 km2 (42%) as opposed to the 60:40 KNN
model being dominated by moderate susceptibility with an area of 195,318.54 km2 (56%).
For the 70:30 KNN model, the study area was dominated by low susceptible with an area
of 180,326.16 km2 (51%).
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Likewise, the NB algorithm applies three scenarios between training and testing
composed of 50:50, 60:40, and 70:30. The results indicates that the probability values of
landslides in the NB 50:50 model has a range of 6.24 × 10−10 to 1, with an average of 0.451.
Moreover, the NB 60:40 model generates a probability range between 5.68 × 10−14 and 1,
with an average of 0.424. In the NB 70:30 model, the probability values of landslides lay
between 5.87 × 10−12 and 1, with an average value of 0.299. In addition, the NB models
also classifies the susceptibility. Figure 6 illustrates the proportion of the study area based
on the probability classification of landslides. The classification of all scenarios showes
that low susceptibility dominated the study area; 51% of the study area was classified as
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low susceptibility in the NB 50:50 model, with 179,493.57 km2, as opposed to the NB 60:40
model with 231,354.63 km2 (66%). Moreover, the area with low susceptibility on the NB
70:30 model was 235.410.39 km2 (67%). On the contrary, only RF 70:30 generates more than
50% high susceptibility.
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Figure 6. Landslide susceptibility classes’ percentages for each model.

The RF algorithm only implements a scenario between training and testing (70:30) to
produce a landslide susceptibility map. In the RF modelling, it was necessary to estimate
the best mtry, which is the number of random variables, before establishing a DT. The best
mtry estimation agrees using a cross-validation technique. Figure 7 illustrates the results of
the cross-validation.
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Figure 7. Cross-validation results to obtain the best mtry of the RF model.

According to results, the mtry value which produces the highest accuracy (0.896) of
the RF model was 11. The RF 70:30 generates probability values from 0.01 to 1, with an
average of 0.595. After generating the RF model, it classified the level of susceptibility
to landslides based on the respective value. The result indicates that high susceptibility
dominated 51% of the study area, with 177,208.83 km2 distributed over the edge.

4. Discussion

This research produces seven landslide susceptibility models. All models indicates that
high levels of landslide susceptibility located on the edge of the study area, except for the
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KNN 60:40 and KNN 70:30 models. The probability values generated by all models ranged
from 0 to 1. The probability values of landslides approaching 0 indicated no susceptibility
to landslides. On the contrary, once the probability value was close to 1, it refers to an
increased susceptibility to landslides [55]. Then the probability value can be classified into
three levels of landslide susceptibility, composed of low, moderate, and high when the
probability value ranged from 0 to 0.3, from 0.3 to 0.6, and from 0.6 to 1, respectively.

The evaluation is conducted towards training and testing data. For training data,
ACC and CK were measured. Figure 8 depicts the evaluation results of each model using
these parameters. The RF 70:30 model generates the highest values for ACC and CK, with
values of 0.915 and 0.819, respectively. In comparison, the NB60:40 model yields the highest
evaluation value for ACC and CK, with values of 0.863 and 0.691, respectively. For the
KNN algorithm, the KNN50:50 model produces the highest ACC and CK values among all
the scenarios, with ACC and CK values of 0.823 and 0.597, respectively.
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Eight parameters (ACC, SN, SP, BA, GM, MCC, CK, and ROC–AUC) are used to
evaluate the performance of each model. Figure 9 depicts the results of the evaluation
of each model using these parameters. The RF 70:30 model generates the highest values
for six evaluation parameters, namely, ACC, SN, GM, BA, CK, and MCC, with values of
0.884, 0.765, 0.863, 0.857, 0.749, and 0.876, respectively. Moreover, for the SP parameter, the
NB 50:50 and KNN50:50 models have the highest value among the other models, namely,
0.977. The NB 50:50 model had the lowest performance with six evaluation parameters,
namely, ACC (90.806), SN (0.536), GM (0.757), BA (0.724), CK (0.556), and MCC (0.601).
Moreover, the KNN 70:30 model obtains the lowest performance for the SP evaluation
parameter (0.846).

