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Abstract: We compare different matching methods for distinguishing building modifications from
replacements based on multi-temporal building footprint geometries from 3D city models. Manually
referenced footprints of building changes were used to determine which thresholds are suitable
for distinction. In addition, since the underlying LoD1 (Level of Detail 1) data is highly accurate,
randomly generated position deviations were added to allow for transferability to less well-matched
data. In order to generate a defined position deviation, a novel method was developed. This allows
determination of the effects of position deviations on accuracy. Determination of these methods’
suitability for manipulation of data from sources of different levels of generalization (cross-scale
matching) is therefore not the focus of this work. In detail, the methods of ‘Common Area Ratio’,
‘Common Boundary Ratio’, ‘Hausdorff Distance’ and ‘PoLiS’ (Polygon and Line Segment based
metric) were compared. In addition, we developed an extended line-based procedure, which we
called ‘Intersection Boundary Ratio’. This method was shown to be more robust than the previous
matching methods for small position deviations. Furthermore, we addressed the question of whether
a minimum function at PoLiS and Hausdorff distance is more suitable to distinguish between
modification and replacement.

Keywords: building change detection; matching algorithms; vector data; footprints; position deviation

1. Introduction
1.1. Motivation

The growing availability of high-resolution geospatial data, and in particular those
containing individual buildings, has led to the increasing use of such data in diverse
fields [1–3]. Changes in building stock are of particular interest for many applications, as
they indicate the impact of past development in a given context [4–6]. Data on such changes
contribute to our general understanding: it can be used as input data for forecasting models
and generally helps decision-making on land use [7]. Spatially precise and up-to-date
city models can be created using remote-sensing data, such as aerial/satellite images
or point clouds [8,9]. By classifying data, buildings can be recognized as such by their
image information or structure, enabling changes to be tracked at the level of individual
objects [10–12]. Object recognition is performed using LiDAR point clouds, resulting in
derivation of vector geometries of buildings [13]. Depending on the sampling rate of
the sensor (point density), there are positional offsets in the derived vector geometries.
Therefore, vector-based change detection is important for many types of primary data,
whether automated or manually surveyed geometries.

Several studies have investigated change detection using different generalized input
products [14–19]. By combining such products with cadastral information it is possible
to significantly increase the strength and usefulness of models [20–22]. However, even
building data from one single provider can vary over time in terms of the chosen geometry
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or modelling of building parts, which may result in extensive non-real changes [23]. Official
providers are also constantly improving their data models and surveying processes, not
only to offer better quality and more accurate data, but also to meet the growing demands
of customers and to create a harmonized data basis to enable national monitoring [24–27].
Although the data has certainly improved over time in many respects, any change in the
acquisition process can result in non-real changes, which are rarely documented in the
data itself [28].

Monitoring of the building stock over time requires a differentiated analysis of changes,
such as new construction, demolition, replacement or building modification (e.g., partial
demolition or extension). However, it is especially difficult to distinguish between modified
and replaced buildings, since in each case a change in geometry has happened. Spatially
accurate change analysis is increasingly being carried out solely on the basis of vector
geometries, such as surveyed footprints from land cadasters or 3D buildings from Level-
of-Detail (LoD) city models [29–31]. In the meantime, such LoD datasets are regularly
updated and can therefore be used for monitoring [32].

1.2. Aim of the Study

When comparing vector geometries of building data, the Common-Area-Ratio
(CAR) [33–35] or the Common-Boundary-Ratio (CBR) [36,37] are used to identify matching
object-pairs on the basis of 2D polygons. These methods have widely varying accuracies
depending on the underlying data and the subject under investigation [38]. In addition,
metrics such as Hausdorff Distance (HDD) [39] or a comparison of Polygon or Line
Segments (PoLiS) [14] are used to determine changes in building polygons. Avbelj’s
paper [14] has already examined how translation, rotation and scaling affect the HDD,
PoLiS and Chamfer distance.

In this paper, we investigate how well these methods are suited for distinguishing
modified and replaced buildings based on vector geometries, and how position deviations
affect the results. In some cases, multiple intersection areas occur for a pair of objects, where
statements about the entire object-pair are insufficient. Therefore, we have developed an
extended line-based matching method, with which multiple intersection areas can be
evaluated individually, which we have called Intersection Boundary Ratio (IBR).

In addition, an important question is how position deviations affect the accuracy of
matching procedures. Therefore, we have developed a novel method to generate defined
position deviations.

