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Abstract: Geospatial phenomena often have spatial heterogeneity, which is caused by differences
in the data generation process from place to place. There are two types of spatial heterogeneity:
continuous and discrete, and there has been much discussion about how to analyze one type of
spatial heterogeneity. Although geospatial phenomena can have both types of spatial heterogeneities,
previous studies have not sufficiently discussed how to consider these two different types of spatial
heterogeneity simultaneously and how to detect them separately, which may lead to biased estimates
and the wrong interpretation of geospatial phenomena. This study proposes a new approach for the
analysis of spatial data with both heterogeneities by combining the eigenvector spatial filtering-based
spatially varying coefficient (ESF-SVC) model, which assumes the continuous spatial heterogeneity
and generalized lasso (GL) estimation, which assumes discrete spatial heterogeneity and proposes the
ESF-GL-SVC model. The performance of ESF-GL-SVC was evaluated through experiments based on
a Monte Carlo simulation and confirms that the ESF-GL-SVC showed better performance in estimating
coefficients with both types of spatial heterogeneity than the previous two models. The application
of the apartment rent data showed that the ESF-GL-SVC outputs the result with the smallest BIC
value, and the estimated coefficients depict continuous and discrete spatial heterogeneity in the
dataset. Reasonable coefficients were estimated using the ESF-GL-SVC, although some coefficients
by ESF-SVC were not.

Keywords: spatial heterogeneity; eigenvector spatial filtering-based spatially varying coefficient
model; generalized lasso

1. Introduction

In recent years, due to the proactive disclosure of data by government agencies
and private companies, detailed spatial data with high spatial resolution have become
available, allowing us to quantitatively understand the reality of socioeconomic activities
in greater detail.

Geospatial data commonly have a property known as spatial autocorrelation, also
known as the ‘first law of geography’ [1], where data from locations closer to each other
have a stronger correlation. One approach for the analysis of geospatial data with spatial
autocorrelation is to assume that the data generation process is common regardless of
location and to build models that represent the spatial autocorrelation of dependent vari-
ables, disturbances, etc. The spatial regression models in the field of spatial econometrics
(e.g., [2]), the universal kriging model in the field of spatial statistics (e.g., [3]), and the
eigenvector spatial filtering (ESF) model in the field of quantitative geography [4,5] are
examples of this approach.

Another approach is to assume the existence of spatial heterogeneity, which means that
the data generation process differs by location. This study focuses on this approach, which
can be broadly divided into two types depending on assumptions about the structure of
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spatial heterogeneity [6]. One assumption is that the influence of the data formation factors
varies continuously with respect to spatial location. The competing assumption is that the
influence of the data formation factors differs discontinuously at certain spatial boundaries.

Models which use the first assumption, that data formation factors vary continuously,
are known as spatially varying coefficient (SVC) models, and the most applied model is
geographic weighted regression (GWR) [6–8]. A weighted least-squares method, which
uses a distance decay function to give large weights to geospatial data in the vicinity of
an analysis target point, is used to obtain point-specific estimates of coefficients that vary
smoothly in space. The eigenvector spatial filtering-based spatially varying coefficient
(ESF-SVC) model [9–11] is an extension of ESF [4,5], which represents the spatial correlation
structure using the eigenvectors of the spatial weight matrix and estimates the coefficients
that vary continuously in space. ESF-SVC is a highly useful analysis method with several
advantages over GWR, such as the ability to represent the structure of spatial heterogeneity
more flexibly, easier estimation, and improved applicability to large scale data [11]. It has
been applied to various regional analyses [12–15].

Models which use the second assumption, that data formation factors vary discretely
at certain spatial boundaries, have been used for the analysis of the geographical segmenta-
tions of the real estate market in regional sciences and the detection of point event clusters,
such as geographical clusters of infectious disease outbreaks in epidemiology and criminal
concentration areas in criminology. In the analysis of geographic real estate market segmen-
tations, the scale of spatial heterogeneity in property valuations is analyzed by comparing
models with different geographic tessellation, such as school districts and neighborhoods
(e.g., [16,17]). In the detection of point event clusters, spatial scan statistics [18], which are
representative methods developed in the field of spatial epidemiology, and agglomeration
analysis [19,20], which apply the false discovery rate controlling method [21], have been
used to determine whether the frequency of point events in a particular region differs from
that of other regions, according to predetermined regional divisions. As both approaches
predefine regional divisions, they have limitations in analyzing a series of multiple regions
with spatial heterogeneity. To solve the above-mentioned limitations, the generalized lasso
(GL) [22] has been applied for analyses of discrete spatial heterogeneity [23–29]. The GL is
an extension of the lasso [30] by introducing `1 regularization to the difference between
the coefficients of adjacent regions. Using a model in which each region has a coefficient
that represents the difference from the overall trend, a series of regions with the same
level of spatial heterogeneity can be extracted by regularizing the difference between the
coefficients of neighboring regions.

The above-mentioned approaches use different assumptions on spatial heterogeneity;
the former assumes the heterogeneity that varies continuously in space, while the latter
assumes the heterogeneity that varies discretely at specific geographical borders. However,
which assumption is adequate to represent the spatial heterogeneity of geospatial data is
still unclear.

