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Abstract: Extracting buildings and roads from remote sensing images is very important in the area
of land cover monitoring, which is of great help to urban planning. Currently, a deep learning
method is used by the majority of building and road extraction algorithms. However, for existing
semantic segmentation, it has a limitation on the receptive field of high-resolution remote sensing
images, which means that it can not show the long-distance scene well during pixel classification,
and the image features is compressed during down-sampling, meaning that the detailed information
is lost. In order to address these issues, Hybrid Multi-resolution and Transformer semantic extraction
Network (HMRT) is proposed in this paper, by which a global receptive field for each pixel can be
provided, a small receptive field of convolutional neural networks (CNN) can be overcome, and the
ability of scene understanding can be enhanced well. Firstly, we blend the features by branches of
different resolutions to keep the high-resolution and multi-resolution during down-sampling and
fully retain feature information. Secondly, we introduce the Transformer sequence feature extraction
network and use encoding and decoding to realize that each pixel has the global receptive field. The
recall, F1, OA and MIoU of HMPR obtain 85.32%, 84.88%, 85.99% and 74.19%, respectively, in the
main experiment and reach 91.29%, 90.41%, 91.32% and 84.00%, respectively, in the generalization
experiment, which prove that the method proposed is better than existing methods.

Keywords: segmentation; high resolution; transformer; deep learning

1. Introduction

Land resources have the following qualities as carriers of human existence and devel-
opment: nonrenewable resources, fixed location, and imbalanced distribution [1]. With the
population and economy expanding at such a rapid pace, the amount of available land
resources is gradually diminishing. In modern society, buildings and roads are the basic
components of urban layout, and accurately extracting buildings and roads from remote
sensing satellite images helps to realize the macro-planning of the city [2]. The research
methods for remote sensing images can be divided into two parts: traditional theoretical
calculation methods and artificial intelligence big data analysis methods. The traditional
theoretical calculation method is to extract image texture features through theoretical cal-
culation of each pixel of the image, so as to realize remote sensing image segmentation
and target extraction. Although the traditional method has reached a certain standard in
terms of segmentation accuracy, it needs to manually set the calculation parameters, which
consumes human resources and material resources and lacks in calculation efficiency. On
the contrary, the deep learning method in artificial intelligence can complete the end-to-end
remote sensing image segmentation [3,4] and realize the high-accuracy automatic image
segmentation function without manual intervention [5,6]. The dividends brought by the
big data era have made a qualitative leap in computing efficiency, which results in that
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the computing efficiency has been greatly improved compared to traditional methods.
Therefore, it is of great importance to use the deep learning method in artificial intelligence
to achieve semantic segmentation of remote sensing images.

In the past few years, there have been many works on the semantic segmentation of
remote sensing images. For example, Yuan et al. [7] calculated the texture features and
spectrum of the image using local spectral histograms, linearly combined representative
features using each local spectral histograms, classified the pixel by weight estimation,
and finally realized the segmentation of images. This method could greatly reduce the
feature dimension of the network through subspace projection, and realize that the input
dimension of the network could be selected adaptively. However, the disadvantage is
that only spectral information is used in the calculation process. Li et al. [8] proposed a
watershed algorithm for edge embedding markers, which was used for the segmentation
of high-resolution remote sensing images. The method results in improvements in the two
key steps of segmentation (one is label extraction and the other one is pixel labeling), which
could improve the accuracy of edge segmentation in high-resolution images. Furthermore,
this method used an edge embedding detector to extract edge information with confidence,
which was usually used in situations with weak boundaries and improved the positioning
accuracy of target boundaries. Although the accuracy of the segmentation boundary had
been improved, there are also problems that the detailed feature information is complex
and the interference factors make it difficult to obtain information. Fan et al. [9] found that
these remote sensing segmentation methods rarely use prior information. As a result, he
proposed a new approach based on prior information. A single-point iterative weighted
fuzzy C-means clustering algorithm was used in this method, which solved the data
distribution and the effect of random initialization of cluster centers on the quality of
clustering. The above feature segmentation method can divide remote sensing images
effectively, but there are also problems that exist, such as weak noise resistance, slow speed
of segmentation, manual parameter design, etc., which cannot be used for the task of
automatically segmenting large amounts of data.

Current deep learning is still under development in the area of building and road
extractions. Panboonyuen et al. [10] proposed an enhanced deep convolutional encoding
and decoding network for road segmentation of remote sensing images, combining ELU
activation function [11] and SegNet network [12] to form an end-to-end segmentation
network, and finally through optimizing indicators and removing false road objects to
further improve the overall effect. However, for this method, fewer applications of con-
tinuous feature information are used when extracting roads from remote sensing images,
which led to the interference map and fracture area. Aiming at the problem of loss of
detailed information during the down-sampling process, Sun et al. [13] offered a new
feature fusion strategy based on a full convolutional network with ultra-high resolution
image segmentation, which maximized the fusion of deep-level semantic features and
shallow-level detail information. Combining with this model, the effective digital surface
model was proposed, and the information of high-resolution remote sensing images was
extracted, which improved the accurate segmentation of the full convolutional network.
However, in remote sensing image segmentation, there were problems that the scale of
the target segmentation was inconsistent and the scale of information had not been mined.
In order to solve the problem, Liu et al. [14] proposed a multi-channel deep convolutional
neural network to alleviate the loss of spatial and scale features of segmented targets in
images. Qi et al. [15] proposed a multi-scale convolution and attention mechanism based
on a segmentation model. The attention mechanism, on the other hand, could only capture
the local receptive field. Li et al. [16] proposed to use a two-way attention mechanism
network for semantic segmentation of remote sensing images. One is focused on the spatial
semantic information in the feature map, and the other is on the associated information
between channels. Combining the two-way attention information could effectively improve
the accuracy of segmentation. Lan et al. [17] proposed a global context road automatic
segmentation neural network for road segmentation under complex background and field
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of view occlusion. In the network, a residual cavity convolutional network was used
to provide a wide receptive field. Although with the multi-scale information of a larger
receptive field, for the network, the relevance of the middle layer could not be ignored.
He et al. [18] proposed a hybrid first-order and second-order attention network to enhance
the relevance of feature information in the middle of the network.

