A Field Investigation on Gully Erosion and Implications for Changes in Sediment Delivery Processes in Some Tributaries of the Upper Yellow River in China
Abstract
:1. Introduction
2. Study Area
3. Methods and Data
3.1. Topographic Survey
3.2. Error Estimate
3.3. Data
4. Results
4.1. Erosion and Deposition in the Gully as a Whole
4.2. Erosion/Deposition on the Slopes and Beds of Gullies and Yearly Gully Erosion
5. Discussion
5.1. Erosion and Deposition in Gullies
5.2. Comparison of Specific Sediment Yield between Gullies and Catchments
5.3. Causes for Changes in Sediment Delivery Processes
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poesen, J.; Vandaele, K.; Van Wesemael, B. Contribution of gully erosion to sediment production on cultivated lands and rangelands. Erosion and Sediment Yield: Global and Regional Perspectives. IAHS Publ. 1996, 236, 251–266. [Google Scholar]
- Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [Google Scholar] [CrossRef]
- Poesen, J. Challenges in gully erosion research. Landf. Anal. 2011, 17, 5–9. [Google Scholar]
- Erkossa, T.; Wudneh, A.; Desalegn, B.; Taye, G. Linking soil erosion toon-site financial cost: Lessons from watersheds in the Blue Nile basin. Solid Earth 2015, 6, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Slimane, A.B.; Raclot, D.; Evrard, O.; Sanaa, M.; Lefevre, I.; Le Bissonnais, Y. Relative contribution of rill/interrill and gully/channel erosion to small reservoir siltation in Mediterranean environments. Land Degrad. Dev. 2015, 27, 785–797. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Cerdà, A.; Tarolli, P. Soil water erosion on Mediterranean vineyards: A review. Catena 2016, 141, 1–21. [Google Scholar] [CrossRef]
- Plessis, C.D.; Zijl, G.V.; Tol, J.V.; Manyevere, A. Machine learning digital soil mapping to inform gully erosion mitigation measures in the Eastern Cape, South Africa. Geoderma 2020, 368, 114287. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Yang, M.Y.; Zhang, F.B.; Tang, Y.; Wang, X.T.; Wang, Y.J. Revealing soil erosion characteristics using deposited sediment sources in a complex small catchment in the wind-water erosion crisscross region of the Chinese Loess Plateau. Geoderma 2020, 379, 114634. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.Z.; Zhang, X.C.; Zheng, F.-L. Assessing the site-specific impacts of climate change on hydrology, soil erosion and crop yields in the Loess Plateau of China. Clim. Chang. 2011, 105, 223–242. [Google Scholar] [CrossRef]
- Salazar, S.; Francés, F.; Komma, J.; Blume, T.; Francke, T.; Bronstert, A.; Blöschl, G. A comparative analysis of the effectiveness of flood management measures based on the concept of “retaining water in the landscape” in different European hydroclimatic regions. Nat. Hazards Earth Syst. Sci. 2012, 12, 3287–3306. [Google Scholar] [CrossRef] [Green Version]
- de Vente, J.; Poesen, J. Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth Sci. Rev. 2005, 71, 95–125. [Google Scholar] [CrossRef]
- Bastola, S.; Dialynas, Y.; Bras, R.; Noto, L.; Istanbulluoglu, E. The role of vegetation on gully erosion stabilization at a severely degraded landscape: A case study from Calhoun Experimental Critical Zone Observatory. Geomorphology 2018, 308, 25–39. [Google Scholar] [CrossRef]