In particular, we consider the following three questions:

• Research Question 1 (RQ1): What accuracies and threshold can be expected for the CAR,
CBR, HDD, PoLiS and IBR matching procedures to distinguish between modified and
replaced buildings when detecting changes in building footprints? In case of CAR, CBR
and IBR, we expect thresholds between 50–70% based on Rutzinger’s assumptions [38].

• Research Question 2 (RQ2): When distinguishing between modified and replaced
buildings, is the minimum function more appropriate than the maximum function
for the HDD and PoLiS metrics? Since modified buildings do not match well anyway,
depending on the extent of the modification, we assume that a minimal function is
better to distinguish between modified and replaced buildings.

• Research Question 3 (RQ3): How do position deviations affect accuracy? We assume
that the CBR and IBR matching procedures are more likely to produce inaccurate
results for larger position deviations, since the tolerance values of these methods lead
to mismatches more often.

2. Materials and Methods

In this section, we first show the general workflow of the methodology of our study.
Then we provide an overview of the input data used, the different types of changes and the
matching methods investigated. In addition, we show how the optimal thresholds were
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determined, and how the position deviation of the polygons was generated. The workflow
diagram serves as orientation for the structure of this study (Figure 1).
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Figure 1. Methodology of this study.

2.1. Case study and Input Data

For our study, we used LoD1 (Level of Detail 1) data in CityGML format for the city
of Hamburg as the data basis. In the case of LoD1 data, buildings are represented as
block geometries; i.e., no details, such as the shape of the roof or gables, are shown. The
data only contain the extruded footprint of a building [28]. The LoD1 data used are from
the years 2015 and 2018 and are freely accessible (url: https://transparenz.hamburg.de/,
accessed on 15 November 2021). In addition, airborne orthophotos of different points in
time from Google Earth (url: https://www.google.com/intl/de_de/earth/, accessed on
16 November 2021) were used to identify building changes. This manually determined
change information was used as reference data.

In Germany, the Zentrale Stelle Hauskoordinaten und Hausumringe (ZSHH) is the public
agency responsible for the distribution of building coordinates and footprints. Since 2015,
it has issued annually updated LoD1 datasets for the entire federal territory. In most cases,
the building footprints from the German digital cadastral map (Amtliche Digitale Liegen-
schaftskarte) form the basis for generating these LoD1 buildings; a high positional accuracy
of ±1 m makes this a well-suited basis for our study. The buildings were extruded by
means of height measurements from a laser scanner or photogrammetric survey, whereby
a height accuracy of ±5 m can be expected [40].

In our case, we only use the footprints to allow transferability to 2D datasets. However,
it would be conceivable to evaluate the height information in a subsequent step, which
would enable analyses of floor changes in the case of matching footprints. The evaluation
of the building function would also be conceivable, but since this is not always assigned,
we do not include it in this analysis.

Since we focused our study on the distinction between building modification and
replacement, only building polygons of nonidentical object-pairs were examined. We
did not focus on the distinction between changed (modification or replacement) and
unchanged building pairs. Therefore, in order to identify nonidentical object-pairs, we
chose a simplified approach. If the line segment points of a building were farther than 1 m
from the line segments of the associated building, the pair of buildings was considered as
nonidentical. Thus, in rare cases, nonidentical pairs of objects were actually unchanged
buildings for which minor position corrections had been made. However, since we only

https://transparenz.hamburg.de/
https://www.google.com/intl/de_de/earth/
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wanted to distinguish between replaced and modified buildings, these corrected building
pairs were considered as modifications

The 2015 dataset contained 72,675 objects, and the 2018 dataset 77,301 objects. A
total of 2285 nonidentical object-pairs were examined in this study, indicating a position
deviation of at least ±1 m for identical object-pairs. Figure 2 shows the study area, with the
investigated nonidentical object-pairs highlighted in pink. These pairs of objects represent
either a demolished building that has been replaced with a new construction or the same
building that has been partially extended/deconstructed (modification or in rare cases
position correction). For each nonidentical pair of objects, aerial images were used to
determine whether this represented a replaced or modified building, which served as
a reference.
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2.2. Types of Building Changes

In this investigation, vector geometries of two 2D datasets (here footprints of LoD1)
representing different points in time (T1, T2) were analysed in order to identify changes.

The different types of building changes are exemplarily shown in Table 1. For the
reference objects, only replacement and modification were determined.

2.3. Matching Procedures

Here the matching procedures are briefly presented, with only the method we devel-
oped being described in some detail.

