Urban Air Pollutant Monitoring through a Low-Cost Mobile Device Connected to a Smart Road
Abstract
:1. Introduction
2. Materials and Methods
2.1. Low-Cost Sensors
2.2. The Smart Road
2.3. The CIPCast Platform
- -
- Model: this includes the database that stores the field data acquired from the different sensors and the risk analysis results. Such data are characterised by the time of acquisition, the sensor, and the concentration;
- -
- View: this provides the Graphical User Interface (GUI) that can support the final end-user by providing her/him the set of GIS layers (e.g., field data, impact scenarios) and the real-time sequence of events in a timeline window; and
- -
- Controller: this represents the software components that are responsible for acquiring sensor data from the vehicle and for raising alarms when pollution concentration thresholds are exceeded. The communication between CIPCast and the vehicle is performed through the use of REST web services. In particular, the REST Request handler and the REST client represent components responsible for the acquisition of sensor data and for sending alarms to the vehicle, respectively.
2.4. Preliminary Experimental Data Processing: Sensor Characterisation
2.5. Experimental Campaign
2.6. GIS-Based Data Processing
3. Results
Particulate Matter Mapping
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Section 1: this section contains general information on the vehicle: the vehicle identifier, latitude, longitude, altitude (m), speed (Km/h), date of acquisition, and autonomous mode;
- Section 2: this section contains the pollutant concentration values acquired by the sensors;
- Section 3: this section contains the alarms that can be raised by the vehicle; and
- Section 4: this section contains possible messages that can be sent autonomously by the vehicle or by the vehicle’s driver.
References
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013, 14, 813–822. [Google Scholar] [CrossRef]
- European Commission. Material for Clean Air; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- ARPA Lazio (Agenzia Regionale per la Protezione Ambientale della Regione Lazio). Available online: https://www.arpalazio.it/ (accessed on 25 September 2021).
- Xie, X.; Semanjski, I.; Gautama, S.; Tsiligianni, E.; Deligiannis, N.; Rajan, R.T.; Pasveer, F.; Philips, W. A Review of Urban Air Pollution Monitoring and Exposure Assessment Methods. ISPRS Int. J. Geo-Inf. 2017, 6, 389. [Google Scholar] [CrossRef] [Green Version]
- Minet, L.; Liu, R.; Valois, M.-F.; Xu, J.; Weichenthal, S.; Hatzopoulou, M. Development and Comparison of Air Pollution Exposure Surfaces Derived from On-Road Mobile Monitoring and Short-Term Stationary Sidewalk Measurements. Environ. Sci. Technol. 2018, 52, 3512–3519. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, S.; Pollino, M.; Taraglio, S. A Mobile Small Sized Device for Air Pollutants Monitoring Connected to the Smart Road: Preliminary Results. In Computational Science and Its Applications—ICCSA 2020; Lecture Notes in Computer Science; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M., Tarantino, E., Torre, C.M., et al., Eds.; Springer: Cham, Switzerland, 2020; Volume 12253, pp. 517–525. [Google Scholar] [CrossRef]
- Taraglio, S.; Chiesa, S.; La Porta, L.; Pollino, M.; Verdecchia, M.; Tomassetti, B.; Colaiuda, V.; Lombardi, A. Decision Support System for smart urban management: Resilience against natural phenomena and aerial environmental assessment. Int. J. Sustain. Energy Plan. Manag. 2019, 24, 135–146. [Google Scholar] [CrossRef]
- Rhyne, T.; MacEachren, A.M.; Gahegan, M.; Pike, W.; Brewer, I.; Cai, G.; Lengerich, E.; Hardisty, F. Geovisualization for knowledge construction and decision support. IEEE Comput. Graph. Appl. 2004, 24, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Balla, D.; Zichar, M.; Tóth, R.; Kiss, E.; Karancsi, G.; Mester, T. Geovisualization Techniques of Spatial Environmental Data Using Different Visualization Tools. Appl. Sci. 2020, 10, 6701. [Google Scholar] [CrossRef]
- Pasquaré Mariotto, F.; Antoniou, V.; Drymoni, K.; Bonali, F.L.; Nomikou, P.; Fallati, L.; Karatzaferis, O.; Vlasopoulos, O. Virtual Geosite Communication through a WebGIS Platform: A Case Study from Santorini Island (Greece). Appl. Sci. 2021, 11, 5466. [Google Scholar] [CrossRef]
- Banerjee, P.; Ghose, M.K.; Pradhan, K. AHP-based Spatial Air Quality Impact Assessment Model of vehicular traffic change due to highway broadening in Sikkim Himalaya. Ann. GIS. 2018, 24, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Righini, G.; Cappelletti, A.; Ciucci, A.; Cremona, G.; Piersanti, A.; Vitali, L.; Ciancarella, L. GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data. Atmos. Environ. 2014, 97, 121–129. [Google Scholar] [CrossRef]