- Sidle, R.C.; Jarihani, B.; Kaka, S.I.; Koci, J.; Al-Shaibani, A. Hydrogeomorphic processes affecting dryland gully erosion: Implications for modelling. Prog. Phys. Geogr. Earth Environ. 2019, 43, 46–64. [Google Scholar] [CrossRef]
- Wu, T.; Pan, C.; Li, C.; Luo, M.; Wang, X. A field investigation on ephemeral gully erosion processes under different upslope inflow and sediment conditions. J. Hydrol. 2019, 572, 517–527. [Google Scholar] [CrossRef]
- Castillo, C.; Gómez, J. A century of gully erosion research: Urgency, complexity and study approaches. Earth-Sci. Rev. 2016, 160, 300–319. [Google Scholar] [CrossRef]
- Wasson, R.J.; Caitcheon, G.; Murray, A.S.; Mcculloch, M.; Quade, J. Sourcing Sediment Using Multiple Tracers in the Catchment of Lake Argyle, Northwestern Australia. Environ. Manag. 2002, 29, 634–646. [Google Scholar] [CrossRef]
- Bewke, W.; Sterk, G. Assessment of soil erosion in cultivated fields using a survey methodology for rills in the Chemoga watershed, Ethiopia. Agric. Ecosyst. Environ. 2003, 97, 81–93. [Google Scholar] [CrossRef]
- Billi, P.; Dramis, F. Geomorphological investigation on gully erosion in the Rift Valley and the northern highlands of Ethiopia. Catena 2003, 50, 353–368. [Google Scholar] [CrossRef]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Li, Y.; Poesen, J.; Yang, J.C.; Fu, B.; Zhang, J.H. Evaluating gully erosion using 137Cs and 210Pb/137Cs ratio in a reservoir catchment. Soil Tillage Res. 2003, 69, 107–115. [Google Scholar] [CrossRef]
- Selkimäki, M.; González-Olabarria, J.R. Assessing Gully Erosion Occurrence in Forest Lands in Catalonia (Spain). Land Degrad. Dev. 2017, 28, 616–627. [Google Scholar] [CrossRef]
- John, C.; Pu, J.; Pandey, M.; Hanmaiahgari, P. Sediment Deposition within Rainwater: Case Study Comparison of Four Different Sites in Ikorodu, Nigeria. Fluids 2021, 6, 124. [Google Scholar] [CrossRef]
- Pandey, M.; Oliveto, G.; Pu, J.H.; Sharma, P.K.; Ojha, C.S.P. Pier Scour Prediction in Non-Uniform Gravel Beds. Water 2020, 12, 1696. [Google Scholar] [CrossRef]
- Shivashankar, M.; Pandey, M.; Zakwan, M. Estimation of settling velocity using generalized reduced gradient (GRG) and hybrid generalized reduced gradient–genetic algorithm (hybrid GRG-GA). Acta Geophys. 2022, 1–11. [Google Scholar] [CrossRef]
- Sun, L.; Guo, H.; Liu, B.; Wu, S.; Weckler, P.R.; Yang, J. Characterizing erosion processes on a convex slope based on 3D reconstruction method. Geoderma 2021, 402, 115364. [Google Scholar] [CrossRef]
- Kosmas, C.; Danalatos, N.; Cammeraat, L.H.; Chabart, M.; Diamantopoulos, J.; Farand, R.; Gutierrez, L.; Jacob, A.; Marques, H.; Martinez-Fernandez, J.; et al. The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 1997, 29, 45–59. [Google Scholar] [CrossRef]
- Vandekerckhove, L.; Poesen, J.; Oostwoud Wijdenes, D.; Gyssels, G. Short-term bank gully retreat rates in Mediterranean environments. Catena 2001, 44, 133–161. [Google Scholar] [CrossRef]
- Archibold, O.W.; De Boer, D.H.; Delanoy, L. A Device for Measuring Gully Headwall Morphology. Earth Surf. Process. Landforms 1996, 21, 1001–1005. [Google Scholar] [CrossRef]