2.3.1. Common Area Ratio (CAR)

In previous studies, pairs of objects to be examined were often identified in a prepro-
cess, based on the degree of overlap, in order to examine them more in-depth in further
steps [34,35,41]. For this purpose, for each object-pair Oij the respective overlap ratio is
calculated, and the lower of these two values is selected:

CAR
(
Oij
)
= min

(
AC,i ∩ AR,j

AC,i
,

AC,i ∩ AR,j

AR,j

)
(1)
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where AC,i are the areas of the objects in the first dataset, and AR,j those of the second.
The intersection of both is represented as AC,i ∩ AR,j. In the case of m:n (many to many)
changes, AC,i or AR,j can also consist of a set of areas of several objects (<AG,m, . . . , AG,n>).
In this case, we checked if the dissolved polygons had a higher matching degree and
then selected the better-matching value. The range of values is from 0 to 1, where 0
corresponds to no match (0%) and 1 to a complete match (100%). A maximum function is
not recommended here, because a value of 100% only indicates that one surface is within
the other.

Table 1. Types of building changes.

Title 1 Time 1 Time 2 Time 1 ∩ Time 2

New construction
(Ø:n) Ø
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2.3.2. Common Boundary Ratio (CBR)

Similar to the CAR, the degree of matching polygon lines (LC,i, LR,j) can be evaluated
for each object-pair. Here the segments at both points in time are examined to determine
whether they coincide within a certain a tolerance range (ε). To do this, the segments of the
objects of the first time-point are intersected with those of buffered segments (Bu f f er(L, ε))
of the second time-point and vice versa. In the old dataset, buildings often incorrectly
included garages, elongated underpasses or overpasses, which led to poor matching results
even when the overlapping area described the same building. In contrast to the CAR, it
is better to determine a maximum function, since the maximum function provides higher
values in the case of modifications or data corrections:

CBR
(
Oij
)
= max

(
LC,i ∩ Bu f f er(LR,j, ε)

LC,i
,

LR,j ∩ Bu f f er(LC,i, ε)

LR,j

)
(2)

where LC,i are the polygon lines in the first dataset and LR,j those of the second. Those line
segments of the first dataset that are within the buffered segments of the second dataset
are described as LC,i ∩ Bu f f er(LR,j, ε) and vice versa. They represent the segment parts
that match one another. Moreover, in the case of m:n changes, LC,i or LR,j can consist of a
set of lines of several objects (<LG,m, . . . , LG,n>). In this case the segments of the dissolved
polygons should be used. Again, the range of values is from 0 to 1, where 0 corresponds to
no match (0%) and 1 to a completely matching object-pair (100%). Examples of CAR and
CBR are shown in Figure 3.
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more difficult when these areas overlap each other, because then the area of intersection 
has both a changed and an unchanged portion. 

For this purpose, we have extended the CBR analysis to consider intersection areas 
individually. Each intersection polygon (𝐼௜௝௞ = 𝐴ா,௞|𝐴ா,௞ ∈ 𝐴஼,௜ ∩ 𝐴ோ,௝) is examined to de-
termine which of its segments (𝐿ா,௞) matches the outlines of both original objects (𝐿஼,௜ and 

Figure 3. Examples of Common Area Ratio (CAR) and Common Boundary Ratio (CBR) for two
footprints from different time points: (a) building at time 1; (b) building at time 2; (c) CAR and CBR
of T1, T2; (d) CAR and CBR of T2, T1. Violet indicates the old area, green is the new area, and gray is
the overlapping area.

2.3.3. Intersection Boundary Ratio (IBR)

The IBR is similar to the CBR with the difference that the overlapping intersection areas
are evaluated individually. This improves accuracy because in some cases more complex
changes have occurred; for example, objects may have been partially deconstructed on one
side and extended on the other (Figure 3). The situation becomes even more difficult when
these areas overlap each other, because then the area of intersection has both a changed
and an unchanged portion.

For this purpose, we have extended the CBR analysis to consider intersection areas
individually. Each intersection polygon ( Iijk = AE,k

∣∣∣AE,k ∈ AC,i ∩ AR,j ) is examined to
determine which of its segments (LE,k) matches the outlines of both original objects (LC,i
and LR,j). In order to be able to take position deviations into account, buffering is also
applied here as a tolerance range (ε):

IBR
(

Iijk

)
=

LE,k ∩ Bu f f er(LC,i, ε) ∩ Bu f f er(LR,j, ε)

LE,k
(3)

In contrast to CAR or CBR (both of which consider a pair of objects as a whole), IBR
allows for a more differentiated analysis of each individual intersection area of an object-
pair. The IBR value is 1 (100%) if all line segments of an intersection area lie within the
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buffered segments of the original object from both time points. As with the other two
methods, if m:n changes occur, the dissolved intersecting areas can be examined to obtain
better-matching values.