In summary, for the above remote sensing image semantic segmentation methods [7–18]
in deep learning, satisfactory results have been achieved. At present, in most semantic seg-
mentation networks, down-sampling of the convolutional neural network (CNN) is used to
extract features. Feature maps are compressed many times during extraction, which results
in the loss of details. Up-sampling by feature maps with missing detailed features makes
it difficult to restore feature maps with high-resolution and classify resolution accurately.
In the process of feature extraction by deep convolutional networks, the receptive field is
limited. Although a larger receptive field can be obtained by the use of hollow convolution
and feature pyramids, the receptive field is still local, understanding of long-distance scenes
cannot be achieved, and pixels cannot be classified precisely. To solve these problems, a Hy-
brid Multi-resolution and Transformer semantic extraction Network (HMRT) is proposed
in this study. In general, this work has made three contributions: (1) The multi-resolution
semantic extraction branch is constructed. In this structure, branches of different resolutions
conduct feature fusion, which not only ensures that high and multi-resolution are kept
during the down-sampling process but also ensures that feature information is retained.
(2) The Transformer sequence feature extraction network is introduced. In this network,
each pixel with a global receptive field is realized by the use of encoding and decoding,
and in the meantime, the location information of the pixel is overlain. The small receptive
field of the convolutional neural network can be overcome and the understanding of a
long-distance scene can be improved. (3) Feature Channels Maximum Element is proposed
to strengthen the class location information, which can effectively improve the accuracy of
segmentation.

2. Methodology

In order to solve the two problems of the loss of details caused by scale compression in
the down-sampling process and the lack of long-distance understanding due to the limita-
tion of the receptive field, this paper proposes a Hybrid Multi-resolution and Transformer
semantic extraction Network (HMRT). The overall framework of the HMRT is shown in
Figure 1. The overall framework of the HMRT proposed in this work is divided into two
parallel branches. The first branch provides the network with different resolution feature
maps. The feature maps of different resolutions are divided into 2 times down-sampling,
4 times down-sampling, and 8 times down-sampling. There are 3 different stages in the
down-sampling process of each resolution feature map. Each stage will map the channel of
the feature map and increase the dimension, and the number of channels are 64, 128, and
256, respectively. Finally, the three feature maps of different resolutions are cross-fused. In
the process of feature map cross-fusion, the feature maps of different scales are sampled
and restored to the input image size, so that the second branch can use these feature maps
directly when the features are merged. The second branch mainly uses a combination of
convolutional neural networks and transformers to extract semantic information from the
global receptive field of the feature map. First, it extracts the local feature map information
of the input image through the convolutional neural network and obtains the 16 times
down-sampled feature map. Next, unlike the current semantic segmentation network, it
uses the Transformer method to continue to encode and decode the 16 times down-sampled
feature map. The advantage of the Transformer encoding and decoding method is to make
the entire feature map perform a global receptive field, which overcomes the limitation
of the receptive field caused by the small convolution kernel of the convolutional neural
network. In addition, the position information of each pixel in the feature map is introduced
in the encoding process, so that each pixel adds semantic information in the position dimen-
sion. In the decoding process, the category high-dimensional mapping matrix is used as the
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query matrix, and the key-value matrix and the numerical matrix are from the output of the
Transformer encoding layer. The structure diagram of the HMRT is shown in Figure 1, and
there are two different dimensional transformations in the network layer. The dimension of
the 3-dimensional feature map indicates the quantity of channels, the height and width of
the feature map. In the 2-dimensional feature map, N represents the number of categories,
and D represents the hidden layer mapping dimension of the Transformer encoding and
decoding network. The upper half of the figure is the multi-resolution semantic extraction
branch, and the lower half is the Transformer semantic extraction branch.
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Figure 1. Hybrid multi-resolution and Transformer semantic extraction network framework.

2.1. Multi-Resolution Semantic Extraction Branch

The significance of the multi-resolution semantic extraction branch is that in the down-
sampling feature extraction process of the convolutional neural network, the maximum
pooling layer or the 3× 3 convolution kernel with a sliding convolution stride of 2 is usually
used for feature map length and width compression. Although rich semantic information is
obtained in this way, it is inevitable that a lot of detailed information is discarded. In order
to intuitively understand the differences in the feature map compression process, we show
three feature compression ways, they are: (1) convolution with a 3× 3 convolution kernel,
a stride of 1, and a padding of 1. (2) Convolution with a 3× 3 convolution kernel, a stride
of 2, and a padding of 1. (3) The maximum pooling with a window of 2× 2 size and a stride
of 2. The visualization effects of the three feature compression ways are shown in Figure 2,
Figure 2a shows the convolution with a stride of 1, Figure 2b shows the convolution with a
stride of 2, Figure 2c shows the maximum pooling with a stride of 2. The size of the input
picture demonstrated in Figure 2 is 512× 512.