- Castillo, C.; Pérez, R.; James, M.R.; Quinton, J.N.; Taguas, E.V.; Gómez, J.A. Comparing the Accuracy of Several Field Methods for Measuring Gully Erosion. Soil Sci. Soc. Am. J. 2012, 76, 1319–1332. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.D.; Brasington, J.; Vericat, D.; Hicks, D.M. Hyperscale terrain modelling of braided rivers: Fusing mobile terrestrial laser scanning and optical bathymetric mapping. Earth Surf. Process. Landforms 2014, 39, 167–183. [Google Scholar] [CrossRef]
- Martinez-Casasnovas, J.A.; Anton-Fernandez, C.; Ramos, M.C. Sediment production in large gullies of the Mediterranean area (NE Spain) from high resolution digital elevation models and geographical information systems analysis. Earth Surf. Processes Landf. 2003, 28, 443–456. [Google Scholar] [CrossRef]
- Werner, J.; Andreas, K. Soil surface roughness measurement-methods, applicability, and surface representation. Catena 2005, 64, 174–192. [Google Scholar]
- Milan, D.J.; Heritage, G.; Hetherington, D. Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river. Earth Surf. Processes Landf. 2007, 32, 1657–1674. [Google Scholar] [CrossRef]
- Gomez-Gutierrez, A.; Schnabel, S.; Berenguer-Sempere, F.; Lavado-Contador, F.; Rubio-Delgado, J. Using 3D photo-reconstruction methods to estimate gully headcut erosion. Catena 2014, 120, 91–101. [Google Scholar] [CrossRef]
- Blasone, G.; Cavalli, M.; Marchi, L.; Cazorzi, F. Monitoring sediment source areas in a debris-flow catchment using terrestrial laser scanning. Catena 2014, 123, 23–36. [Google Scholar] [CrossRef]
- Vinci, A.; Brigante, R.; Todisco, F.; Mannocchi, F.; Radicioni, F. Measuring rill erosion by laser scanning. Catena 2015, 124, 97–108. [Google Scholar] [CrossRef]
- Fabbri, S.; Giambastiani, B.M.; Sistilli, F.; Scarelli, F.; Gabbianelli, G. Geomorphological analysis and classification of foredune ridges based on Terrestrial Laser Scanning (TLS) technology. Geomorphology 2017, 295, 436–451. [Google Scholar] [CrossRef]
- Xu, J.X. Erosion and sediment yield of 10 small tributaries joining Inner Mongolia reach of upper Yellow River in relation with coupled wind-water processes and hyperconcentrated flows. J. Sediment Res. 2013, 6, 28–37, (In Chinese with English abstract). [Google Scholar]
- Yang, H.; Shi, C. Spatial and temporal variations of aeolian sediment input to the tributaries (the Ten Kongduis) of the upper Yellow River. Aeolian Res. 2018, 30, 1–10. [Google Scholar] [CrossRef]
- Pan, B.; Pang, H.; Zhang, D.; Guan, Q.; Wang, L.; Li, F.; Guan, W.; Cai, A.; Sun, X. Sediment grain-size characteristics and its source implication in the Ningxia–Inner Mongolia sections on the upper reaches of the Yellow River. Geomorphology 2015, 246, 255–262. [Google Scholar] [CrossRef]
- Xu, J.X. Temporal and spatial variations in erosion and sediment yield and the cause in the ten small tributaries to the Inner Mongolia Reach of the Yellow River. J. Desert Res. 2014, 34, 1641–1649, (In Chinese with English abstract). [Google Scholar]
- Wang, Z.; Ta, W. Hyper-concentrated flow response to aeolian and fluvial interactions from a desert watershed upstream of the Yellow River. Catena 2016, 147, 258–268. [Google Scholar] [CrossRef]
- Yang, H. Study on Processes and Mechanisms of Soil Erosion and Sediment Transport in the Ten Kongduis of the Upper Yellow River; The University of Chinese Academy of Sciences: Beijing, China, 2017; (In Chinese with English abstract). [Google Scholar]
