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Abstract: The next point-of-interest (POI) recommendation is one of the most essential applications
in location-based social networks (LBSNs). Its main goal is to research the sequential patterns of user
check-in activities and then predict a user’s next destination. However, most previous studies have
failed to make full use of spatio-temporal information to analyze user check-in periodic regularity,
and some studies omit the user’s transition preference for the category at the POI semantic level.
These are important for analyzing the user’s preference for check-in behavior. Long- and short-
term preference modeling based on multi-level attention (LSMA) is put forward to solve the above
problem and enhance the accuracy of the next POI recommendation. This can capture the user’s
long-term and short-term preferences separately, and consider the multi-faceted utilization of spatio-
temporal information. In particular, it can analyze the periodic hobbies contained in the user’s
check-in. Moreover, a multi-level attention mechanism is designed to study the multi-factor dynamic
representation of user check-in behavior and non-linear dependence between user check-ins, which
can multi-angle and comprehensively explore a user’s check-in interest. We also study the user’s
category transition preference at a coarse-grained semantic level to help construct the user’s long-term
and short-term preferences. Finally, experiments were carried out on two real-world datasets; the
findings showed that LSMA modeling outperformed state-of-the-art recommendation systems.

Keywords: next POI recommendation; recurrent neural network; LSTM; attentional mechanism;
location-based social networks

1. Introduction

In recent years, the booming mobile internet has promoted the wide application of
location-based social networks(LBSNs) with users sharing their location and life using
check-in activities in LBSNs, such as Gowalla, Brightkite, Yelp, etc. [1]. The next point
of interest (POI) recommendation, as one of the most significant services in LBSNs, is to
recommend the next POI to a user based on his movement pattern. Different from the
general POI recommendation, it takes into account the order of user check-ins, and is
time-dependent and sequential. The next POI recommendation is of great significance to
both the user and the merchant and can be applied for route plans, business advertising,
and traffic prediction [2,3].

Early studies used the advantage of the Markov chain to predict process states to
recommend the next POI [4]. A recurrent neural network (RNN) was then used in some
studies to model check-in sequences for the next POI recommendation. As an improvement,
long short-term memory (LSTM) based on spatio-temporal information has been proposed
to model long trajectories and achieves good performance [5]. However, the user’s check-
ins are not only limited by time and location—there are also various pieces of contextual
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information that are worth considering. As shown in Figure 1, user u has a check-in
sequence with a list of activities on Sunday. The list contains many types of contextual
information, such as time, geographical location, POI category, time difference ∆tN−1,
distance ∆dN−1, etc. To solve the problem of data sparseness, spatial context information is
exploited to capture the correlation between POIs for the POI recommendation [6]. Liu et al.
proposed the ST-RNN model that takes spatio-temporal information into consideration on
the basis of an RNN [7]. However, to be noticed, a user has a different pattern on every day
of the week. So it is necessary to analyze the temporal information of check-ins and to study
the daily check-in pattern of users in a week. That is to say, the temporal factor should
be further used to study the periodicity of the user check-in, so as to mine the regularity
of check-ins and improve the accuracy of prediction. In addition, the check-in trajectory
shown in Figure 1 shows the user has a category transition preference at the category level.
The user tends to shift from the category entertainment to the category residence. It is
necessary to study the user’s preference for the category of POI, and this can assist in the
prediction of a specific POI. However, there is still room for improvement about how to
utilize the POI category to enhance POI recommendation performance.

Figure 1. An example of the next POI recommendation.

Generally, a user’s preference are complicated and change over time. The user’s long-
term preference can express their general interest, and the user’s short-term preference can
reflect their sudden interest. To analyze a user’s long- and short-term performances, an
LSTPM model based on spatial-temporal information is proposed by combining LSTM
and RNN [8]. Moreover, the attention mechanism is introduced into the next POI rec-
ommendation to study the different influences of check-ins at different time steps on the
next POI check-in [9]. However, it is necessary to fully utilize the attention mechanism
to study the degree of influence of different factors in each user check-in. On the one
hand, it is very important to mine non-linear dependence from the non-adjacent terms
and find out the main intention of the user in the check-in sequence. On the other hand,
the factor influencing the user’s decision in each check-in activity is dynamic—it may be
time, distance, or category for different users. It is also an urgent challenge to find out the
decisive factors of each user check-in and obtain a multi-factorial dynamic representation
of user check-ins.

To take full advantage of the check-in information and take the user’s long- and short-
term preferences into account, we construct a long- and short-term preference learning
model based on a multi-level attention mechanism (LSMA) for the next POI recommen-
dation. Firstly, the multi-factor dynamic representation of the user check-in is considered
and the weights of different attributes in each check-in for a user are obtained. Secondly,
the non-linear dependence between user check-ins is considered using the accurate rep-
resentation of a user check-in, and the influence of the check-in at different time steps
on the next POI check-in is obtained. This greatly improves the precision of the check-in
presentation and the accuracy of the recommendation. In addition to directly using the
contextual information mentioned above at the fine-grained POI level to recommend the
next POI to a user, we also study the user’s coarse-grained category transition preference at
the semantic level, which can enhance the user’s preference degree for POI. Experimental
results on two large real-world datasets of Foursquare show that the LSMA performed
significantly better than the other seven baselines in terms of recall and MAP. The main
contributions of this study are as follows:
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• We analyze the long- and short-term preferences of the user, respectively, and combine
these to form the final user preference. A top-k POIs recommendation list is gener-
ated based on the next POI access probability computed by user preferences and all
candidate POIs through a POI filter we designed.