As is shown in Figure 2, the convolution with a stride of 1 is the most sufficient for
feature extraction, almost retaining all the feature details in the original image, and the
output feature map size is consistent with the input image specification (512× 512). In the
feature extraction process of the convolution operation with a stride of 2, the size of the
output feature is 256× 256, which is compressed to half of the original input image. When
comparing Figure 2b with Figure 2a, it is not difficult to see that Figure 2b has significantly
less feature information than Figure 2a. Then, compare the output result of the maximum
pooling feature compression in Figure 2c with Figure 2a,b, the image in Figure 2c appears
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jagged and the loss of feature information is more serious than that of Figure 2b. Finally,
we conclude that the semantic information expression capabilities of feature compression
are as follows: the convolution with a stride of 1 is greater than the convolution with a
stride of 2, and the convolution with a stride of 2 is greater than the maximum pooling
operation with a stride of 2.

(a) (b) (c)

Figure 2. Different feature map compression visualization effects: (a) convolution with a stride of 1
(b) convolution with a stride of 1 (c) maximum pooling with a stride of 2.

At present, most of the current convolutional neural networks need to use the maxi-
mum pooling operation with a stride of 2 and use the convolution operations with a stride
of 2 repeatedly in the feature extraction process, which will lead to the loss of detailed
information in the feature map [19,20]. In order to overcome this difficulty, this section
proposes a multi-resolution semantic extraction branch to provide rich multi-resolution
feature maps for the network. The multi-resolution semantic extraction branch proposed
in this section is divided into three branches. The three branches use the same input, but
the input image is down-sampled at different multiples to obtain feature maps of different
resolutions. The three feature maps with different resolutions are 2 times down-sampling,
4 times down-sampling and 8 times down-sampling.

The branch structure of multi-resolution semantic extraction is shown in Figure 3, the
input of the whole branch is a picture of 3× H ×W size. The first branch in Figure 3 is
2 times down-sampling, consisting of a residual module with a stride of 2 and two residual
modules with a stride of 1. The second branch in Figure 3 is 4 times down-sampling,
consisting of two residual modules with a stride of 2 and a residual module with a stride
of 1. The third branch in Figure 3 is 8 times down-sampling, consisting of three residual
modules with a stride of 2. Each branch is composed of three residual modules, and the
three residual modules will gradually increase the number of channel mapping during the
down-sampling process. The number of channel mapping is 64, 128 and 256, respectively.
After the three branches pass through the residual modules with different strides, the down-
sampling feature maps of 2 times, 4 times and 8 times are obtained, respectively. Next, the
feature maps need to be gathered and fused. However, the resolution of the feature maps is
inconsistent, and it needs to be standardized to the same level. Therefore, the feature maps
need to be up-sampled, and the multiple of the up-sampling is the inverse transform of the
down-sampling multiple, which are 2 times up-sampling, 4 times up-sampling, and 8 times
up-sampling, respectively. After sampling on the three branches, feature maps are restored
to the size of the input image and then correspondingly added and fused in the channel
dimension to obtain a feature map of 256× H ×W size. Finally, 1× 1 convolution is used
to map the number of channels of semantic information feature maps containing multiple
resolutions to the number of categories N that can be learned by the model. As a result,
the multi-resolution semantic extraction feature map (N × H ×W) of category information
is obtained.
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Figure 3. Structure diagram of multi-resolution semantic extraction branch.

Many excellent CNNs have appeared in recent years, including ResNet [21], VGG [22]
and GoogLeNet [23]. After considering the amount of parameters and network accuracy,
this work adopts the ResNet-18 basic module as the residual block in the three branches.
The structure of the two residual modules in Figure 3 is shown in Figure 4. This work
uses residual modules with two kinds of strides, the forward propagation of the residual
module with a stride of 1 is shown in Equation (1).

Xout = σ(β(Conv3×3(β(σ(Conv3×3(X))))) + X), (1)

where Conv3×3 is a 3 × 3 convolution with a stride of 1, β is BN, σ is a ReLU activation
function.

The forward propagation of the residual module with a stride of 2 is shown in
Equation (2).

Xout = σ(β(Conv′3×3(β(σ(Conv3×3(X))))) + X), (2)

where Conv3×3 is a 3× 3 convolution with a stride of 2, β is BN, σ is a ReLU activation
function, Conv′3×3 is a 3× 3 convolution with a stride of 1.

3×3  Conv

3×3  Conv

BN 、ReLU

BN

ReLU

F(X)

F(X)+X

X

X

Identity mapping

Figure 4. Structure diagram of ResNet-18 residual module.
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The specific structure of the multi-resolution semantic extraction branch is shown in
Table 1. The table shows the parameter settings of the six stages (input, first stage, second
stage, third stage, feature convergence and output) of the branch.

Table 1. The specific structure of multi-resolution semantic extraction branch.