- Du, H.; Wang, T.; Xue, X.; Li, S. Modern eolian and fluvial processes and their interactions in an ephemeral desert stream in Inner Mongolia, China. J. Soils Sediments 2019, 20, 1140–1156. [Google Scholar] [CrossRef]
- Yang, H.; Shi, C. Basin form characteristics, causes and implications of the ten kongduis in the upper reaches of the Yellow River. Quat. Int. 2017, 453, 15–23. [Google Scholar] [CrossRef]
- YRIHR (Yellow River Institute of Hydraulic Research). The River Situation Advisory Report of Yellow River in 2006; The Yellow River Water Conservancy Press: Zhengzhou, China, 2009. (In Chinese) [Google Scholar]
- Liu, R.X. Analysis of water and soil conservation in the ten kongduis of the Jin-Shan-Mong soft sandstone area. Inn. Mong. Water Resour. 2013, 6, 68–69, (In Chinese with English abstract). [Google Scholar]
- Aguilar, F.J.; Aguilar, M.A.; Agüera, F.; Sánchez, J.; Torres, M.A. The accuracy of grid digital elevation models linearly constructed from scattered sample data. Int. J. Geogr. Inf. Sci. 2006, 20, 169–192. [Google Scholar] [CrossRef]
- Brasington, J.; Langham, J.; Rumsby, B. Methodological sensitivity of morph metric estimates of coarse fluvial sediment transport. Geomorphology 2003, 53, 299–316. [Google Scholar] [CrossRef]
- Brasington, J.; Rumsby, B.T.; McVey, R.A. Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey. Earth Surf. Processes Landf. 2000, 25, 973–990. [Google Scholar] [CrossRef]
- Lane, S.N.; Westaway, R.M.; Hicks, D.M. Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surf. Processes Landf. 2003, 28, 249–271. [Google Scholar] [CrossRef]
- Lu, L.N.; Zhao, Y.X.; Hu, L.F.; Li, W.X.; Shi, L.; Ren, Y.Y.; Han, Y.L.; He, X.H. Effects of hippophae rhamnoides plantation on soil bulk density, porosity and moisture capacity in the arsenic sandstone area of Inner Mongolia. J. Desert Res. 2015, 35, 1171–1176, (In Chinese with English abstract). [Google Scholar]
- Liu, Z.P. Spatial Distribution of Soil Nutrients and the Impact Factors across the Loess Plateau of China; University of Chinese Academy of Sciences: Beijing, China, 2013; (In Chinese with English abstract). [Google Scholar]
- Zhu, J. Estimation of the ratio of bed and suspended loads. In New Progresses in Hydrology and Sedimentation Researches—Collections of the 8th Symposium of Hydrology and Sedimentation Committee of China Society for Hydropower Engineering; Chen, W., Xia, J., Zhu, J., Eds.; China Water & Power Press: Beijing, China, 2010; pp. 375–376. (In Chinese) [Google Scholar]
- Mou, J.; Meng, Q. Sediment delivery ratio as used in the computation of watershed sediment yield. J. Hydrol. 1981, 20, 27–38. [Google Scholar]
- Walling, D. The sediment delivery problem. J. Hydrol. 1983, 65, 209–237. [Google Scholar] [CrossRef]
- Yao, H.; Shi, C.; Shao, W.; Bai, J.; Yang, H. Changes and influencing factors of the sediment load in the Xiliugou basin of the upper Yellow River, China. Catena 2016, 142, 1–10. [Google Scholar] [CrossRef]
- OCCDB (The Office of Compiling Chronicles of Dalate Banner). Dalate Banner Yearbook; Newspaper Office in Dalate Banner: Ordos, China, 2005–2013. (In Chinese) [Google Scholar]
Kongduis | Surveyed Plots * | Scanned Area (m2) | Scanned Length (m) |
---|---|---|---|
Maobula Kongdui | MBLC | 4712 | 137 |
Xiliugou Kongdui | XLGBC | 579 | 48 |
XLGNC | 271 | 23 | |
Dongliugou Kongdui | DLGC | 810 | 62 |