• We utilize a multi-level attention mechanism to study the multi-factor dynamic repre-
sentation of a user check-in behavior and non-linear dependence between check-ins
in their check-in trajectory. This can learn the weights of different attributes in each
check-in of a user and the influence of check-in at different time steps on the next POI
check-in.

• We study the user’s category transition preference at the semantic level to build the
user’s check-in representation using a category module we constructed. Furthermore,
we consider the periodicity of the user check-in and mine the user’s sequential pattern
based on spatiotemporal context information. Both of these greatly promote the
formation of user preferences and enhance the performance recommendation.

The remainder of the paper is organized as follows. We review the POI recommen-
dation methods in Section 2. In Section 3, some preliminary investigations are described.
Section 4 details the proposed POI recommendation approach. Section 5 provides the
experimental results and the corresponding parameter analysis. Finally, Section 6 presents
the conclusions.

2. Related Work
2.1. POI Recommendation

POI recommendations have attracted a great deal of attention in academia as a topic of
wide currency and significance in the real world. Collaborative filtering (CF) is used to study
the user’s preference for POI in the early recommendation methods. Zhang et al. [10] put
forward a cross-region collaborative filtering method to recommend new POIs; it involves
mainly mine-hidden topics from the user’s check-in records. Considering the compatibility
of social relations, Xu et al. [11] studied the collaborative filtering model (SCCF) based
on the social communication influence space and the individual attribute influence space
in order to solve the problem of cold start. Other model-based CF techniques have also
been used for POI recommendations, such as matrix factorization(MF) and probability
matrix factorization(PMF) [12]. Davtalab et al. [13] noticed that there was an implicit
association between users and POIs, and proposed a social spatio-temporal probability
matrix decomposition (SSTPMF) model using POI similarity and user similarity, to model
the similarity of social space, geographic space, and POI category space. It uses the potential
similarity factor for a POI recommended multivariate reasoning method. Unfortunately,
traditional POI recommendation methods ignore the sequential dependence of user check-
in track sequences, which reduces the accuracy of the POI recommendation.

2.2. Next POI Recommendation

To describe the time series and movement pattern formed by the user check-in, some re-
searchers have utilized the hidden Markov chain to recommend the next POI [14]. The Markov
chain has a great advantage in the state prediction of sequential processes. Cheng et al. [15] put
forward the FPMC-LR model combining POI transformation and the distance constraint of
the first-order Markov chain. However, these recommendation algorithms based on the
Markov chain have difficulty capturing the long sequence context.

With the application of recurrent neural networks, the above problems can be solved.
The time-LSTM model based on LSTM is proposed to study the influence of the time interval
on check-in behavior for the next POI recommendation [16]. Many factors (such as time,
geographical location, category, etc.) during check-in will affect the users’ check-in selection.
Therefore, integrating different contextual information into the recommendation model
can effectively mine the users’ mobility patterns. A multi-task learning framework based
on the LSTM network named iMTL is present to comprehensively consider the category
and temporal information in the trajectory sequence for the next POI recommendation [17].
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Numerous studies have shown that contextual information is valuable for studying user
check-in behavior.

The attention mechanism can capture the degree of influence of different components;
it is helpful to obtain more accurate user preference details to improve the performance of
the POI recommendation model [18]. ATST-LSTM is based on the attention mechanism
and contains spatio-temporal information, but it does not consider category transition
preference information [19]. Zheng et al. [20] studied the effect of a hierarchical attention
network (MAHAN) on memory enhancement for next POI recommendation. Liu et al. [21]
proposed an attention-based, category-aware GRU model for the next POI recommendation,
mainly focusing on the user’s POI category preference. Xia et al. [22] designed intra- and
inter-trajectory attention mechanisms to tackle the sparsity problem. Feng et al. [23]
proposed an attentional recurrent network to predict user mobility from sparse trajectories.
The network selects the most relevant historical trajectory to capture the periodic nature of
human movement. The above studies showed that good recommendation performance
could be achieved through the attention mechanism. However, they only consider the
influence of each check-in on the last check-in in the trajectory by studying the importance
of each RNN cell to the last cell—the influence degree of different attributes in each check-
in is ignored, which is also very important for reflecting the user’s check-in behavior
more accurately.

Similar to human memory as studied by existing psychological research, user interests
can also be divided into long-term and short-term. Long-term interest expresses the user’s
long-term focus, and short-term interest can grasp the rapid changes in a user’s interest.
Some studies only consider users’ short-term preferences, such as ST-RNN [7], but others
have found it necessary to study both long- and short-term preferences. Jannach et al. [24]
found that both the long- and short-term interests of the user have a significant impact on
the performance recommendation. Then a long and short-term combination model, based
on location and category information, is proposed for the next POI recommendation [25].
The LSTPM integrates the long- and short-term preferences based on two LSTM networks,
but does not consider time and category information [8]. Liu et al. [26] proposed the
RTPM model based on LSTM, which considered both long- and short-term preferences
and studied the real-time preference of a user through public interest in the short-term
preference module. Although RTPM filters some POIs in the recommendation stage using
POI category information to reduce the recommendation space, it also ignores the category
of check-in when constructing the user movement pattern.