Stages Number of
Channels

2 Times
Down-Sampling Branch

4 Times
Down-Sampling Branch

8 Times
Down-Sampling Branch

Input 3 3 × H ×W
The first stage 64 Convolution stride: 2 Convolution stride: 2 Convolution stride: 2

The second stage 128 Convolution stride: 1 Convolution stride: 2 Convolution stride: 2
The third stage 256 Convolution stride: 1 Convolution stride: 1 Convolution stride: 2

Feature convergence 256 2 times up-sampling 4 times up-sampling 8 times up-sampling
N 1 × 1 convolution changes the number of channels

Output N Accumulate to obtain the feature maps of N × H ×W size

2.2. Transformer Semantic Extraction Branch

The significance of the Transformer semantic extraction branch is that the small recep-
tive field of ordinary convolutional neural networks causes a lack of long-distance scene
understanding. Although there have been many methods to improve the problem of small
perception fields, such as enlarging the convolution kernel and using atrous convolution,
they all have certain drawbacks. On the one hand, after enlarging the convolution kernel,
the amount of model parameters and model calculations will increase, which will increase
a lot of computational overhead. It is not a good choice in the case of lack of time and
limited computing resources. On the other hand, although the use of atrous convolution
can expand the receptive field of the original convolution kernel without adding addi-
tional calculations, the atrous convolution is filled with 0 when the convolution kernel is
expanded, resulting in loss of internal details. The atrous convolution is more friendly to
the extraction of large target objects and can capture the long-distance dependence of large
target objects, but the advantages of small target objects are not obvious enough. Since
the 0 padding used by the convolution kernel affects the continuity of the convolution
kernel in the feature extraction process, small target objects are split or ignored, which
affects the effectiveness of small target object extraction. The change in the size of the
receptive field plays a big role in the feature extraction process. A convolution kernel with
a large receptive field can extract the long-distance dependence of a large target, while a
convolution kernel with a small receptive field can extract the complete features of a small
target object. Taking the dimension of the convolution kernel width as an example, the
derivation process of the receptive field is shown in Equation (3).

K′ = K + (K− 1)× (d− 1), (3)

where K is the size and width of the convolution kernel, d is dilation rate, K′ is the size of
the receptive field.

In order to reflect the difference of the receptive fields conveniently and intuitively,
this work designs different sizes of convolution kernels and different sizes of dilation rates
for visualization. The comparison of the receptive fields with different dilation rates and
convolution kernels is shown in Figure 5.

It can be seen that the current semantic segmentation networks have limitations in
the receptive field, so this work combines the Transformer method with global receptive
fields [24–28] to deeply mine the semantic information of the feature maps. On this basis,
a hybrid convolutional neural network (ResNet-18) and a Transformer semantic extraction
branch based on Transformer encoding and decoding are constructed.
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(a) (b) (c)

Figure 5. Comparison of different void rates and convolution kernel receptive fields. (a) Receptive
field of 3× 3 convolution kernel; (b) receptive field of 5× 5 convolution kernel; (c) receptive field of
5× 5 convolution kernel with a dilation rate of 2.

2.2.1. The Overall Framework of Transformer Semantic Extraction Branch

The overall framework of the Transformer semantic extraction branch is composed
of a hybrid convolutional neural network (backbone network) and Transformer encoding
and decoding modules. The structure of this branch is shown in Figure 6, D in the figure is
the mapping dimension, and N is the number of categories. Firstly, the backbone network
adopts ResNet-18 with a sliding window to extract features. Secondly, the backbone
network performs 16 times down-sampling, flattening the feature map in the width and
height dimensions to obtain a feature map with a dimension of (D, H/16, W/16). Next,
we add the obtained feature map to the position coding matrix of the same size and input
the result into the Transformer coding module for global coding. The number of times the
encoding module repeats the encoding is set to 6. Corresponding Transformer decoding
is performed after encoding, and a total of 6 decoding layers are set. The query matrix
of the first decoding layer is provided by the category matrix and the query matrix after
the second layer is the output of the previous decoding layer. In addition, the key-value
matrix and the numerical matrix are also the output of the decoding matrix of the previous
layer. After Transformer encoding and decoding, the feature map with a dimension of (H,
H/16, W/16) is outputted. Then, the last dimension of the feature map is flattened into
two dimensions to obtain a feature map (H, H/16, W/16) with the number of channels of
category N. Next, the new feature map is up-sampled 4 times to obtain the feature map
with a dimension of (H, H/4, W/4). The reason for using 4 times up-sampling is to make
the size of the feature map consistent with the convolution block 1 of the backbone network.
Since the feature map of the convolution block 1 is used to enrich position information, the
fusion of the feature map can help position restoration. Finally, the feature map needs to
be restored to the input image size to achieve pixel-level classification. In the restoration
process, the feature map is up-sampled 4 times to obtain the feature map.

Transformer
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Figure 6. Structure diagram of Transformer semantic extraction branch.
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2.2.2. The Feature Extraction of Backbone Network

Transformer semantic extraction branch proposed in this section uses a convolutional
neural network as the backbone network for feature extraction. ResNet-18 is used to extract
the deep semantic information of the image, but the structure of ResNet-18 used in this
paper is slightly different from the structure in the original paper.

As shown in Table 2, after the picture of 512× 512 size passes through the convolu-
tion block 1, convolution block 2, convolution block 3, and convolution block 4 that are
consistent with the original paper, a feature map of 32× 32 size can be obtained. Next, the
network maintains this resolution and uses convolution to deepen the extracted features.
Convolution deepening is completed by convolution block 5 and convolution block 5 is
a 3× 3 convolution with a stride of 1 and 256 channels. The final output feature map is
1/16 of the size of the input image, which is twice as large as the output size of the original
backbone network. This maintains a large resolution feature map, which is conducive to
the extraction of richer feature information from Transformer global features. In addition,
the number of channels of the output feature map is also reduced by half. The reason is that
the Transformer connected to the backbone network still has a high-dimensional mapping
channel when it continues to encode and decode. The reduction in the number of channels
in the backbone network can reduce a certain amount of parameters.