Surveyed Plots * | Surveying Dates | Number of Stations | Registration Errors (m) | Data Points | Average Point Spacing (m) |
---|---|---|---|---|---|
MBLC | November 2014 | 20 | 0.0060 | 668,025 | 0.01 |
June 2015 | 26 | 0.0070 | 631,230 | 0.01 | |
November 2015 | 24 | 0.0044 | 539,964 | 0.01 | |
XLGBC | November 2014 | 7 | 0.0064 | 495,146 | 0.003 |
June 2015 | 9 | 0.0059 | 581,038 | 0.002 | |
November 2015 | 9 | 0.0031 | 646,205 | 0.002 | |
XLGNC | November 2014 | 9 | 0.0057 | 831,983 | 0.0016 |
June 2015 | 9 | 0.0068 | 939,226 | 0.0015 | |
November 2015 | 7 | 0.0052 | 1,084,957 | 0.0014 | |
DLGC | November 2014 | 10 | 0.0028 | 828,291 | 0.003 |
June 2015 | 13 | 0.0052 | 828,928 | 0.003 | |
November 2015 | 13 | 0.0036 | 815,876 | 0.003 |
Gully Name * | Scanned Area of Gullies (m2) | Volume Changes and Errors (m3) | Siltation Modulus (g/m2) | Erosion Modulus (g/m2) | |
---|---|---|---|---|---|
November 2014–June 2015 | June 2015–November 2015 | November 2014–June 2015 | June 2015–November 2015 | ||
MBLC | 2419 | 0.959 ± 0.568 | −0.302 ± 0.512 | 587 | 185 |
XLGNC | 54 | 0.031 ± 0.030 | −0.906 ± 0.029 | 856 | 24,800 |
XLGBC | 146 | 0.073 ± 0.059 | −0.425 ± 0.058 | 735 | 4300 |
DLGC | 435 | 0.205 ± 0.064 | −0.072 ± 0.064 | 697 | 244 |
Gully Name * | Area (m2) | Volume Changes and Errors (m3) | Siltation Modulus (g/m2) | Erosion Modulus (g/m2) | ||||
---|---|---|---|---|---|---|---|---|
November 2014–June 2015 | June 2015–November 2015 | November 2014–June 2015 | June 2015–November 2015 | November 2014–June 2015 | June 2015–November 2015 | |||
MBLC | GS | 2186 | −5.977 ± 0.551 | 13.108 ± 0.503 | — | 8875 | 4047 | — |
GB | 233 | 6.937 ± 0.138 | −13.411 ± 0.096 | 44,060 | — | — | 85,183 | |
XLGNC | GS | 33 | −0.892 ± 0.024 | −0.345 ± 0.023 | — | — | 40,000 | 15,500 |
GB | 21 | 0.923 ± 0.018 | −0.561 ± 0.018 | 65,000 | — | — | 39,500 | |
XLGBC | GS | 122 | −0.118 ± 0.053 | −0.803 ± 0.051 | — | — | 1430 | 9740 |
GB | 24 | 0.190 ± 0.027 | 0.378 ± 0.027 | 11,700 | 23,300 | — | — | |
DLGC | GS | 400 | −0.557 ± 0.061 | 0.357 ± 0.061 | — | 1320 | 2060 | — |
GB | 35 | 0.762 ± 0.017 | −0.429 ± 0.016 | 32,200 | — | — | 18,100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Shi, C.; Cao, J. A Field Investigation on Gully Erosion and Implications for Changes in Sediment Delivery Processes in Some Tributaries of the Upper Yellow River in China. ISPRS Int. J. Geo-Inf. 2022, 11, 288. https://doi.org/10.3390/ijgi11050288
Yang H, Shi C, Cao J. A Field Investigation on Gully Erosion and Implications for Changes in Sediment Delivery Processes in Some Tributaries of the Upper Yellow River in China. ISPRS International Journal of Geo-Information. 2022; 11(5):288. https://doi.org/10.3390/ijgi11050288
Chicago/Turabian StyleYang, Hui, Changxing Shi, and Jiansheng Cao. 2022. "A Field Investigation on Gully Erosion and Implications for Changes in Sediment Delivery Processes in Some Tributaries of the Upper Yellow River in China" ISPRS International Journal of Geo-Information 11, no. 5: 288. https://doi.org/10.3390/ijgi11050288
APA StyleYang, H., Shi, C., & Cao, J. (2022). A Field Investigation on Gully Erosion and Implications for Changes in Sediment Delivery Processes in Some Tributaries of the Upper Yellow River in China. ISPRS International Journal of Geo-Information, 11(5), 288. https://doi.org/10.3390/ijgi11050288