Unlike previous studies that do not fully consider the category trajectory of the user
and the spatio-temporal information of check-in, our research uses the user’s category
transition preference to build a check-in representation and then considers the user’s long-
and short-term preferences, respectively, based on a multi-level attention mechanism.

3. Preliminaries
3.1. Observations of User’s Trajectory

Two interesting observations were highlighted by the user’s check-in behavior analysis
in LBSNs.

• Obs.1: (Category transition preference.) On the semantic level, the user’s check-in
behavior has a category correlation. Figure 2a shows the category transition probability
of users’ check-ins in the Charlotte dataset. The correlation between the user’s check-
ins changes over time and is sequential. Different from other studies using a category
as one attribute of check-in for a POI recommendation, we construct a category module
of the proposed model to consider the category trajectory of the user and study the
user’s category transition preference at a coarse-grained category level. The module
influences the user’s preference for a specific POI. Moreover, there are hundreds of
POI category labels in the datasets, which makes the prediction space very large and
is not conducive to assisting in predicting the specific POI of the check-in. Therefore,
inspired by [27], we summarize twelve coarse-grained categories on the basis of
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existing categories. Note that each user’s dependence on the category transition
preference is different. For instance, the user in Figure 2b goes from “residence” to
“office”, and vice versa.

• Obs.2: (Periodic preference.) A user may have a fixed-mobile pattern on weekdays
and another check-in pattern on weekends (Saturday and Sunday). However, except
for distinguishing the user check-in pattern roughly on working days and weekends
to analyze user periodic preference, a user’s check-in behavior will have a relatively
obvious change pattern every day of the week in real life. As shown in Figure 3, for
example, a user would like to visit the gym after the restaurant on Wednesday and to
visit the company before the bar on Thursday. It is not appropriate to only study the
periodicity of the user check-in movement on weekdays and weekends, so we analyze
the spatio-temporal information of check-ins and study the periodic check-in pattern
of users for every day of the week.

(a)

(b)

Figure 2. (a) Category transition probability of user’s check-ins in the Charlotte dataset (C1: Catering,
C2: Entertainment, C3: Fitness, C4: Travel, C5: Office, C6: Residence, C7: Leisure, C8: Medical,
C9: Store, C10: Transportation, C11: Livelihood, C12: Beauty); (b) An example of a user category
trajectory sequence.
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Figure 3. Example of a user check-in pattern on different day of the week.

3.2. Problem Statement

Let U =
{

u1, u2, · · · , u|U|,
}

denote a set of users and V =
{

v1, v2, · · · , v|V|,
}

denote
a set of POIs, where |U| represents the total number of users and |V| represents the total
number of POIs. Each POI v ∈ V is a location associated with latitude, longitude and
category information in LBSNs, such as a restaurant or bar.

A check-in activity of user u ∈ U is a six-tuple Au
tk

=
(

u, vu
tk

, lv, cv, tk, wtk

)
, where

vu
tk

represents user u who accesses the POI v at time tk. The category of v is cv, lv is the
geographical coordinate, wtk represents the time, and tk is the w day of a week, such as
Monday.

All the check-in activities of user u form their trajectory sequence Au ={
Au

t1
, Au

t2
, · · · , Au

tN

}
, where N is the total check-in number of user u. From the histori-

cal trajectory sequence Au, we obtain the category sequence Cu =
{

Cu
t1

, Cu
t2

, · · · , Cu
tN

}
of u,

where Cu
tk
= (u, cv). The short-term check-in sequence of user u can be extracted from Au,

denoted as Su =
{

Au
tN−S+1

, · · · , Au
tm

, · · · , Au
tN

}
, where Au

tN−S+1
represents user u check-in

for the first time in the short-term, and S is the total check-in number in the short-term.
Given Au, Cu and Su, the goal of the next POI recommendation is to predict a top-k

list of POIs that user u is likely to visit at the next time tN+1 based on the two observations.

4. Proposed Method

The proposed model consists of four parts, as shown in Figure 4: (1) Category module:
this captures the category transition preference of the user at the coarse-grained seman-
tic level to assist the long- and short-term preference modules; (2) Long-term preference
module: this obtains the user’s long-term preference for POI based on the LSTM, and
integrates the multi-level attention mechanism and the user’s category transition prefer-
ence; (3) Short-term preference module: this obtains the user’s short-term preference for
POI based on the RNN, and integrates the temporal attention mechanism and the user’s
category transition preference; (4) The output layer: the long and short-term preferences are
combined to obtain the user’s preference expression, and the final POI probability ranking
list is formed with the calculation of user preference and candidate POIs based on a filter
that we designed.
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Figure 4. The proposed LSMA framework.