Table 2. The specific structure of the backbone network ResNet-18.

Modules The Size of the
Feature Map ResNet-18

Input 512 × 512 -

convolution block 1 256 × 256 7 × 7, Number of channels: 64, Stride: 2, padding
3 × 3, Maximum pooling layer, Stride: 2

convolution block 2 128 × 128 3 × 3, Number of channels: 64, Stride: 2
3 × 3, Number of channels: 64, Stride: 1

convolution block 3 64 × 64 3 × 3, Number of channels: 128, Stride: 2
3 × 3, Number of channels: 128, Stride: 1

convolution block 4 32 × 32 3 × 3, Number of channels: 256, Stride: 2
3 × 3, Number of channels: 128, Stride: 1

convolution block 5 32 × 32 3 × 3, Number of channels: 256, Stride: 1
3 × 3, Number of channels: 128, Stride: 1

2.2.3. Transformer Encoding and Decoding

Transformer encoding and decoding was first proposed by Vaswani et al. [29] for nat-
ural language processing. This method extracts global information from the input feature
map. Inspired by this innovation, this paper transplants and fine-tunes the Transformer to
the semantic segmentation task to make up for the limitations of the convolutional neural
network’s receptive field when performing semantic segmentation. The overall structure
of the improved Transformer in this paper is composed of encoding and decoding, and
the encoding and decoding modules are spliced from the self-attention mechanism into a
multi-head attention mechanism. The structure of the Transformer is shown in Figure 7.

Firstly, the input feature map is the feature map (D, H/16, W/16) extracted by the
backbone network. Secondly, the flattening function maps the last two dimensions into a
one-dimensional vector to obtain a new feature map (D, H/16, W/16). Then the position
coding matrix p ∈ R(D,H/16,W/16) of each pixel in the feature map and the feature map
are superimposed as the input of the coding layer. The coding layer first undergoes the
feature normalization layer to normalize the channel dimensions, and then passes through
different matrix mappings to obtain the query matrix q ∈ R(H/16,W/16,D), the key-value
matrix k ∈ R(H/16,W/16,D), and the numerical matrix v ∈ R(H/16,W/16,D). The calculation
process is shown in Equations (4)–(7). Xinput is the input of the coding layer. ∆ represents
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feature normalization layer. Kq is an encoding layer query matrix mapping function. Kk
is the coding layer key-value matrix mapping function. Kv is the coding layer numerical
matrix mapping function.

X = ∆(Xinput), (4)

q = Kq(X), (5)

k = Kk(X), (6)

v = Kv(X), (7)

WH
16 16

(D, )

WH
16 16

(D, )

Position code
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Figure 7. The structure diagram of Transformer encoding and decoding.

After obtaining the query matrix, the key-value matrix and the numerical matrix, the
three matrices are input into the multi-head attention mechanism module for attention
calculation. The multi-head attention mechanism module is obtained by splicing multiple
self-attention mechanism modules (this paper sets the number of heads of the multi-head
attention mechanism to 4). The advantage of having multi-headed attention is that feature
information can be obtained from different branches to enrich semantic information, and
different branches can independently extract features and then merge them, which can
increase the diversity of feature extraction. After the multi-head attention mechanism
module, the output feature map and the feature map before the feature normalization layer
aggregate the original feature map information through jump connection. As is shown
in Equation (8).

Xatten = Γ(q, k, v) + Xinput, (8)
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where Γ represents multi-head attention mechanism module, Xatten is the output of the
multi-head attention mechanism, q, k, v represent the query matrix, key-value matrix, and
numeric matrix of the coding layer, respectively. Xinput is the input of the coding layer.

Then through the feature normalization layer and the fully connected layer, the feature
dimension is mapped to the high dimension. The fully connected mapping is a 4 times
mapping. Finally, the original feature map before entering the full connection is also
aggregated by jump connection to obtain the output feature map of the coding layer
(HW,D). The calculation process is shown in Equation (9).

Xencoder = Π(∆(Xatten)), (9)

where Xencoder is the output of the coding layer, Π represents fully connected mapping,
∆ represents the feature normalization layer, and Xatten is the output of the multi-head
attention mechanism.

The input of the decoding layer is composed of two parts: the output feature map of
the coding layer and category query feature map created based on the number of categories.
The feature layer is normalized before entering the multi-head attention mechanism of the
decoding layer, and then the output feature map of the coding layer is decomposed into a
key-value matrix k′ ∈ R(H/16,W/16,N) and a numerical matrix v′ ∈ R(H/16,W/16,N) through
different matrix mappings. Among them, N is the number of categories. The calculation
process is shown in Equations (10)–(12).

X′encoder = ∆(Xencoder), (10)

k′ = K′k(X′encoder), (11)

v′ = K′v(X′encoder), (12)

where X′encoder is the output of the feature normalization layer, ∆ represents feature nor-
malization layer, Xencoder is the output of the coding layer, K′k represents key-value matrix
mapping function in the decoding layer, K′v represents the numerical matrix mapping
function in the decoding layer.

The decoding layer query matrix q′ ∈ R(H/16,W/16,N) is obtained according to the
category initialization, and the key-value matrix k′ ∈ R(H/16,W/16,N) and the numerical
matrix v′ ∈ R(H/16,W/16,N) are obtained through matrix mapping. Next, we input them
into the multi-head attention mechanism for decoding at the same time, and the decoded
result goes through the feature normalization layer and fully connected mapping. The fully
connected mapping is a 4 times mapping. Then, the first feature of the decoding layer and
the feature map before the feature normalization layer are correspondingly fused. Finally,
the output category feature map of the decoding layer and the input feature map of the
next coding layer are obtained. The calculation process is shown in Equation (13).