Figure 4 shows not only that intersection areas can be analyzed individually, but
also that the percentage of overlap can be considerably higher than with CBR or CAR. It
should be pointed out that the results of IBR and CBR only differ when extension and
deconstruction occur together.
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2.3.4. Hausdorff Distance (HDD)

The Hausdorff distance is used in many applications where the number of points in
two given sets (A, B) is not equal, and therefore no correspondence is given. For each pair
of objects, the polygon points from the first object (ai ∈ A) and the polygon points from the
second object (bk ∈ B) are taken as a given set. The directed Hausdorff distance between A
and B describes the supremum of these point sets, which is the largest distance between
the points of A and the nearest point of B:

→
h (A, B) = max

ai∈A
min
bk∈B
||a− b|| (4)

The maximum of the two suprema (
→
h (A, B),

→
h (B, A)) is the Hausdorff distance,

which is a metric, at least in the mathematical sense, because it fulfills positive definiteness,
symmetry and triangle inequality (for more detail see [39]):

h(A, B) = max
(→

h (A, B),
→
h (B, A)

)
(5)

The minimum value is 0 m, and the maximum value is not greater than the maximum
extent of the largest building polygon in the given dataset (at least in the case of overlapping
pairs of polygons).

Since in our case we wanted to know if the object-pair described the same building,
we also examined the minimum function. With this, we wanted to verify if better-matching
results could be achieved with modified buildings (e.g., in case of removed overpasses):

h(A, B)min = min
(→

h (A, B),
→
h (B, A)

)
(6)
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The unit of the calculated distance is that of the underlying polygons.

2.3.5. Polygon and Line Segments (PoLiS)

The directed PoLiS describes the mean distance of every point of one polygon A
(aj ∈ A, j = 1, . . . , q) to the vertexes (or points) of another polygon B (bk ∈ B, k = 1, . . . , r)
per object-pair (for more details see [14]):

→
p (A, B) =

1
q ∑

aj∈A
min
b∈∂B

∣∣∣∣aj − b
∣∣∣∣ (7)

The weighted sum of the two directed parameters (
→
p (A, B),

→
p (B, A)) is used to obtain

a symmetrized and similar metric:

p(A, B) =
1
2q ∑

aj∈A
min
b∈∂B

∣∣∣∣aj − b
∣∣∣∣+ 1

2r ∑
bk∈B

min
a∈∂A
||bk − a|| (8)

where q and r are used to normalize the unequally distributed number of points of objects A
and B to obtain a weighted average. As with HDD, the minimum is 0 m, and the maximum
is no wider than the widest building in the dataset. One advantage of HDD and PoLiS is
that no additional parameters have to be specified, such as the tolerance range (ε) as in CBR
and IBR.

Again, we want to examine whether the lower value of the directed parameters is
more suitable to better distinguish between modifications and replacement structures:

p(A, B)min = min
(→

p (A, B),
→
p (B, A)

)
(9)

As before, the unit is that of the underlying polygons.
Figure 5 shows that a larger building complex has been constructed over time, although

the elongated sections (marked with an arrow) have not changed in reality. Applying the
maximum function of HDD or weighted sum of PoLiS to this example, the objects involved
would have higher distances, while using the minimum function would result in lower
distances. For example, for HDD, a value of 153 m would be obtained for the marked
object, whereas for HDDmin only 16 m would be obtained. By using the minimum function,
modified subareas would not receive such high values and could be better distinguished
from replaced buildings, which is why we also considered these adjusted parameters.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 9 of 18 
 

 

 

  

(a) (b) (c) 

Figure 5. Example of Hausdorff Distance (HDD) and the minimum function of Hausdorff Distance 
(HDDmin) for a large, changing building complex where the intersection areas have not changed in 
reality: (a) buildings at time 1; (b) buildings at time 2; (c) buildings from time 1 and time 2 are over-
laid. 