4.1. Category Module

We design the category module to infer the user’s category transition preference,
which obtains the category transition pattern when users visit the POI and participates in
the POI recommendation as an auxiliary function. Due to the long sequence, the LSTM
network is adopted to ensure recommendation accuracy.

We learn the user’s category transition preference ru
c from the category sequence

Cu =
{

Cu
t1

, Cu
t2

, · · · , Cu
tN

}
, where each element of Cu is denoted as Cu

tk
= (u, cv). This

indicates that the user u visits a POI v of category cv at time tk. The latent vector of the
category module is defined as follows.

xc
tk
= WCcv + bC (1)

where WC ∈ Rd×d is the weight matrix, d is the dimension of the hidden vector, bC ∈ Rd

is bias, and cv ∈ RDc indicates the embedding vector of the POI category cv. Then, xc
tk

is
input into the LSTM network to infer the hidden state hc

tk
of user u at time tk.

hc
tk
= LSTM

(
xc

tk
, hc

tk−1

)
(2)

where LSTM(·) captures the sequential correlation of categories, and hc
tk−1

indicates the
check-in category up to tk−1. Note that we treat the last hidden vector hc

tN
as the represen-

tation of user u’s category transition preference.

ru
c = hc

tN
(3)

4.2. Long-Term Preference Module

The long-term preference module obtains the user’s long-term POI preference ac-
cording to the contextual information of check-in activities and the multi-level attention
mechanism.

4.2.1. Network Input

The historical check-in sequence of user u consists of all their check-ins. Each check-in
is a six-tuple Au

tk
=
(

u, vu
tk

, lv, cv, tk, wtk

)
, which reflects the long-term preference of the user
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to access the POI, so we utilize it to learn the user’s preference at the POI level. Because
the user’s check-in is usually affected by the distance between the current location and
the next location, as well as the time difference between the last check-in and the current
check-in, the embedding layer of the long-term preference module should consider the
impact of spatio-temporal contextual information on the check-in on the basis of the check-
in location and time. The modeling of continuous check-in activities combined with the day
of the week is more conducive to the study of the user’s check-in regularity. In conclusion,
the latent vector of the embedding layer of the long-term preference module is defined
as follows:

x̃l
tk
= Wvvu

tk
+ Wllv + Wccv + Wttk

+Wwwtk + Wddtk + Wtdtdtk + b
(4)

where W is the weight matrix, b is the bias term, vu
tk
∈ RDv is the embedding of the POI

number, lv ∈ RDl is the embedding of the POI location, tk ∈ RDt is the embedding of the
access timestamp, wtk ∈ RDw is the embedding of wtk , dtk ∈ RDd is embedding based on
the distance dtk between lu

tk
and lu

tk−1
of vu

tk
and vu

tk−1
, and tdtk ∈ RDtd is embedding based

on the time difference tdtk between tk and tk−1 of vu
tk

and vu
tk−1

.
The embedding layer of the long-term preference module has a total of seven input

features, each of which marks an attribute of the current check-in. The influence degrees of
these attributes on the current check-in are different. For example, a user is more likely to
visit a POI close to their last check-in at a given time or is more likely to go to the “catering”
category. The proportion of different attributes in the current check-in is researched by the
contextual attention mechanism.

We use x̃(i, tk) to represent the i-th feature of the k-th history check-in. For example,
x̃(1, t2) represents the POI number information of user u in the second check-in, and ρ(i, tk)
represents the weight of the i-th attribute in the k-th check-in, and the softmax function is
used for normalization.

ρ̃(i, tk) = tanh
(

Wi

[
hl

tk−1
; cl

tk−1

]
+ Wx̃

i x̃(i, tk) + bi

)
(5)

ρ(i, tk) =
exp(ρ̃(i, tk))

∑I
i=1 exp(ρ̃(i, tk))

, 1 ≤ i ≤ I (6)

where I is the number of attributes, Wi ∈ Rd×2d, Wx̃
i ∈ Rd×d, bi ∈ Rd are the parameters

to be learned, and cl
tk−1

is the cell state of the LSTM network at time tk−1. Then, x̃(i, tk)

is multiplied by ρ(i, tk) to obtain the multi-factor dynamic representation of the check-
in at time tk under the contextual attention mechanism, and then the updated attribute
embedding vector is connected to obtain the aggregation x̂l

tk
of the embedding layer based

on the contextual attention mechanism.

x̂(i, tk) = x̃(i, tk)× ρ(i, tk) (7)

x̂l
tk
=

I

∑
i=1

W(i)x̂(i, tk) + b (8)

where W(i) ∈ Rd×d is the weight parameter to be learned corresponding to the i-th attribute,
and b ∈ Rd is the bias vector to learn.

To take into account the user’s transition preference at the semantic level, we add the
user’s category preference on the basis of the embedded layer based on contextual attention
and obtain the expression of the end-user’s long-term check-in behavior as shown below.

xl
tk
= x̂l

tk
+ λl

cru
c (9)
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where λl
c ∈ Rd×d is the weight of user u’s category transition preference in the current

check-in representation of the long-term preference module, and xl
tk

is the final potential
vector sent to the LSTM network to infer the hidden state at tk.

hl
tk
= LSTM

(
xl

tk
, hl

tk−1

)
(10)

4.2.2. Temporal Attention

Check-in activities in the user’s trajectory sequence are not all linearly correlated.
However, the LSTM cannot solve this problem because it cannot obtain non-linear de-
pendencies between check-ins. To compensate for this, we study the different effects of
different check-ins on user preference; that is, the weights of different time steps of the
check-in sequence should be learned to distinguish the important degree of each check-in
in the historical check-ins. Therefore, we utilize the temporal attention mechanism to
adaptively select relevant historical check-in activities to achieve a better recommendation
of the next POI.