Xdecoder = Π(∆(Γ(q′, k′, v′))) + q′, (13)

where Xdecoder is the output of the decoding layer, Π represents fully connected mapping, ∆
represents the feature normalization layer, Γ represents the multi-head attention mechanism
module, q′, k′, v′ are the query matrix, key-value matrix and numerical matrix of the
decoding layer

The structure of the multi-head attention mechanism module is shown in Figure 8.
As shown in Figure 8, query matrix q, key-value matrix k, and numerical matrix v are
inputed. The calculation process of a single attention mechanism is as follows: Firstly, the
key-value matrix and the transpose of the query matrix are multiplied. Secondly, Softmax
is performed at the last of the results obtained. Finally, the result of Softmax and numerical
matrix are multiplied to obtain the attention result. In addition, the multi-head attention
mechanism proposed in this paper splices the single-head attention mechanisms to obtain
the attention mechanism information of different branches.
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The decomposition process of a single self-attention mechanism module is shown in
Figure 8. In the case of inputting three targets, the three targets are calculated by their
corresponding query matrix mapping matrix Wquery, key-value mapping matrix Wkey−value,
and numerical mapping matrix Wnumericlvalue to obtain their respective query matrix, key-
value matrix, and numerical matrix (q1, q2, q3, k1, k2, k3, v1, v2, v3). Next, Softmax calculates
the weights of the target itself and all targets. The calculation process of measure weights is
shown in Equation (14), and the decomposition structure of the calculation process of the
self-attention mechanism is shown in Figure 9.

Weightsi =
qi ∗ kT

i

∑i(qi ∗ kT
i )

, (14)

where Weightsi is the measure weights of the i-th goal, qi represents the query matrix of
the i-th target, ki represents the key-value matrix of the i-th target.

Matrix multiplication 

q k v

Matrix multiplication 

Softmax

Figure 8. The structure diagram of multi-head attention mechanism.

Goal 1 Goal 2 Goal 3

Input

Query

Key value 

Numerical value 

Measure weights

Self weights

Wquery

Wkey-value 

Wnumerical value 

Figure 9. Decomposition structure diagram of the calculation process of the self-attention mechanism.



ISPRS Int. J. Geo-Inf. 2022, 11, 165 13 of 20

Finally, the self weights are obtained by multiplying the weights of each target and
the corresponding numerical matrix. The calculation process is shown in Equation (15).

Attentioni = Weightsi ∗ vi, (15)

where Attentioni is the self weights (Attention information) of the i-th goal, Weightsi is the
measure weights of the i-th goal, vi represents the numerical matrix of the i-th target.

3. Experiment and Result Analysis

In this chapter, experiments were carried out on the Aerial Image Segmentation
Dataset (AISD) [30] and ISPRS 2D Semantic Labeling Contest (ISPRS) [31]; the HMRT
model was compared with many of the best models currently available FCN-8S [32], U-
Net [33], PSPNet [34] and DeeplabV3+ [35]; the overall accuracy rate (OA), recall rate
(Recall), F1-Score and mean intersection over union (MIoU) are used as the quantitative
analysis indicators of the experiment. The results show that HMRT is better than the
comparison model in various assessment indicators.

3.1. Datasets
3.1.1. AISD Dataset

The original images of the AISD dataset were collected from OpenStreetMap online
remote sensing image data, and the semantic segmentation dataset of high resolution
remote sensing images were constructed by manual annotation. AISD included image data
from six regions: Berlin, Chicago, Paris, Potsdam, and Zurich. This paper chose Potsdam
regional data to conduct the experiment, and we named the data set as Potsdam-A. There
are 24 original images and labels with an average size of 3000 × 3000 in Potsdam-A. The
example of the original image and label is shown in Figure 10.

(a) (b)

Figure 10. Original image and label example from Potsdam-A. In (b), the red is building; the blue is
road background; the white is background. (a) image; (b) label.

Because the original image was too large to be directly input to the model training, we
used Python to crop the picture of 3000× 3000 into the picture of 512× 512 and obtained
a total of 1728 pictures finally. In the case of a small amount of data, the generalization
effect was poor and the feature learning ability of the model was weak. Therefore, data
enhancement was needed to ensure that the model has reliable learning capability. The
original data set was randomly flipped horizontally, vertically and rotated by 90 degrees to
expand to 4307 pictures.

3.1.2. ISPRS Dataset

The ISPRS 2D Semantic Labeling Contest dataset is a high-resolution aerial im-
age dataset with complete Semantic Labeling published by the International Society for
Photogram-metry and Remote Sensing (ISPRS). Similarly, we selected the Potsdam region
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in ISPRS to verify the generalization performance of the model, and name the data set
Potsdam-B. Potsdam-B was made up of 38 accurately labeled images and five foregrounds:
impervious surfaces, buildings, low vegetation, tree and car. The example of the original
image and label is shown in Figure 11.

We adopted the same cropping strategy of the Potsdam-A dataset on the Potsdam-B
dataset to obtain 5184 pictures of 512× 512 size.

(a) (b)

Figure 11. Original image and label example from Potsdam-B; (a) image; (b) label.