2.4. Threshold and Error Determination 
2.4.1. Optimal Threshold 

The optimal thresholds were determined for each matching procedure, which were 
then used to distinguish between modified and replaced buildings (Figure 6). This was 
performed by an iterative approach. For each matching method, a range was determined 
based on the respective minimum and maximum values. Based on the given references of 
building changes (n-modified = 1359; n-replaced = 926), a total error was determined for 
each possible threshold value within the determined range (up to one decimal place), and 
then the threshold value with the lowest error was selected. 

  
(a) (b) 

Figure 6. Schematic examples of a modified building and a replaced building: (a) modified building 
with unchanged intersection area; (b) replaced building with changed intersection area. 

2.4.2. Total Error 
The total error was determined by relating the proportion of incorrectly determined 

building area to the total area of all buildings: 𝑡𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 = ୲୭୲ୟ୪ ୠ୳୧୪ୢ୧୬୥ ୟ୰ୣୟ୤ୟ୪ୱୣ ୢୣ୲ୣ୰୫୧୬ୣୢ ୟ୰ୣୟ ∗ 100, (10) 

2.4.3. User Error 
The user error was determined by relating the area of changes determined by the 

matching procedure to the area of incorrectly determined buildings: 𝑢𝑠𝑒𝑟 𝑒𝑟𝑟𝑜𝑟 = ୳ୱୣ୰ ୠ୳୧୪ୢ୧୬୥ ୟ୰ୣୟ୤ୟ୪ୱୣ ୢୣ୲ୣ୰୫୧୬ୣୢ ୳ୱୣ୰ ୟ୰ୣୟ ∗ 100, (11) 

  

Figure 5. Example of Hausdorff Distance (HDD) and the minimum function of Hausdorff Distance
(HDDmin) for a large, changing building complex where the intersection areas have not changed in
reality: (a) buildings at time 1; (b) buildings at time 2; (c) buildings from time 1 and time 2 are overlaid.
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2.4. Threshold and Error Determination
2.4.1. Optimal Threshold

The optimal thresholds were determined for each matching procedure, which were
then used to distinguish between modified and replaced buildings (Figure 6). This was
performed by an iterative approach. For each matching method, a range was determined
based on the respective minimum and maximum values. Based on the given references of
building changes (n-modified = 1359; n-replaced = 926), a total error was determined for
each possible threshold value within the determined range (up to one decimal place), and
then the threshold value with the lowest error was selected.
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2.4.2. Total Error

The total error was determined by relating the proportion of incorrectly determined
building area to the total area of all buildings:

total error =
total building area

false determined area
∗ 100, (10)

2.4.3. User Error

The user error was determined by relating the area of changes determined by the
matching procedure to the area of incorrectly determined buildings:

user error =
user building area

false determined user area
∗ 100, (11)

2.4.4. Producer Error

The producer error was determined by relating the area of reference changes to the area
of incorrectly determined buildings:

producer error =
reference building area

false determined reference area
∗ 100, (12)

2.5. Generating Position Deviations

Since the given input data have a high positional accuracy of±1 m, additional position
deviations were added in a further step. With these simulated errors, a transferability to less
well-matched datasets should be made possible; we also examined how position deviations
affect the accuracy of the investigated matching methods.

For this purpose, the segments of the building polygons were shifted laterally in 0.25 m
increments up to ±5 m. The displacement was random and followed a Gaussian normal
distribution, which is why we called this procedure ‘Random Bell Error Generator’ (RBEG).
Each building polygon was divided into several segments, whereby only segments that
changed their direction by at least 20◦ were separated. After the segments were shifted
laterally with respect to their overall direction, they were extended until they intersected
with the original neighboring segment to reform a closed polygon. Subsequently, resulting
overlays were removed.

Figure 7 shows the process schematically on a building footprint. Figure 8, on the
other hand, shows an example from the generated dataset. It should be noted that the
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random value is normally distributed, so that, although infrequent, expected displacement
values can be significantly exceeded.
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4.75 m and 5 m) are overlaid. The red lines show the original polygons.

This process was repeated ten times for each width (0.25 m, 0.5 m, . . . , 4.75 m and
5 m) due to the random value generation. Subsequently, an optimal threshold value was
determined from the ten datasets of each width, which in turn was used to form an average
threshold value per width.

This procedure was applied to all investigated matching methods, from which could
be determined to what extent positional inaccuracies affected the matching results. For the
CBR and IBR matching methods, the buffer tolerance ranges (ε) were increased according
to the increasing deviation.
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3. Results

We reviewed the studies on CAR, CBR, PoLiS and HDD to compare pairs of objects
corresponding to a replaced or modified building. This section first presents the determined
distributions of replacements and modifications that resulted from the individual matching
procedures. Furthermore, the respective optimal threshold values and the accuracies
achieved with them are presented. Finally, it is shown to what extent position deviations
affect the accuracies of the investigated matching methods.