Let Hl ∈ Rd×N be a matrix composed of all hidden vectors
{

hl
t1

, hl
t2

, · · · , hl
tN

}
of the

long-term preference module, where N is the length of the historical check-in sequence.
The weight vector µl of the historical check-in is generated through the temporal attention
mechanism, and the influence degree of the k-th historical check-in on the next check-in is
measured with the weight µl

k corresponding to each hl
tk

.

µl
k =

exp
(

g
(

hl
tk

, ql
u

))
∑N

i=1 exp
(

g
(

hl
tk

, ql
u

)) (11)

the attention function g
(

hl
tk

, ql
u

)
is as follows.

g
(

hl
tk

, ql
u

)
=

hl
tk

(
ql

u

)T

√
d

(12)

where ql
u is the query information of the long-term check-in sequence in the temporal

attention mechanism, that is, the POI that the user checks-in next. The dot product attention
is used as the attention function, since the d is small and the dot product attention is superior
to the additive attention. The embedded representation of the query “next POI check-in”
for all the historical check-ins is obtained. Then multiply the resulting weight vector µl by
Hl to obtain the user u’s preference representation of the long-term.

ru
l =

N

∑
k=1

µl
khl

tk
(13)

4.3. Short-Term Preference Module

The user’s next POI check-in is influenced by the short-term preference represented by
the user’s recent check-in behavior in addition to the long-term preference represented by
the historical check-in. Using the last S check-in as the user’s short-term check-in sequence,
it is represented as Su =

{
Au

tN−S+1
, · · · , Au

tm
, · · · , Au

tN

}
, where Au

tN−S+1
represents the first

check-in in the short-term, and one of them is set as Au
tm

.
As with the long-term model, seven check-in features are extracted from the check-in

activity tuple Au
tm

=
(
u, vu

tm
, lv, fv, tm, wtm

)
of the short-term as the user check-in attributes
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to be learned in the short-term preference module. The latent vector of the embedding
layer of the short-term preference module is defined as follows:

x̃s
tm = WS

v vu
tm + WS

l lv + WS
c cv + WS

t tm

+WS
wwtm + WS

d dtm + WS
tdtdtm + bS

(14)

where WS is the weight matrix, and bS is the bias term.
Similarly, the users’ category transition preference is also considered in the short-term

preference module of this study, so short-term preference learning aggregation is defined
as follows:

xs
tm = x̃s

tm + λs
cru

c (15)

where λs
c ∈ Rd×d is the weight of user u’s category transition preference in the current

check-in representation of the short-term preference module. xs
tm

enters the RNN as a
potential vector for the user’s check-in for the short-term.

Note that the RNN has the disadvantage of gradient disappearance. To avoid the prob-
lem of inaccurate recommendation results, we introduce the temporal attention mechanism
to aggregate the hidden states generated by the RNN.

Let Hs ∈ Rd×N be a matrix composed of all hidden vectors
{

hs
t1

, · · · , hs
tm

, · · · , hs
tS

}
of

the short-term preference module, where S is the length of the short-term check-in sequence.
The weight vector µs of the short-term check-in is generated through the temporal attention
mechanism of the short-term preference module, and the influence degree of the m-th
short-term check-in on the next check-in is measured with the weight µs

m corresponding to
each hs

tm
.

µs
m =

exp
(

g
(
hs

tm
, qs

u
))

∑N
i=1 exp

(
g
(

hs
tm

, qs
u

)) (16)

where qs
u is the query information of the temporal attention mechanism, that is, the embed-

ded representation of the query “next POI check-in” for all short-term check-ins. Then we
multiply that weight vector µs times Hs to obtain the short-term preference representation
for user u.

ru
s =

S

∑
m=1

µs
mhs

tm (17)

4.4. Output Layer
4.4.1. POI Filter

Traditional recommendation systems usually recommend POI directly with all POI
candidates as the POI, which undoubtedly increases the recommended computation time
and space, and reduces the recommended accuracy. Different from other interest rec-
ommendations, such as music and movies, users’ check-in is restricted by geographical
location, so the next check-in of users will not be too far away from the current location. In
addition, considering the time and transportation cost of each check-in, users are actually
more inclined to access POIs that have been checked in before. However, users are also
influenced by other users to access popular POIs. Therefore, these three factors must be
considered at the same time when making recommendations for users.

Considering the above reasons, we designed a filter to sift some POIs as candidate
POIs from all POIs. The POI filter has three filtering rules: (1) the POI that the user u has
visited, (2) ten of the nearest POIs to the user’s current location, (3) five of the most popular
POIs among all users. The specific parameters are discussed in Section 5.