- Chmielewski, S. Towards Managing Visual Pollution: A 3D Isovist and Voxel Approach to Advertisement Billboard Visual Impact Assessment. ISPRS Int. J. Geo-Inf. 2021, 10, 656. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Schneider, P.; Castell, N.; Vogt, M.; Dauge, F.R.; Lahoz, W.A.; Bartonova, A. Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environ. Int. 2017, 106, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Clements, A.L.; Griswold, W.G.; RS, A.; Johnston, J.E.; Herting, M.M.; Thorson, J.; Collier-Oxandale, A.; Hannigan, M. Low-Cost Air Quality Monitoring Tools: From Research to Practice (A Workshop Summary). Sensors 2017, 17, 2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Di Antonio, A.; Popoola, O.A.M.; Ouyang, B.; Saffell, J.; Jones, R.L. Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter. Sensors 2018, 18, 2790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crilley, L.R.; Shaw, M.; Pound, R.; Kramer, L.J.; Price, R.; Young, S.; Lewis, A.C.; Pope, F.D. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmos. Meas. Tech. 2018, 11, 709–720. [Google Scholar] [CrossRef] [Green Version]
- Giannopoulos, G.A.; Mitsakis, E.; Salanova, J.M. Overview of Intelligent Transport Systems (ITS) Developments in and across Transport Modes; JRC Scientific and Policy Reports; Publications Office of the European Union: Luxembourg, Germany, 2012. [Google Scholar] [CrossRef]
- Directive 2010/40/EU of the European Parliament and of the Council of 7 July 2010. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02010L0040-20180109 (accessed on 25 September 2021).
- Smart Road “eRoadArlanda”. Available online: https://eroadarlanda.se/ (accessed on 25 September 2021).
- Smart Road “Gotland”. Available online: https://www.smartroadgotland.com/ (accessed on 25 September 2021).
- ANAS S.p.A. Direzione Operation e Coordinamento Territoriale Infrastruttura Tecnologica e Impianti. In SMART ROAD “La Strada All’avanguardia che Corre Con Il Progresso”; ANAS: Rome, Italy, 2018. (In Italian) [Google Scholar]
- Taraglio, S.; Chiesa, S.; Nanni, V.; Pieroni, F.; Pollino, M.; Di Pietro, A.; Montorselli, S.; Bellocchio, E.; Costante, G.; Fravolini, M.L.; et al. The Smart Road Project in ENEA. In Proceedings of the I-RIM 2020 Second Italian Conference on Robotics and Intelligent Machines, Online, 10–13 December 2020; pp. 272–273. [Google Scholar] [CrossRef]
- Giovinazzi, S.; Pollino, M.; Kongar, I.; Rossetto, T.; Caiaffa, E.; Pietro, A.D.; Porta, L.L.; Rosato, V.; Tofani, A. Towards a Decision Support Tool for Assessing, Managing and Mitigating Seismic Risk of Electric Power Networks. In Computational Science and Its Applications—ICCSA 2017; Lecture Notes in Computer Science; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M., Tarantino, E., Torre, C.M., et al., Eds.; Springer: Cham, Switzerland, 2017; Volume 10406. [Google Scholar] [CrossRef]
- Pollino, M.; Di Pietro, A.; La Porta, L.; Fattoruso, G.; Giovinazzi, S.; Longobardi, A. Seismic Risk Simulations of a Water Distribution Network in Southern Italy. In Computational Science and Its Applications—ICCSA 2021; Lecture Notes in Computer Science; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M., Tarantino, E., Torre, C.M., et al., Eds.; Springer: Cham, Switzerland, 2021; Volume 12951. [Google Scholar] [CrossRef]
- Modica, G.; Pollino, M.; La Porta, L.; Di Fazio, S. Proposal of a Web-Based Multi-criteria Spatial Decision Support System (MC-SDSS) for Agriculture. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production; MID-TERM AIIA 2019; Lecture Notes in Civil Engineering; Coppola, A., Di Renzo, G., Altieri, G., D’Antonio, P., Eds.; Springer: Cham, Switzerland, 2020; Volume 67. [Google Scholar] [CrossRef]
- Coletti, A.; De Nicola, A.; Di Pietro, A.; La Porta, L.; Pollino, M.; Rosato, V.; Vicoli, G.; Villani, M.L. A comprehensive system for semantic spatiotemporal assessment of risk in urban areas. J. Contingencies Crisis Manag. 2020, 28, 178–193. [Google Scholar] [CrossRef]
- Di Pietro, A.; Lavalle, L.; La Porta, L.; Pollino, M.; Tofani, A.; Rosato, V. Design of DSS for Supporting Preparedness to and Management of Anomalous Situations in Complex Scenarios. In Managing the Complexity of Critical Infrastructures; Studies in Systems, Decision and Control; Setola, R., Rosato, V., Kyriakides, E., Rome, E., Eds.; Springer: Cham, Switzerland, 2016; Volume 90. [Google Scholar] [CrossRef] [Green Version]
- Vicente, A.B.; Juan, P.; Meseguer, S.; Serra, L.; Trilles, S. Air Quality Trend of PM10. Statistical Models for Assessing the Air Quality Impact of Environmental Policies. Sustainability 2019, 11, 5857. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Lepot, M.; Aubin, J.-B.; Clemens, F.H.L.R. Interpolation in Time Series: An Introductive Overview of Existing Methods, Their Performance Criteria and Uncertainty Assessment. Water 2017, 9, 796. [Google Scholar] [CrossRef] [Green Version]
- ESRI ArcGIS. Available online: https://www.esri.com/en-us/arcgis/about-arcgis/overview (accessed on 25 September 2021).
