Uncertainty of Historic GLAD Forest Data in Temperate Climates and Implications for Forest Change Modelling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reference Data Analysis Results and Discussion
2.2. Choice of Optimum Reference Dataset
3. Results
3.1. GLAD FC 2010 and 2000 Accuracy Assessment
3.2. Commission Error Habitat Analysis for GLAD FC Forest Data
3.3. Relationship between GLAD FC Percentage Canopy Cover and Commission Errors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popp, A.; Humpenöder, F.; Weindl, I.; Bodirsky, B.L.; Bonsch, M.; Lotze-Campen, H.; Müller, C.; Biewald, A.; Rolinski, S.; Stevanovic, M.; et al. Land-use protection for climate change mitigation. Nat. Clim. Chang. 2014, 4, 1095–1098. [Google Scholar] [CrossRef]
- Canadell, J.G.; Raupach, M.R. Managing forests for climate change mitigation. Science 2008, 320, 1456–1457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, G.; Moutinho, P.; Nepstad, D.; Mattos, L.; Santilli, M. AN Amazon Perspective on the Forest-Climate Connection: Opportunity for Climate Mitigation, Conservation and Development? Environ. Dev. Sustain. 2004, 6, 163. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Franklin, J.F.; Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 2006, 131, 433–445. [Google Scholar] [CrossRef]
- Brunialti, G. Integrative approaches as an opportunity for the conservation of forest biodiversity. Int. J. Environ. Stud. 2014, 71, 226–227. [Google Scholar] [CrossRef]
- Sodhi, N.S.; Koh, L.P.; Clements, R.; Wanger, T.C.; Hill, J.K.; Hamer, K.C.; Clough, Y.; Tscharntke, T.; Posa, M.R.C.; Lee, T.M. Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biol. Conserv. 2010, 143, 2375–2384. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef] [Green Version]
- Moomaw, W.R.; Law, B.E.; Goetz, S.J. Focus on the role of forests and soils in meeting climate change mitigation goals: Summary. Environ. Res. Lett. 2020, 15, 045009. [Google Scholar] [CrossRef]
- Noss, R.F. Assessing and monitoring forest biodiversity: A suggested framework and indicators. For. Ecol. Manag. 1999, 115, 135–146. [Google Scholar] [CrossRef]
- Burivalova, Z.; Bauert, M.R.; Hassold, S.; Fatroandrianjafinonjasolomiovazo, N.T.; Koh, L.P. Relevance of Global Forest Change Data Set to Local Conservation: Case Study of Forest Degradation in Masoala National Park, Madagascar. Biotropica 2015, 47, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Galiatsatos, N.; Donoghue, D.N.M.; Watt, P.; Bholanath, P.; Pickering, J.; Hansen, M.C.; Mahmood, A.R.J. An assessment of global forest change datasets for national forest monitoring and reporting. Remote Sens. 2020, 12, 1790. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Rosenqvist, A.; Mora, B. Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+. Carbon Balance Manag. 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sannier, C.; McRoberts, R.E.; Fichet, L.V. Suitability of Global Forest Change data to report forest cover estimates at national level in Gabon. Remote Sens. Environ. 2016, 173, 326–338. [Google Scholar] [CrossRef]
- Hansen, M.; Potapov, P.; Margono, B.; Stehman, S.; Turubanova, S.; Tyukavina, A. Response to comment on “High-resolution global maps of 21st-century forest cover change”. Science 2014, 344, 2013–2014. [Google Scholar] [CrossRef] [Green Version]
- Tropek, R.; Sedlaek, O.; Beck, J.; Keil, P.; Musilova, Z.; Imova, I.; Storch, D. Comment on “High-resolution global maps of 21st-century forest cover change”. Science 2014, 344, 981. [Google Scholar] [CrossRef] [Green Version]
- Abbas, S.; Wong, M.S.; Wu, J.; Shahzad, N.; Irteza, S.M. Approaches of satellite remote sensing for the assessment of above-ground biomass across tropical forests: Pan-tropical to national scales. Remote Sens. 2020, 12, 3351. [Google Scholar] [CrossRef]
- Rerolle, F.; Dantzer, E.; Lover, A.; Marshall, J.M.; Hongvanthong, B.; Sturrock, H.J.W.; Bennett, A. Spatio-temporal associations between deforestation and malaria incidence in Lao Pdr. Elife 2021, 10, e56974. [Google Scholar] [CrossRef]
- Shah, V.; Shah, A.; Joshi, V. Predicting the origins of next forest-based emerging infectious disease. Environ. Monit. Assess. 2018, 190, 337. [Google Scholar] [CrossRef]