ROC–AUC measures the performance of each model for distinguishing landslide and
non-landslide as a binary value. ROC–AUC is the relationship curve between SP and SN.
Figure 10 illustrates the results of the ROC–AUC of training and testing data. Based on the
ROC graph, all models have an AUC of more than 0.7, which indicates that the model had
good performance [46]. Compared to testing data of other models, the RF 70:30 generates
the highest AUC of 0.943. On the contrary, the model with the lowest AUC value was
KNN70:30 (0.852), meaning that the performance of KNN in identifying landslides was
low. In line with the AUC value in the testing data, the AUC in the RF algorithm training
data and the 70:30 scenario produces the highest AUC compared to other models, with a
value of 1. Moreover, the lowest AUC value for training data is obtained with KNN 60:40,
with an AUC value of 0.922. In addition, KNN 70:30 produced the lowest values of ACC,
SP, CK, and MCC, with respective values of 0.814, 0.846, 0.611, and 0.624. Moreover, the
most optimum scenario of the KNN splitting ratio between training and testing was 50:50,
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which produces the highest values in five of the eight evaluation parameters. It comprises
ACC (0.833), SP (0.977), CK (0.625), MCC (0.658), and AUC (0.881).
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Figure 11 depicts the relative variable contribution degree of each model. In general,
slope led to the highest relative contribution degree in all models, with a value of 100%.
However, each model produces a different sequence of contribution degrees on each
parameter. Looking at the lowest contribution degree, the NDVI has the lowest relative
contribution degree in the RF 70:30 and NB 70:30 models, with merely 0.44% and 5.28%,
respectively. For land use, it possesses the lowest relative contribution degree in the NB
50:50 model (7.31%). Moreover, the proportion of geological type in the NB 60:40 model
was just above ten (10.13%). In KNN 50:50 and KNN 60:40 models, the soil type parameter
yielded a relative contribution degree of 10.12% for the KNN60:40 model as opposed to the
KNN50:50 model (8.64%). In the KNN 70:30 model, the parameter with the lowest relative
contribution degree was aspect, with a value of 9.24%.
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Among all models, RF was the appropriate model to discriminate non-landslide
areas from landslide areas based on landslide conditioning factors, considering the model
evaluation performance and accuracy [56]. The evaluation parameters comprise ROC–AUC,
ACC, SP, SN, GM, BA, CK, and MCC. According to the evaluation results, RF 70:30 was
the best model with the highest value of seven of the eight evaluation parameters. In the
application of the NB algorithm, the optimal ratio between training and testing scenarios
is 60:40, as it generated the highest value in five of eight parameters [57]. Moreover, the
scenario with the lowest performance wis the 50:50, since it generates the lowest value in
six of the eight evaluation parameters. RF performes the best in this research, followed
by KNN and NB sequentially. In addition to implementing algorithms using similar
conditioning factors, KNN, RF, and NB yielded good performance, with AUC values of
0.8903, 0.8690, and 0.8639, respectively [58]. The excellent performance of these three
algorithms in predicting landslides was also approved by additional conditioning factors
such as curvature, lithology, road ratios, and forest area ratios [59].

The KNN algorithm shows the lowest performance compared to the best models of
the other algorithms. However, compared to the overall splitting ratio scheme, the NB
algorithm produces the lowest performance compared to the KNN and RF algorithms.
Based on the results of the continuous data normality test in the previous sub-section,
the training data do not normally distribute. Otherwise, the NB algorithm assumes that
the data does not normally distribute [60]. Therefore, this research applies numerical
training normality tests on the data to determine the normality of data distribution using
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the Kolmogorov–Smirnov (K-S) test. Eventually, the K-S test proves that NB’s performance
depends on the training data distribution.

The most influential parameter of all models is the slope. In several studies related
to landslide susceptibility modeling using machine learning algorithms, the slope param-
eter dominantly leads to the highest relative contribution as opposed to other parame-
ters [8,11,47]. Other research produces different contribution levels, such as elevation [61]
and rainfall [62], while the slope parameter has a contribution level in the fifth order. In
this research, the distribution of landslide training data dominantly occurred on slopes
between 8◦ and 30◦, which are classified as rather steep slopes. According to the influence
of topography on the landslides occurrence, ref. [63] found that landslides tend to occur at
slope values between 15◦ and 25◦, as the slope angle controls shear forces and stresses on a
slope [64]. The slope angle level affects how much shear stress there is and how low the
level of slope stability is [65]. As the slope angle increases, the tangential stress increases
in the consolidated soil layer, while the axial stress (shear strength increases on a steeper
slope) and the slope stability level decrease accordingly. As a result, slope angle triggers the
potential for rock mass increase and ultimately triggers soil movement down the slope [64].
Variations in the slope value affect the magnitude of the stress on the potential shear surface
and determine the deformation mechanism [66]. Furthermore, the saturation of the fill
slope causes the rock mass to slide down the slope because the high compressibility and
mobility of air in the unsaturated void allow the fill slope to initiate undrained failure. The
saturation level on the fill slope is determined by the type of soil and the hydrological
conditions [67,68].

The lowest relative contribution level is divergent in each model. The NDVI had the
lowest relative contribution level in the RF 70:30 and NB 70:30 models. The results of these
two models indicates that the model is less associated with NDVI data. The landslide
training data tend to occur at NDVI values between 0.24 and 0.787 which is classified as low
to high vegetation density [37]. According to the influence of vegetation density in identi-
fying landslides occurrence, it does not significantly contribute [69]. On the other hand,
ecological damage, indicated by low vegetation density, will trigger landslides. Therefore,
it is necessary to consider ecological restoration as the primary means of preventing and
controlling landslides [70]. Vegetation can be an effective measure for mitigating land-
slides, as it can promote the shear strength of the soil through a series of mechanical and
hydrological effects [71].