- Durrant-Whyte, H. Multi Sensor Data Fusion; Australian Centre for Field Robotics, The University of Sydney: Sydney, NSW, Australia, 2001. [Google Scholar]
- Bertino, L.; Evensen, G.; Wackernagel, H.H. Sequential data assimilation techniques in oceanography. Int. Stat. Rev. 2003, 71, 223–241. [Google Scholar] [CrossRef]
- Wallace, J.; Corr, D.; Deluca, P.; Kanaroglou, P.; McCarry, B. Mobile monitoring of air pollution in cities: The case of Hamilton, Ontario, Canada. J. Environ. Monit. 2009, 11, 998–1003. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, T.; Zheng, J.; Zhang, R.; Zhang, S.; Xie, X.; Han, Y.; Li, Y. Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics. Atmos. Chem. Phys. 2009, 9, 8247–8263. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Lau, K.K.L.; Ng, E. Developing street-level PM2.5 and PM10 land use regression models in high-density Hong Kong with urban morphological factors. Environ. Sci. Technol. 2016, 50, 8178–8187. [Google Scholar] [CrossRef] [PubMed]
- Shirai, Y.; Kishino, Y.; Naya, F.; Yanagisawa, Y. Toward On-Demand Urban Air QualityMonitoring using Public Vehicles. In Proceedings of the 2nd International Workshop on Smart, Trento, Italy, 12–16 December 2016; ACM: New York, NY, USA, 2016; p. 1. [Google Scholar] [CrossRef]
- Gao, Y.; Dong, W.; Guo, K.; Liu, X.; Chen, Y.; Liu, X.; Bu, J.; Chen, C. Mosaic: A low-cost mobile sensing system for urban air quality monitoring. In Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–9. [Google Scholar] [CrossRef]
- Hasenfratz, D.; Saukh, O.; Walser, C.; Hueglin, C.; Fierz, M.; Thiele, L. Pushing the spatio-temporal resolution limit of urban air pollution maps. In Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom), Budapest, Hungary, 24–28 March 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 69–77. [Google Scholar] [CrossRef]
Trip ID | Sample Count | Duration (mm:ss) | Distance (m) | Samples/km | Speed (km/h) | Size (kB) |
---|---|---|---|---|---|---|
1 | 118 | 3:57 | 1288 | 91.6 | 19.6 | 43 |
2 | 126 | 4:13 | 1363 | 92.4 | 19.4 | 51 |
3 | 302 | 10:09 | 3140 | 96.2 | 18.6 | 109 |
4 | 155 | 5:12 | 1788 | 86.7 | 20.6 | 61 |
5 | 154 | 5:11 | 1363 | 113.0 | 15.8 | 56 |
6 | 164 | 5:30 | 1546 | 106.1 | 16.9 | 66 |
7 | 55 | 1:49 | 581 | 94.7 | 19.2 | 21 |
8 | 58 | 1:55 | 648 | 89.5 | 20.3 | 22 |
9 | 129 | 4:20 | 1003 | 128.6 | 13.9 | 47 |
10 | 137 | 4:42 | 1413 | 97.0 | 18.0 | 108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiesa, S.; Di Pietro, A.; Pollino, M.; Taraglio, S. Urban Air Pollutant Monitoring through a Low-Cost Mobile Device Connected to a Smart Road. ISPRS Int. J. Geo-Inf. 2022, 11, 132. https://doi.org/10.3390/ijgi11020132
Chiesa S, Di Pietro A, Pollino M, Taraglio S. Urban Air Pollutant Monitoring through a Low-Cost Mobile Device Connected to a Smart Road. ISPRS International Journal of Geo-Information. 2022; 11(2):132. https://doi.org/10.3390/ijgi11020132
Chicago/Turabian StyleChiesa, Stefano, Antonio Di Pietro, Maurizio Pollino, and Sergio Taraglio. 2022. "Urban Air Pollutant Monitoring through a Low-Cost Mobile Device Connected to a Smart Road" ISPRS International Journal of Geo-Information 11, no. 2: 132. https://doi.org/10.3390/ijgi11020132
APA StyleChiesa, S., Di Pietro, A., Pollino, M., & Taraglio, S. (2022). Urban Air Pollutant Monitoring through a Low-Cost Mobile Device Connected to a Smart Road. ISPRS International Journal of Geo-Information, 11(2), 132. https://doi.org/10.3390/ijgi11020132