3.1. Distributions

A total of 2285 nonidentical pairs of objects were included in the reference dataset, of
which 1359 were modified buildings and 926 were replaced buildings. For these object-
pairs, values were calculated for all investigated matching methods, whose distribution
was then graphically represented in the form of histograms (Figure 9).
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IBR) and with distance rates (HDD, HDDmin, PoLiS and PoLiSmin) because high match 
rates are comparable to low distances. 

Figure 9. Histograms of the investigated matching methods: blue bars indicate modified buildings,
red bars are replaced buildings, and dark red bars are the overlay of blue and red bars; (a) Com-
mon Area Ratio (CAR); (b) Common Boundary Ratio (CBR); (c) Intersection Boundary Ratio (IBR);
(d) Hausdorff Distance; (e) Minimum function of Hausdorff Distance (HDDmin); (f) Polygon and
Line Segments (PoLiS); (g) Minimum function of PoLiS (PoLiSmin).

In these histograms, it can be seen that for CAR, IBR and CBR, modified buildings
more often obtained higher values, and lower values are more indicative of replacement
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buildings. HDD (min) and PoLiS (min), on the other hand, show the opposite picture, with
lower values indicating a modified building, and replacement buildings are more likely
to be expected with increasing values. In addition, it can be seen that CAR and both HDD
variants have a comparatively higher overlap of building modifications and replacements,
which is shown as dark red bars. It is noteworthy that the minimum function performs
significantly better in the comparison of the HDD variants, whereas the two PoLiS variants
show a similar distribution.

3.2. Optimal Thresholds and Accuracies

Based on the calculated values, the optimal thresholds for each matching procedure
were determined, as described in Section 2.4.

If all of the 2285 building changes were determined as modifications, the total error
would be 27%. If, in contrast, all changes were determined to be replacement buildings, the
total error would be 73%; this is consistent for all matching methods. In Figure 10, these
extrema are reversed for the matching methods with percent match rates (CAR, CBR and
IBR) and with distance rates (HDD, HDDmin, PoLiS and PoLiSmin) because high match
rates are comparable to low distances.
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Figure 10. Overview of the determination of the optimal threshold values of all matching methods.
For better comparability, the values of PoLiS (POL) and PoLiSmin (POLmin) are shown as decimeters.

The detailed results are shown in Table 2, which shows the threshold values as well
as the resulting accuracies. In addition to the total error, the accuracy was also divided
according to the two classes investigated (replaced or modified building). A distinction
was made between area incorrectly determined in the reference data (Prod. error) vs. area
incorrectly determined by the matching procedures (User error). For example, for PoLiSmin,
the total error is 8.3%, with 17.7% of the reference areas being incorrectly identified as
replaced buildings, and 6.3% of the identified buildings being incorrect. This means that
about every sixth replaced building was not recognized as such, and out of the buildings
that had been determined to have been replaced, about one out of every 16 was false.
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Table 2. Thresholds and accuracies of investigated matching methods for distinguishing modified
from replaced buildings based on 2285 reference areas.

Optimal
Threshold

Total Area
Error [%]

Replaced Area Error [%] Modified Area Error [%]

User Error Prod. Error User Error Prod. Error

CAR 78% 13.0 6.5 16.9 27.9 11.6

CBR 72% 5.9 5.5 15.7 7.2 2.4

IBR 74% 5.6 4.4 12.2 9.0 3.2

HDD 18.1 m 25.3 14.9 38.4 47.9 20.6

HDDmin 6.9 m 19.1 9.8 24.8 38.4 17.0

PoLiS 1.8 m 12.7 7.5 20.1 25.7 10.0

PoLiSmin 0.9 m 8.3 6.3 17.7 14.1 4.9

3.3. Thresholds and Accuracies of Generated Deviations

The position deviations generated with RBEG as described in Section 2.5 were exam-
ined with the different matching methods. Since the minimum functions of PoLiS and HDD
(PoLiSmin and HDDmin) provided better results, only these were used in this test. Based
on the generated deviations, the optimal thresholds were determined as shown in Table 3.

Table 3. Optimal thresholds per deviation distance of generated errors.