The land cover parameter is found to be the lowest relative contribution level in the
NB 50:50 model. This research plots all the training datasets regardless of the land cover
type. However, the locations were mainly in a forest area, and built-up areas, including
roads, were non-significant, as the spatial resolution of the imagery is 30 m while the road
width usually is less than 30 m. As a result, a misclassification possibly occurred due to
the road being covered by vegetation. Hence, land cover is also an essential factor in the
assessment of landslide susceptibility [72]. Changes in land cover, such as deforestation,
which is used to support various human activities, can increase slope instability, which
causes landslides [73].

The soil type parameter has the lowest relative contribution level in the KNN 50:50
and 60:40 models; 57.90% of landslides occurred on Gleisol soil of the study area. Gleisol
has a loamy texture, as it is formed in a basin area and is affected by excessive water [74].
Loamy soil increases the potential of landslides because the loose soil is relatively soft after
being exposed to water and breaks when the air temperature is too high [75]. There is a rela-
tionship between soil type and landslide occurrence regarding geotechnical properties [76].
The geotechnical properties consist of hydraulic conductivity, infiltration rate, runoff and
increased pore water pressure on the slope, volume change, and the rate of decrease in
shear strength during rain [77]. These geotechnical properties are also related to the type of
geology of an area [78]. Other areas that have the potential for landslides are sandy slope
areas. When sandy slope areas also have the characteristics of an area with high rainfall,
slope instability will increase, and ultimately landslides will occur [79]. In the NB 60:40
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model, the geological parameter contributes as the lowest order. Based on the distribution
of the training dataset, landslides tend to occur with the characteristics of rocks originating
from volcanic deposits. Volcanic deposits are easily weathered rocks, especially tuff, which
is highly weathered to wholly weathered. On the other hand, previous studies have proved
that geology or lithology contributes relatively significantly [58,69,80].

In the 70:30 KNN model, aspect contributes as the lowest order, which is opposed to
other research finding that aspect has a relatively significant contribution level [58,69,80].
In this research, the landslides dominantly occurred on slopes facing northeast, with a
percentage of 28%. The direction of the slope is related to the amount of sunlight intensity.
In areas continuously exposed to direct sunlight, the organic content of the soil composition
in the area is low, which causes the area to be easily dispersed and ultimately triggers
landslides. The northern aspect is more susceptible to landslides, where landslides occur
in the southern hemisphere, and the southern aspect is more susceptible to landslides in
the northern hemisphere and vice versa [81]. In the northern hemisphere, the direction of
the slopes facing south has a higher intensity of sunlight than slopes facing north. In areas
exposed to direct sunlight continuously, the organic content of the soil constituents in the
area is low, which triggers the area to easily disperse, and ultimately causes landslides [81].
However, aspect does not contribute significantly to this research model, since Indonesia
is a country situated in the equatorial region. As a result, sunlight intensity is almost the
same in all directions [82].

Evaluation of landslide susceptibility is carried out to accurately determine areas that
are susceptible to landslides [83]. Mistakes in determining landslide susceptibility can
lead to false judgment, resulting in loss of life and property. The landslide susceptibility
map becomes fundamental for evaluating sustainable disaster mitigation issues [83]. A
machine learning approach can accurately and efficiently predict the level of landslide
susceptibility. The application of machine learning to evaluate landslide susceptibility has
not been widely implemented in Indonesia. In addition, the landslide susceptibility map in
the study area still applies the conventional scoring method with low accuracy. As a result,
machine learning has the potential to be implemented. Moreover, machine learning can
efficiently update landslide susceptibility maps continuously. Determining the splitting
ratio between training and testing data is crucial in determining the model’s accuracy.
Hence, this research is expected to provide recommendations for further research using the
RF, KNN, and NB algorithms. Subsequently, it can save time in the process of determining
the splitting ratio between training and testing for landslide susceptibility modelling.

5. Conclusions

This research compares the performance of the RF, KNN, and NB algorithms in
producing a spatial model of landslide susceptibility in Malang Regency, East Java Province,
Indonesia. According to the results, the RF algorithm dominantly led to the highest value
of evaluation parameters, composed of ACC, SN, GM, BA, CK, and MCC, with respective
values of 0.884, 0.765, 0.863, 0.857, 0.749, and 0.876. In addition, RF generates the best
performance, with an AUC of 0.943. On the other hand, the optimum splitting ratios
between the training and testing data for the NB and KNN algorithms in the case study
were 60:40 and 50:50, with AUC values of 0.928 and 0.916, respectively. Slope contributes
as the highest relative contribution degree for all the models, with the same value of 100%.
According to the best model, high susceptibility dominates Malang Regency, which includes
51% of the study area. Thus, the predictive model can assist policymakers in promoting
sustainable mitigation for the potential location. However, optimization methods and prior
knowledge concerning selecting landslide conditioning factors and landslide occurrence
inventories are necessary to improve prediction accuracy. This research recommends
utilizing multi-temporal data for more complex analyses in future research.
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