4.4.2. Recommend Top-k POIs

In order to comprehensively and dynamically study user preference, we use a weighted
fusion of the user’s long-term preference obtained by the long-term preference module and
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their short-term preference obtained by the short-term preference module to compute the
final user preference.

ru = αru
l + βru

s (18)

where α and β are the weights to learn. The next POI access probability normalized by the
softmax function is defined as follows:

ou
tN+1,vk

=
exp(ruvk)

∑P
k=1 exp(ruvk)

(19)

where vk is an embedded representation of candidate POI vk, and P is the total number
of candidate POIs passed by a filter. Then, we can obtain the next visit probability of all
candidate POIs in the output layer and the ranked POI list and recommend the top-k POIs
for user u (Algorithm 1).

Algorithm 1 Training of LSMA

Input: User set U, historical check-in sequences set AU , iter−max, parameter set Θ
Output: LSMA model Ru

1: //construct training instances
2: Initialize CU = φ, SU = φ
3: for each u ∈ U do
4: Cu ←

{(
u, cu

t1

)
,
(

u, cu
t2

)
, · · · ,

(
u, cu

tN

)}
5: Su ←

{
Au

tN−S+1
, · · · , Au

tm
, · · · , Au

tN

}
6: end for
7: for each u ∈ U do
8: for each Cu, Su and Ai

u ∈ Au do
9: Get the negative samples {c′} , {v′s} and {v′}

10: end for
11: end for
12: //parameter updating
13: for iter = 1; iter ≤ iter−max; iter++ do
14: for each u ∈ U do
15: Select a random batch of instances
16: for each θ ∈ Θ do
17: θ ← θ − η ∗ ∂l

∂θ
18: end for
19: end for
20: end for

4.5. Network Training

To effectively improve recommendation performance, we employ Bayesian person-
alized ranking (BPR) to define the loss function for training the network in the category,
long- and short-term preference modules [28]. The data used for the modules consist of
a set of triplets sampled from the original data, each triplet containing the user u and a
pair of positive and negative samples. In the category module, the positive sample is the
category that user u is currently accessing, the negative sample is all of the other categories.
In the long- and short-term preference modules, the positive sample is the POI that user u
is currently accessing; the negative sample is the POI close to the current check-in location
considering the influence of geographical coordinates on the user’s check-in.

The loss function of the category module is:

lc = ∑
(c>c′)∈Ωc

ln
(

1 + e−
(

oc
t−oc′

t

))
(20)
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where c′ is the negative category of c, Ωc is the training example consisting of u, c, c′ in the
category module, oc

t is the predicted probability of user u visiting the POI of category c at
time t, and oc′

t is the predicted probability of user u visiting the POI of category c′ at time t.
The loss function of the long-term preference module is:

ll = ∑
(v>v′)∈Ωl

ln
(

1 + e−
(

ov
t−ov′

t

))
(21)

where v′ is a negative sample of v in the long-term preference module, and Ωl is the training
example consisting of u, v, v′.

The loss function of the short-term preference module is:

ls = ∑
(vs>v′s)∈Ωs

ln

1 + e
−
(

ovs
t −ov′s

t

) (22)

where v′s is a negative sample of vs in the short-term preference module, and Ωs is the
training example consisting of u, vs, v′s.

To sum up, we design the total loss function by integrating the loss functions and
regularization terms of the three modules, shown as follows:

l = lc + ll + ls +
ε

2

∣∣∣∣∣∣Θ2
∣∣∣∣∣∣ (23)

where ε is the regularization coefficient, and Θ =
(
WC, bC, W, b, WS, bS, µ

)
is the set of

model parameters to learn. AdaGrad has been applied in large-scale learning tasks; thus,
AdaGrad was employed to optimize the network parameters.

4.6. Complexity Analysis

In the LSMA training process, the computational complexity of all the category, long-
and short-term preference modules is O

(
d2), where d is the embedding size. The training

instance Ωc with an average category sequence length of N̄, training instance Ωl with an
average history sequence length of N̄, and training instance Ωs with an average short-term
sequence length of S̄ are given, respectively. Each iteration trains overall complexity to
O
(
((|Ωc|+ |Ωl |) · N̄ + |Ωs| · S̄) · d2). That is, the complexity of LSMA has a quadratic

relationship with the size of the embedding vector d.

5. Experiments

To verify the proposed method, we compared it with seven baselines on two pub-
lic real-world check-in datasets named Charlotte (CHA) [17] and New York (NYC) [29]
from Foursquare. All the algorithms were coded in Python 3.8 and the framework was
TensorFlow 2.3.1. The experiments were conducted on the computer with CPU AMD
Ryzen 5 3500U, Radeon Vega Mobile Gfx 2.10 GHz, and 16G RAM.

5.1. Datasets

The check-in data of the CHA were collected from January 2012 to December 2013
and the check-in data of NYC were collected from April 2012 to February 2013. The CHA
dataset included 1580 users, 1791 POIs and 20,939 check-in records, and the NYC dataset
included 1083 users, 38,336 POIs and 227,428 check-in records. In this study, each check-in
record consisted of user, POI, the geographical coordinates of the POI, the timestamp of the
check-in, the category of the POI, and the day of the check-in within the week. Similar to
the work of Zhang et al. [17], we deleted the same POI that was accessed consecutively
on the same day and deleted the inactive users who checked in less than eight times. For
example, in the trajectory sequence A → A → B → A → C on Sunday, the processed
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sequence was A → B → A → C. The 90% of check-ins of each user were used as the
training set and the last 10% as the test set.