Deviation
Distance (m)

Optimal Threshold

CAR (%) CBR (%) IBR (%) HDDmin (m) PoLiSmin (m)

0.25 78.6 73.6 72.3 7.4 1.10

0.50 78.6 77.9 73.2 7.7 1.28

0.75 77.1 77.8 72.7 8.9 1.47

1.00 74.2 78.0 73.1 8.9 1.63

1.25 72.9 77.2 74.5 8.3 1.55

1.50 70.4 76.4 73.0 7.9 1.89

1.75 70.0 74.4 73.0 7.8 2.09

2.00 65.5 81.0 75.3 8.0 2.32

2.25 62.1 79.6 75.2 7.6 2.46

2.50 59.9 78.2 75.7 7.7 2.60

2.75 59.0 77.3 76.2 8.3 2.77

3.00 59.5 78.4 77.7 8.3 3.05

3.25 58.7 77.6 75.3 8.9 3.17

3.50 55.2 78.8 77.5 10.2 3.30

3.75 57.3 76.6 74.0 8.3 3.43

4.00 52.7 79.0 79.0 9.0 3.60

4.25 51.1 76.5 76.3 8.9 3.77

4.50 52.9 78.1 75.8 10.3 4.09

4.75 48.8 78.6 75.2 11.9 4.31

5.00 46.8 81.3 77.6 11.1 4.25

Using the optimal threshold values in Table 3, the total errors were determined for
the investigated matching methods. Figure 11 shows that for all matching methods the
total error increases with increasing position deviation. At position deviations of 1.75 m or
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higher, the small advantages of CBR and IBR gradually decreased so that they converged
with PoLiSmin. The offset between CAR and PoLiSmin, however, remained constant with in-
creasing deviation. The total error of HDDmin increased comparatively less with increasing
deviation, but showed generally lower accuracies.
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increasing deviation. The total error of HDDmin increased comparatively less with increas-
ing deviation, but showed generally lower accuracies. 

Table 3. Optimal thresholds per deviation distance of generated errors. 

Deviation Dis-
tance (m) 

Optimal Threshold 
CAR (%) CBR (%) IBR (%) HDDmin (m) PoLiSmin (m) 

0.25 78.6 73.6 72.3 7.4 1.10 
0.50 78.6 77.9 73.2 7.7 1.28 
0.75 77.1 77.8 72.7 8.9 1.47 
1.00 74.2 78.0 73.1 8.9 1.63 
1.25 72.9 77.2 74.5 8.3 1.55 
1.50 70.4 76.4 73.0 7.9 1.89 
1.75 70.0 74.4 73.0 7.8 2.09 
2.00 65.5 81.0 75.3 8.0 2.32 
2.25 62.1 79.6 75.2 7.6 2.46 
2.50 59.9 78.2 75.7 7.7 2.60 
2.75 59.0 77.3 76.2 8.3 2.77 
3.00 59.5 78.4 77.7 8.3 3.05 
3.25 58.7 77.6 75.3 8.9 3.17 
3.50 55.2 78.8 77.5 10.2 3.30 
3.75 57.3 76.6 74.0 8.3 3.43 
4.00 52.7 79.0 79.0 9.0 3.60 
4.25 51.1 76.5 76.3 8.9 3.77 
4.50 52.9 78.1 75.8 10.3 4.09 
4.75 48.8 78.6 75.2 11.9 4.31 
5.00 46.8 81.3 77.6 11.1 4.25 
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Figure 11. Total errors per distance of generated position deviations for distinguishing modified from
replaced buildings.

4. Discussion

The results in Section 3.2 have shown that for the given study area, which contains
footprints with a high positional accuracy of ±1 m, CBR and IBR are the most accurate
matching methods to distinguish between modified and replaced buildings. The total
error of CBR and IBR is 5.9% and 5.6%, respectively, with optimal thresholds of 72% and
74%. With regard to the first research question (RQ1), these thresholds are slightly above
expectations, but this is probably due to the precision of the data source. However, these
thresholds are not far from Rutzinger’s assumption, which estimated a range up to 70% for
most applications [38]. Compared to CBR, IBR only provides better results when building
demolition and expansion occur simultaneously in a modification. Since this is rarely the
case in the given study area, the overall difference of IBR to CBR is minimal. The PoLiS
metric has a total error of 12.7%, which is about twice as large. The total error of CAR is about
the same (13.0%). HDD, in contrast, is less suitable for differentiation, since its total error is
quite high (25.3%). Avbelj also found that HDD is much more sensitive to deviations than
PoLiS [14], which is consistent with our findings.