- Havašová, M.; Ferenčík, J.; Jakuš, R. Interactions between windthrow, bark beetles and forest management in the Tatra national parks. For. Ecol. Manag. 2017, 391, 349–361. [Google Scholar] [CrossRef]
- Ceccherini, G.; Duveiller, G.; Grassi, G.; Lemoine, G.; Avitabile, V.; Pilli, R.; Cescatti, A. Abrupt increase in harvested forest area over Europe after 2015. Nature 2020, 583, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Palahí, M.; Valbuena, R.; Senf, C.; Acil, N.; Pugh, T.A.M.; Sadler, J.; Seidl, R.; Potapov, P.; Gardiner, B.; Hetemäki, L.; et al. Concerns about reported harvests in European forests. Nature 2021, 592, E15–E17. [Google Scholar] [CrossRef] [PubMed]
- Ceccherini, G.; Duveiller, G.; Grassi, G.; Lemoine, G.; Avitabile, V.; Pilli, R.; Cescatti, A. Reply to Wernick, I.K. et al.; Palahí, M. et al. Nature 2021, 592, E18–E23. [Google Scholar] [CrossRef]
- Wernick, I.K.; Ciais, P.; Fridman, J.; Högberg, P.; Korhonen, K.T.; Nordin, A.; Kauppi, P.E. Quantifying forest change in the European Union. Nature 2021, 592, E13–E14. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Ota, T.; Mizoue, N. Accuracy assessments of local and global forest change data to estimate annual disturbances in temperate forests. Remote Sens. 2020, 12, 2438. [Google Scholar] [CrossRef]
- Yang, Z.; Dong, J.; Liu, J.; Zhai, J.; Kuang, W.; Zhao, G.; Shen, W.; Zhou, Y.; Qin, Y.; Xiao, X. Accuracy assessment and inter-comparison of eight medium resolution forest products on the loess plateau, China. ISPRS Int. J. Geo-Inf. 2017, 6, 152. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, H.; Wang, X.; Lü, Z. Accuracy assessment of the global forest watch tree cover 2000 in China. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102033. [Google Scholar] [CrossRef]
- Congalton, R.G. Thematic and Positional Accuracy Assess- ment of Digital Remotely Sensed Data. In Proceedings of the Seventh Annual Forest Inventory and Analysis Symposium, Washington, DC, USA, 3–6 October 2005; pp. 149–154. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Rowland, C.S.; Morton, R.D.; Carrasco, L.; McShane, G.; O’Neil, A.W.; Wood, C. Land Cover Map 2015 (Vector, GB); NERC Environmental Information: Data Centre, UK, 2017. [Google Scholar] [CrossRef]
- FAO. The Forest Resources Assessment Programme Country Report UK of Great Britain and Northern Ireland; Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Bibby, P. Land use change in Britain. Land Use Policy 2009, 26, S2. [Google Scholar] [CrossRef]
- European Environment Agency Natura 2000 Data—The European Network of Protected Sites. Available online: http://natura2000.eea.europa.eu/ (accessed on 10 July 2020).
Product & Data Source | Year | Smallest Polygon (MMU) | Acquisition Method | Forest Definition | Comment/Use of Data in Study |
---|---|---|---|---|---|
GLAD 2010 Tree Cover https://glad.umd.edu/Potapov/TCC_2010/, accessed on 16 May 2020 | 2010 | Raster cell area 500 m2 | Satellite, mainly Landsat 7 | All pixels > 30% forest cover | Test data |
Open Zoomstack https://www.ordnancesurvey.co.uk/business-government/products/open-zoomstack, accessed on 18 May 2020 | 2019 | <10 m2 | Airborne imagery and ground survey | Forest/no forest polygons | Initial candidate reference data, discounted for temporal difference with test data but used to test other reference sets to aid in choice of optimum reference set. |
Corine LC 2018 https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download, accessed on 19 May 2020 | 2018 | 250,000 m2 | Sentinel-2 Satellite | All woodland related LC categories including agro forest, broadleaved, coniferous, mixed forest, transitional woodland-shrub | Candidate reference data—earlier generations of the data (2000 and 2012) had good temporal match with test data but sets discounted for poor resolution. |
CEH LC 2000 https://www.jisc.ac.uk/geospatial-data#, accessed on 2 June 2020 (no longer running) | 2000 | 5000 m2 | Landsat, IRS and SPOT (Landsat mission un-specified but 5 assumed) | All woodland-related LC categories including broad-leaved and coniferous | Candidate reference data picked because it was a good temporal match with GLAD2000 FC, discounted because of poor geolocation. |