3.2. Implementation Details

In this experiment, we selected five evaluation indicators, including overall accuracy
rate (OA), recall rate (Recall), F1-Score and intersection over union (IoU). They are as follows:

OA =
TP + TN

P + N
, (16)

Recall =
TP

TP + FN
, (17)

F1 = 2× Precision× Recall
Precision + Recall′

, (18)

Precision =
TP

TP + FP
, (19)

IoU =
TP

TP + FP + FN
. (20)

The cross-entropy loss function (CEloss) was applied to calculate the difference value
between the true value and the predicted value. The model performed backpropagation
and learned the best parameters under the guidance of the difference value. The derivation
process of CEloss is shown in Equation (21):

CEloss(p, q) = − 1
m ∑m

i=1 ∑n
j=1 p(xij)log(q(xij)), (21)

where m is the quantity of samples, n represents the quantity of categories, p(xij) is a
variable (if the category j is the same as the sample i, it is 1, otherwise it is 0), q(xij) is the
probability sample, i is predicted to be class j.

All experiments were carried out on Ubuntu16.04 LTS with a Intel(R)Core(TM)i7-8750F
CPU @2.20 GHz, 16 G of memory (RAM), and a NVIDIA GeForce RTX1060(8 GB). Python
3.8 was used, and the model was built using Pytorch1.0.1. All models were trained for
300 epochs with a batch size of 4, and the initial learning rate was 0.001.

This paper improves the post-processing of model prediction. The model prediction
method adds multi-scale and sliding window splicing, which can significantly improve
prediction results. The execution method of the multi-scale strategy is to enlarge the picture
by 1.0, 1.25, 1.5, 1.75, 2.0 times on the basis of the original predicted picture and then predict.
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After the prediction result is obtained, the size of the picture is reduced to the original
picture size and added to obtain the final prediction result. The sliding window splicing
strategy is to set the stride sliding window to predict the picture according to the rule
from left to right and top to bottom in the upper left corner of the predicted picture. The
schematic diagram of the sliding window splicing prediction strategy is shown in Figure 12.
Figure 12a represents the size of the prediction window, Figure 12b represents the stride
for sliding right, Figure 12c represents the stride for sliding down. In the panning process,
in order to ensure that the entire picture can be predicted by the model and obtain the
output, we set the panning stride to be less than or equal to the prediction window size.
If the stride is smaller than the prediction window, repeated prediction parts will appear.
Therefore, we use the overall summation method to realize the prediction for the repeated
prediction parts.

Prediction window Stride

S
tr

id
e

(a) (b) (c)

Figure 12. Schematic diagram of the sliding window splicing prediction strategy; (a) initial window
postion; (b) stride for sliding right. (c) stride for sliding down.

3.3. Analysis of Results
3.3.1. Evaluation Metrics and Prediction Effect

(1) Main experiment

In order to test the proposed HMRT module, comprehensive experiments were carried
out on the Potsdam-A dataset. The evaluation metrics are shown in Table 3, and a compari-
son of the prediction results is shown in Figure 13. Moreover, ablation experiments were
carried out to verify the effectiveness of the multi-resolution semantic extraction branch.
The network without the multi-resolution semantic extraction branch module was tested
and named HMRT-1.

In Table 3, recall, F1, OA and MIoU of the HMRT obtained 85.32%, 84.88%, 85.99% and
74.19%, respectively. All four indicators were better than the comparison networks [32–35].
Among them, OA reached 85.99%, which was 0.92 higher than DeeplabV3+, and MioU
reached 74.19, which was 1.37 higher than DeeplabV3+.

Table 3. The evaluation metrics on Potsdam-A test set.

Methods Backbone Recall (%) ↑ F1 (%) ↑ OA (%) ↑ MIoU (%) ↑

FCN-8S VGG16 79.99 80.93 83.09 68.55
U-Net - 82.63 82.94 84.49 71.28

PSPNet ResNet-50 83.02 83.57 84.54 72.09
DeeplabV3+ ResNet-50 83.90 84.05 85.07 72.82

HMRT-1 - 85.17 85.14 85.80 73.75
HMRT - 85.32 84.88 85.99 74.19

The IOU of each model on the Potsdam-A test set are illustrated in Table 4. The IOU
indexes of the HMRT were 65.21%, 73.15% and 84.21%, respectively, exceeding the four com-
parison networks [32–35]. The IOU results showed that the HMRT has absolute advantages
in segmentation accuracy.
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(a) (b) (c)

(d) (e) (f)

Figure 13. Comparison of the prediction results on Potsdam-A; (a) the superposition of the image
and the label; (b) FCN-8S; (c) U-Net; (d) PSPNet; (e) DeeplabV3+; (f) HMRT.

Table 4. The IoU results on Potsdam-A test set.

Methods Backbone Background (%) ↑ Road (%) ↑ Building (%) ↑ MIoU (%) ↑

FCN-8S VGG16 59.18 64.10 82.36 68.55
U-Net - 62.29 68.64 82.91 71.28

PSPNet ResNet-50 63.34 71.73 81.21 72.09
DeeplabV3+ ResNet-50 64.15 71.65 82.65 72.82

HMRT-1 - 65.00 72.54 83.71 73.75
HMRT - 65.21 73.15 84.21 74.19

(2) Generalization experimental

To verify the generalization performance of the models proposed in this paper, the
Potsdam-B data set was used for further experiment. The evaluation metrics are shown in
Table 5. In Table 5, the recall, F1, OA and MIoU of HMRT reached 91.29%, 90.41%, 91.32% and
84.00%, respectively. All indicators were at their greatest levels, which could prove that the
model proposed in this paper is not only effective, but has good generalization performance.

Table 5. The evaluation metrics on Potsdam-B test set.