In addition, it was shown in Section 3.2 that to distinguish modification from re-
placement, the minimum functions of PoLiS and HDD (PoLiSmin and HDDmin) are more
accurate than the maximum functions, thus answering the second research question (RQ2).
PoLiSmin has a total error of 8.3% which is not a big difference from that of CBR and IBR.
On the other hand, HDDmin has a total error of 19.1%, which is quite inaccurate.

To address the third research question of how position deviations affect accuracy
(RQ3), we generated random position deviations. In Section 3.3. we have shown that
PoLiSmin converges to the accuracies of CBR and IBR from a deviation of 1.75 m and
greater. This confirmed our assumption in research question 3 that with increasing position
deviation, CBR and IBR are less suitable for differentiation due to the tolerance ranges. At
a deviation of 2.75 m, CBR, IBR and PoLiS reach a total error of 15%, which is considered
insufficiently accurate. Thereby, for CAR, a threshold value in the range of 78.6% to 46.8%
was obtained with increasing deviation, which is similar to Rutzinger’s observation of
70% to 50% [38]. For CBR and IBR, on the other hand, the threshold value increased
with increasing deviation, so that the threshold values for the original data (no additional
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deviation) were 72% and 74%, respectively, whereas for higher deviation (±5 m) these were
about 81% and 78%. However, the range of these thresholds is much smaller compared to
CAR. For PoLiSmin, the determined thresholds are very similar to the position deviation
(given standard deviation of ±1 m plus additional generated deviation), which is an
advantage when the standard deviation is known.

Overall, it can be said that CBR and IBR are the more accurate methods for distinguish-
ing between modified and replaced buildings for position deviations up to 1.75 m. Since
CBR needs about half the computation time of IBR, it is preferred. A significant advantage
of PoLiSmin and HDDmin is that no additional parameters, such as the buffer tolerance
(ε) as in CBR and IBR, are required. If different data sources with different or unknown
position accuracies are compared, PoLiSmin is therefore also recommended. In addition,
PoLiSmin requires half the computation time of CBR (and a quarter of that of IBR), which is
advantageous for larger datasets. CAR and HDD, on the other hand, are not recommended
due to the high level of inaccuracies even with small position deviations.

To be able to detect unchanged (identical) buildings, the unadjusted PoLiS metric
would be more useful than PoLiSmin. The thresholds at which a building can be considered
unchanged would need to be determined in another study.

5. Conclusions

In this paper we have investigated how well building modifications can be distin-
guished from replaced buildings based on vector geometries. For this purpose, we exam-
ined 2285 building pairs based on dataset changes in a large study area in Hamburg.

We manually determined via aerial images whether the nonidentical building pairs
were altered (modified) buildings or demolished and newly constructed buildings (replace-
ment buildings), which served as a reference. Using this reference data, we examined
various matching methods and determined their accuracy as well as the optimal thresholds
for distinguishing between modified and replacement buildings.

We found that the matching methods of Common Area Ratio (CAR), Hausdorff Dis-
tance (HDD) and Point Line Segments (PoLiS) are less suitable for distinguishing between
modification and replacement, because the building pairs contained too many changes (total
error: 13.0%, 25.3% and 12.7%, respectively). In contrast, the line-based matching methods of
Common Boundary (CBR) and the Intersection Boundary Ratio (IBR), which we developed,
were able to produce much more accurate results (total error: 5.9% and 5.6%, respectively).

HDD and PoLiS are very sensitive to changes, and, as we investigated nonidentical
pairs of buildings, we tested these methods to determine whether a minimum function
is better suited for differentiation. For PoLiSmin, better results were obtained (total error:
8.3%), which was not the case for HDDmin (total error: 19.1%).

Since the underlying dataset was very accurate, we also investigated how much posi-
tion deviations affect the accuracies, which should allow transferability to less well-matched
datasets. To address this question, we developed a novel method to generate position
deviations. In addition, the threshold values determined in this test can be used as a basis
for other investigations. We gradually shifted the line segments laterally in a range of 0 to
5 m, with the position offset following a Gaussian normal distribution. This showed that up
to a position offset of 1.75 m, CBR and IBR have the best accuracies. However, the minimum
function of PoLiS is comparable and achieves the same accuracies as the two previously
mentioned methods from 2.75 m and higher. For larger position deviations, however, the
methods have a total error of over 15% and are therefore increasingly inaccurate.
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