5.2. Methods for Comparison

We demonstrated the effectiveness of the LSMA method compared to the following
seven baseline methods:

• PMF [12]: a recommendation algorithm designed based on the conventional probabil-
ity matrix decomposition on the user-POI matrix.

• ST-RNN [7]: a next POI recommendation algorithm based on RNN, which integrates
the spatio-temporal information into the latent vector.

• Time-LSTM [16]: equips the LSTM with a time gate to model continuous user actions
in order to predict the next check-in POI.

• ATST-LSTM [19]: adds an attention mechanism on the basis of the LSTM network,
and comprehensively considers spatio-temporal contextual information to improve
the effectiveness of the next POI prediction.

• LSPL [25]: learns users’ long- and short-term preferences by considering sequential
information and the geographical location and category of the POI.

• iMTL [17]: a new interactive multi-task learning framework composed of a time-
aware activity encoder, spatially aware position preference encoder, and task-specific
decoder, mainly considering the next POI recommendation under uncertain check-in
conditions.

• RTPM [26]: combines long- and short-term preferences and introduces public interest
into the short-term preference to study the user’s real-time interest.

5.3. Evaluation Metrics

All the methods discussed in this study calculate the dot product between the user
representation and the POI representation to obtain the probability of the user accessing
the POI the next time. In fact, the difference of each method lies in the different modeling
of the user representation. To demonstrate the effectiveness of the methods, the recall rate
(Rec@k) and mean average precision (MAP@k) were defined as follows:

Rec@k =
1
N

N

∑
u=1

Recu@k =
1
N

N

∑
u=1

|Pu(k) ∩Vu|
|Vu|

(24)

MAP@k =
1
N

N

∑
u=1

1
map

(25)

where Pu(k) represents the set of top k POIs recommended to user u, Vu represents the
POI set actually accessed by the user at the next time in the test set, and map represents
the ranking of Pu(k) ∩Vu in Pu(k). Note that, in order to avoid a division error, we specify

1
map = 0 when Pu(k) ∩Vu = φ.

5.4. Parameter Setting

In the short-term preference module, we use the latest S check-ins as the user’s short-
term check-in sequence. The value of S should be as small as possible in order to study the
user’s recent interests and reduce the computing time and space. Considering indicator
Rec@10 as an example, Figure 5a shows the performance of difference sequence length S.
Considering the performance and computational complexity, S is set to be 6 as the length
of the short-term trajectory sequence.

The LSMA model uses word embedding vectors to represent all users and POI infor-
mation entering the model. The embedding dimensions of category, long- and short-term
preference modules should be unified. We set embedding Dc = Dv = Dl = Dd = Dt =
Dtd = Dw = d, where d is the number of hidden units. Figure 5b shows the performance of
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the difference embedding dimension d. Similarly, we chose d to be 128 as the embedding
dimension considering the performance and computational complexity.

The setting of the negative sample number is also very important for model training.
In the category module, the total number of POI categories is 12. In order to ensure the
accuracy of the recommendation, we directly use all categories other than the current
POI category as negative samples, i.e., the number of negative samples for each category
sequence in the category module is 11. However, the total number of POIs is large, so we
cannot use all POIs other than the current check-in POIs as negative samples. Therefore,
we conducted experiments to find out the optimal number of negative samples was 5 in
the long and short-term preference modules, as shown in Figure 5c.

(a) (b) (c)

Figure 5. Performance of different hyper-parameters on the CHA and NYC datasets in LSMA.
(a) different sequence length S; (b) different embedding dimension d; (c) different number of nega-
tive samples.

In the output layer of the LSMA, in order to reduce the computation and improve
the recommendation accuracy, we designed a filter mechanism, which has two hyperpa-
rameters: the most popular POI number and the nearest POI number to the user’s current
location. We also conducted comparative experiments to explore the best settings of these
two hyperparameters, as shown in Figure 6.

(a) (b)

Figure 6. Performance of different hyperparameters on CHA and NYC datasets: (a) number of
popular POIs; (b) number of nearest POIs.

We determined the best setting for each of the remaining hyperparameters as follows:
(1) The layer number of the LSTM network of the category module and long-term preference
module was 1, while the layer number of RNN of the short-term preference module was set
to 1; (2) The learning rate of the three modules was 0.00001, 0.0001, and 0.0001, respectively;
(3) The iteration number of the category module was 40, while the iteration number of the
long- and short-term preference modules were both 20.
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5.5. Results and Analysis