CEH LC 2015 https://www.jisc.ac.uk/geospatial-data#, accessed on 2 June 2020 (no longer running) | 2015 | 5000 m2 | Landsat 8/AWIFS | All woodland-related LC categories including broad-leaved and coniferous | Candidate reference data picked because a reasonable temporal match with GLAD 2010 FC, superseded by discovery of NFI10, LC used in habitat analysis. |
National Forest Inventory https://data-forestry.opendata.arcgis.com/search?tags=GB, accessed on 26 August 2020 | 2010 | 5000 m2 | Airborne imagery and ground survey | All woodland-related categories with canopy cover < 30% removed including ‘non-woodland’ and ‘assumed woodland’ | Identified as optimum data to test GLAD 2010 and 2000 FC. |
National Forest Inventory https://data-forestry.opendata.arcgis.com/search?tags=GB, accessed on 26 August 2020 | 2018 | 5000 m2 | Airborne imagery and ground survey | All woodland-related categories with canopy cover < 30% removed including ‘non-woodland, felled, failed, assumed, ground-prep, shrub, uncertain and wind-blow’ | Similar in most aspects to the OS2019 so used as a ‘control’ for the NFI dataset, i.e., low accuracy between NFI2018 and OS 2019 would have reduced the credibility of the NFI 2010 dataset. |
Reference | Value | Test Data | Value | Sum | Result |
---|---|---|---|---|---|
Forest | 1 | Forest | 200 | 1 + 200 = 201 | True Positive |
Forest | 1 | No Forest | 0 | 1 + 0 = 1 | False Negative |
No Forest | 0 | Forest | 200 | 0 + 200 = 200 | False Positive |
No Forest | 0 | No Forest | 0 | 0 + 0 = 0 | True Negative |
Reference vs. Test | Time Diff | Commission Error | Omission Error |
---|---|---|---|
Reference data accuracy assessment | |||
OS 2019 vs. Corine forest 2018 | 1 | 0.216 | 0.496 |
OS 2019 vs. CEH forest 2015 | 4 | 0.205 | 0.217 |
OS 2019 vs. CEH forest 2000 | 19 | 0.463 | 0.421 |
OS 2019 vs. NFI 2018 | 1 | 0.133 | 0.198 |
OS 2019 vs. NFI 2010 | 9 | 0.137 | 0.162 |
Further assessments to aid choice of ref for GLAD 2000 | |||
CEH 2000 vs. GLAD FC 2000 | 0 | 0.47 | 0.42 |
NFI 10 vs. GLAD FC 2000 | 10 | 0.39 | 0.26 |
England | Area km2 | Wales | Area km2 | Scotland | Area km2 |
---|---|---|---|---|---|
GLAD FC 2010 | |||||
NFI 10 | 12,570.49 | NFI 10 | 3083.98 | NFI 10 | 14,140.25 |
GLAD 2010 > 30 | 20,357.60 | GLAD 2010 > 30 | 5033.47 | GLAD 2010 > 30 | 20,885.17 |
True positive | 9844.49 | True positive | 2377.45 | True positive | 10,690.67 |
False negative | 3332.43 | False negative | 706.53 | False negative | 3449.58 |
False positive | 10,513.12 | False positive | 2656.01 | False positive | 10,194.50 |
True negative | 106,704.97 | True negative | 14,995.00 | True negative | 54,440.25 |
Commission error (%) | 51.6 | Commission error (%) | 52.8 | Commission error (%) | 48.8 |
Omission error (%) | 25.3 | Omission error (%) | 22.9 | Omission error (%) | 24.4 |
GLAD FC 2000 | |||||
NFI 10 | 12,570.49 | NFI 10 | 3083.98 | NFI 10 | 14,140.25 |
GLAD 2000 > 30 | 15,181.63 | GLAD 2000 > 30 | 3866.06 | GLAD 2000 > 30 | 15,884.75 |
True positive | 9269.93 | True positive | 2277.00 | True positive | 9967.00 |
False negative | 3300.56 | False negative | 806.98 | False negative | 4173.25 |
False positive | 5911.71 | False positive | 1589.06 | False positive | 5917.75 |
True negative | 111,912.80 | True negative | 16,061.96 | True negative | 58,717.00 |
Commission error (%) | 38.9 | Commission error (%) | 41.1 | Commission error (%) | 37.3 |
Omission error (%) | 26.3 | Omission error (%) | 26.2 | Omission error (%) | 29.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Price, C.; Elsner, P. Uncertainty of Historic GLAD Forest Data in Temperate Climates and Implications for Forest Change Modelling. ISPRS Int. J. Geo-Inf. 2022, 11, 177. https://doi.org/10.3390/ijgi11030177
Price C, Elsner P. Uncertainty of Historic GLAD Forest Data in Temperate Climates and Implications for Forest Change Modelling. ISPRS International Journal of Geo-Information. 2022; 11(3):177. https://doi.org/10.3390/ijgi11030177
Chicago/Turabian StylePrice, Clare, and Paul Elsner. 2022. "Uncertainty of Historic GLAD Forest Data in Temperate Climates and Implications for Forest Change Modelling" ISPRS International Journal of Geo-Information 11, no. 3: 177. https://doi.org/10.3390/ijgi11030177
APA StylePrice, C., & Elsner, P. (2022). Uncertainty of Historic GLAD Forest Data in Temperate Climates and Implications for Forest Change Modelling. ISPRS International Journal of Geo-Information, 11(3), 177. https://doi.org/10.3390/ijgi11030177