Methods Backbone Recall (%) ↑ F1 (%) ↑ OA (%) ↑ MIoU(%) ↑

FCN-8S VGG16 86.31 85.48 86.86 78.43
U-Net - 87.74 87.41 88.51 80.87

PSPNet ResNet-50 88.74 88.34 88.59 81.02
DeeplabV3+ ResNet-50 88.95 87.73 88.48 81.55

HMRT - 91.29 90.41 91.32 84.00

Moreover, this paper visualizes the prediction results of each model. The comparison
of the prediction results is shown in Figure 14. Figure 14a is the real label, Figure 14b–f
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correspond to the prediction results of FCN-8S, U-Net, PSPNet, DeeplabV3+ and HMRT,
respectively. Through comparison, we can find that the HMRT model proposed in this
paper has a global receptive field, and the segmentation accuracy is higher than that of the
comparison model. The dashed box in the figure highlights the area where the segmentation
effect is obvious.

(a) (b) (c)

(d) (e) (f)

Figure 14. Comparison of the prediction results on Potsdam-B; (a) the superposition of the image
and the label; (b) FCN-8S; (c) U-Net; (d) PSPNet; (e) DeeplabV3+; (f) HMRT.

3.3.2. Quantitative Analysis of Model Prediction Results Promotion Strategy

This work adopted two post-processing methods, multi-scale fusion and sliding
stitching, to improve the prediction accuracy. The multi-scale fusion strategy is to adapt
to different size targets in remote sensing images, and the experimental parameters are
that the predicted picture is magnified by 1.0, 1.25, 1.5, 1.75, 2.0 times, respectively. The
sliding stitching strategy is to alleviate the problem of jagged edges when the pictures
are directly stitched, the experimental parameter is that the step size is half of the sliding
window (512 × 512). Finally, we used the controlled variable method to experiment on the
two post-processing strategies, and each network obtained 4 sets of experimental results.
The results of the quantitative analysis experiment are shown in Table 6.

It is concluded from Table 6 that the two strategies of both multi-scale fusion and
sliding splicing can improve the prediction accuracy to a certain extent, and the prediction
accuracy reaches the highest when the two strategies of multi-scale fusion and sliding
splicing are used at the same time. In order to visually demonstrate the effectiveness of
the post-processing strategy, Figure 15 shows the comparison between the predicted result
without using post-processing strategies and predicted the result using two post-processing
strategies. From the comparison of Figure 15b,c, it can be seen that the post-processing
strategies reduce the stitching traces of splicing pictures, and the outlines of the foreground
target buildings and roads in the picture are clearer.



ISPRS Int. J. Geo-Inf. 2022, 11, 165 18 of 20

Table 6. Comparison of multi-scale fusion and sliding splicing prediction quantitative analysis.√
means this post-processing method is adopted, ↑ means the higher, the better.

Methods Multi-Scale Sliding Stitching (%) ↑ F1 (%) ↑ OA (%) ↑ MIoU(%) ↑

FCN-8S

- - 80.93 83.09 68.55√
- 81.05 83.15 68.69

-
√

81.13 83.18 68.97√ √
81.41 83.35 69.22

U-Net

- - 82.94 84.54 71.28√
- 83.06 84.63 71.44

-
√

83.15 84.71 71.51√ √
83.25 84.90 71.73

PSPNet

- - 83.57 84.49 72.09√
- 83.62 84.53 72.18

-
√

83.71 84.61 72.25√ √
84.04 85.04 72.78

DeeplabV3+

- - 84.05 85.17 72.82√
- 84.12 85.21 72.91

-
√

84.18 85.25 72.97√ √
84.30 85.36 73.18

HMRT

- - 84.88 85.58 74.19√
- 85.40 86.55 74.82

-
√

85.48 86.31 74.90√ √
85.79 86.85 75.39

(a) (b) (c)

Figure 15. Comparison of prediction results before and after post-processing; (a) label image;
(b) the predicted result without using post-processing strategies; (c) predicted result using two
post-processing strategies.

4. Conclusions

This paper proposes the HMRT to extract buildings and roads from high resolution
remote sensing images. In comparison with the current networks, HMRT has three advan-
tages: (1) The multi-resolution semantic extraction branch is constructed to use branches
with different resolutions for feature fusion, which ensures that high resolution and multi-
resolution can always be maintained during the down-sampling process, and feature
information is fully retained. It solves the problem that feature map compression leads
to loss of details and the convolutional neural network lacks long-distance scene under-
standing when the current semantic segmentation algorithm uses a convolutional neural
network (CNN) to extract image features. (2) The Transformer sequence feature extraction
network is introduced through which the global receptive field of the feature map can be
obtained, the long-distance dependence of the segmentation target is improved, and the
issue of reduced resolution is solved, which is caused by feature map compression during
the use of convolutional feature extraction. (3) The model has the following advantages,
such as the highest accuracy index, absolute superiority in segmentation accuracy, and
sufficient robust performance.
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However, there are still some shortcomings in the segmentation of buildings and
roads: (1) The use of the Transformer global receptive field to extract features is still in the
development stage, so there is development space in the accuracy of the edge segmentation
of buildings and roads and the structure of the model. (2) The complexity of the parameters
of the Transformer encoder and decoder is high. (3) When the remote sensing image
contains a lot of noise, the accuracy of segmentation will decrease. As a result, we will
optimize HMRT to improve the segmentation accuracy and overcome the problem of a
decrease in segmentation accuracy in case of a lot of noise in remote sensing images.
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