Tables 1 and 2 show the performance of the different methods; the results of the two
evaluation indicators are listed when k is set to 5 and 10, respectively. It is obvious that
the performance of PMF based on the non-neural network was the worst, lower than
that of baseline methods based on RNN (ST-RNN, Time-LSTM, ATST-LSTM, iMTL, LSPL,
RTPM), indicating that the neural network was very effective in modeling sequences. It
was found that the Rec and MAP values of the Time-LSTM were higher than that of ST-
RNN, which indicates that LSTM had better performance than RNN in long sequence
modeling. Among the recommendation models based on the LSTM, the RTPM performed
best on both the CHA and NYC datasets. This demonstrates the importance of considering
both the user’s long- and short-term preferences and the effectiveness of filtering some
qualified POIs to make recommendations. However, the LSMA we proposed had a better
recommendation performance than the RTPM. For example, the Rec@5 value of the RTPM
on the CHA dataset was 0.1569, while the Rec@5 value of the LSMA was 0.2838. The LSMA
increased by 80.87% on Rec@5. This was mainly because the LSMA considers the users’
long-term and short-term preferences simultaneously. Secondly, the LSMA mines as much
information contained in user check-in sequences, as well as the users’ movement patterns
in the category, as possible, and models user behavior in more detail and in various aspects.
Finally, the LSMA designs a multi-level attention mechanism to consider the weight of each
check-in attribute of the POI and the influence degree of each check-in comprehensively.

Table 1. The recommendation result of different methods for the CHA dataset.

Evaluation Rec@5 Rec@10 MAP@5 MAP@10

PMF 0.0668 0.0943 0.0141 0.0213
ST-RNN 0.0790 0.1679 0.0213 0.0513

Time-LSTM 0.0843 0.1842 0.0425 0.0609
ATST-LSTM 0.1003 0.2083 0.0499 0.0719

iMTL 0.1138 0.2634 0.0733 0.0809
LSPL 0.1319 0.3201 0.0809 0.0957
RTPM 0.1569 0.3508 0.0813 0.1023
LSMA 0.2838 0.4135 0.1036 0.1234

Table 2. The recommendation result of different methods for the NYC dataset.

Evaluation Rec@5 Rec@10 MAP@5 MAP@10

PMF 0.0322 0.105 0.022 0.0263
ST-RNN 0.0406 0.1464 0.025 0.0312

Time-LSTM 0.0794 0.1938 0.0272 0.0458
ATST-LSTM 0.1224 0.2269 0.0421 0.0621

iMTL 0.1584 0.2801 0.0693 0.0857
LSPL 0.1702 0.2964 0.0725 0.0929
RTPM 0.2057 0.3761 0.0806 0.1029
LSMA 0.2857 0.4761 0.1098 0.1315

To verify the performance obtained by considering the different contributions of the
category module, short-term preference module, contextual attention mechanism, temporal
attention mechanism, and POI filter, we designed five different variants of the LSMA:
(1) LSMA-C removes the category module; the users’ preferences at the semantic level
are no longer considered; (2) LSMA-S removes the short-term preference module; the
user’s short-term preference is no longer considered; (3) LSMA-CA removes the contextual
attention mechanism from the long-term preference module; (4) LSMA-TA removes the
temporal attention mechanism from the long-term preference module; (5) LSMA-Filter
removes the filter from the output layer.

Figure 7 illustrates the performance of the LSMA compared to the five variants. From
Figure 7, it was found that the LSMA performed better than its variants in recall and MAP.
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The performance of LSMA-C was better than that of LSMA-S, LSMA-CA, LSMA-Filter,
and LSMA-TA, which indicates that the short-term preference module and the attention
mechanism play an important role in the LSMA, and the category module assists the
long- and short-term modules. In addition, the performance of the LSMA-S is the worst
of all variants for three evaluation indicators, which confirms the important influence of
short-term preference on the user’s check-in behavior. The Rec@10 values of the LSMA-C,
LSMA-S, LSMA-CA, LSMA-TA, and LSMA-Filter on the CHA dataset were 0.3225, 0.2439,
0.303, 0.3236, and 0.3508, respectively, while the Rec@10 value of the LSMA was 0.4135.
The LSMA yielded an increase of 28.22%, 69.54%, 36.47%, 27.78%, and 17.87% on Rec@10,
respectively. The necessity of exploiting the temporal attention and contextual attention
mechanisms can be inferred. In summary, the five components were indispensable, and
they enabled the LSMA to achieve a significant performance improvement.

Figure 7. Performance comparison of LSMA and its variants on the CHA and NYC datasets.

6. Conclusions

A next POI recommendation algorithm LSMA was proposed in this paper, which
models the user’s long- and short-term preferences based on multi-level attention. Specifi-
cally, the LSMA designs the category module to obtain the category transition preference
of users and participates in check-in representation in long- and short-term preference
modules as an auxiliary function. The long-term preference module of the LSMA is con-
structed to achieve the users’ long-term POI preferences according to the LSTM network
and multi-level attention mechanism. The short-term preference module of the LSMA is
used to obtain users’ short-term POI preferences according to the RNN and the attention
mechanism. Moreover, focusing on the key attribute of the user’s check-in and the key time
step of the check-in sequence, the user’s movement behavior patterns can be fully mined
through a multi-level attention mechanism. The experimental results showed that the
LSMA performance was superior to that of the other seven comparative recommendation
methods for the next POI recommendation.
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In the future, our work will continue to optimize the LSMA model by considering
the user’s comment information and further study the privacy protection for the next
POI recommendation.
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