Using the real estate market analysis as an example, those who prefer to live in the city
center and those who prefer to live in the suburbs evaluate real estate properties differently;
the former value proximity to urban services and the latter value proximity to natural
environment and broad space; the coefficients of the explanatory variables expressing
proximity to those services differ by location. If there are no clear boundaries between
urban and suburban areas, as is the case in Japan’s metropolitan areas, it is reasonable
to assume that coefficients are continuously changing in space. In addition, if there are
specific neighborhoods recognized as high-end residential areas, the valuation may differ
from the surrounding areas and real estate prices will show discontinuity at the border
of those neighborhoods. Considering the above, there might exist both continuous and
discrete spatial heterogeneity in real estate price data. However, previous studies have not
sufficiently discussed how to consider these two different types of spatial heterogeneity
simultaneously and how to detect them separately, which may lead to biased estimates and
the wrong interpretation of geospatial phenomena.
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This paper proposes a new approach for the analysis of geospatial data with both
continuous and discrete spatial heterogeneity by fusing ESF-SVC and GL and evaluates its
performance to verify its effectiveness through the application of geospatial data analysis.

The remainder of this paper is organized as follows. In Section 2, after the ESF-SVC and
GL are outlined, the fusion model, the eigenvector spatial filtering, and generalized lasso-
based spatially varying coefficient model (ESF-GL-SVC) are presented and are evaluated
using simulation data. In Section 3, we apply the ESF-GL-SVC, ESF-SVC, and GL models to
the residential rent data in the southwestern part of the Tokyo metropolitan area, interpret
the estimated results, and discuss the effectiveness of the ESF-GL-SVC model. Finally,
Section 4 concludes the study.

2. ESF-GL-SVC: A Model to Analyze Continuous and Discrete Spatial Heterogeneity

We first explain two previous models that deal with spatial heterogeneity, introduce the
ESF-GL-SVC, which is a fusion of the two, and then represent the performance evaluation.

2.1. Previous Models for Spatial Heterogeneity
2.1.1. Eigenvector Spatial Filtering-Based Spatially Varying Coefficient (ESF-SVC) Model

The ESF-SVC model utilizes the common statistical test for spatial autocorrelation,
Moran’s I, to express the spatial heterogeneity of coefficients. Here we consider the analysis
that the geospatial data at location i, yi, is regressed on the attributes of the K types of its
attributes xij. Let N denote the number of locations, y denote an N by 1 vector of dependent
variables, X denote an N by K matrix of explanatory variables whose first column is an N
by 1 vector of ones. β is a K by 1 coefficient vector of the regression of y on X and the first
element is an intercept.

Let C denote an N by N spatial proximity matrix between N locations, 1 denote an N
by 1 vector of ones, I denote an N by N identity matrix, and M denote an N by N cantering
matrix for N by 1 vector, which is M = (I − 1 1′/N). Then the Moran’s I statistics MC of
dependent variables y observed at N locations is:

MC(y) =
N

1’M1
y’MCMy

y’My
(1)

The term MCM represents the autocorrelation structure of y that have spatial proxim-
ity expressed by C.

Griffith [4] proposed an ESF, which utilizes the eigenvectors of matrix MCM as ex-
planatory variables in linear regression models to express the spatial correlation of de-
pendent variables and remove the correlation from disturbances. The eigenvectors that
correspond to large eigenvalues represent the continuous global spatial correlation patterns
and the eigenvectors with small and positive eigenvalues represent the continuous local
spatial correlation patterns.

Let E denote an N by M matrix, which consists of the first M eigenvectors, whose
eigenvalues are the largest, of matrix MCM and whose i-th column is a i-th eigenvector ei,
γ denote an M by 1 coefficient vector for the explanatory matrix E. The basic linear model
of ESF is given by:

y = Xβ+ Eγ+ ε (2)

where E(ε) = 0, Var(ε) = σ2I. It is assumed that the disturbance ε have homoscedasticity
and no correlation.

Griffith [9] expanded ESF to an ESF-SVC model to estimate spatially varying co-
efficients that represent the heterogeneity of coefficients of explanatory variables. The
location-based coefficient for explanatory variables xk and βESF

k is modelled by:

βESF
k = βk1 + Eγk (3)
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where γk = (γk1, . . . , γkm)
′ represents the coefficients that vary by location, and the ESF-

SVC model is:

y =
K

∑
k=1

xk ◦βESF
k + ε (4)

where ◦ denotes the Hadamard product and E(ε) = 0, Var(ε) = σ2I. It assumes that the
spatial autocorrelation of dependent variables is represented by the heterogeneity of βESF

k
and there is no spatial autocorrelation left on disturbances.

The ESF-SVC model that utilized many eigenvectors might cause the overfitting
problem. One solution is to utilize only eigenvectors whose Moran’s I statistics are larger
than one-fourth of Moran’s I statistics of the first eigenvector [31]. It turns out to be
only eigenvectors that correspond to large eigenvalues and represent continuous global
spatial heterogeneity are utilized to express the spatial heterogeneity of spatially varying
coefficients, then their continuous local spatial heterogeneity cannot be considered in
the model.

The ESF-SVC model is used in this study because it can be described as a linear
regression model and has high compatibility with GL, which performs `1 regularization for
a linear regression model.

2.1.2. Generalized Lasso (GL)

The lasso (least absolute shrinkage and selection operator) [30] is a most common
sparse modelling method that adds `1 penalty terms to the objective function of estimation
to obtain the sparse estimates of coefficients. It is often utilized in the variable selection.
The estimation of the linear regression model by lasso is given by:

^
β = argmin

β

1
2

N

∑
i=1

(
yi −

K

∑
j=1

β jxij

)2

+ λ
K

∑
j=1

∣∣β j
∣∣ (5)

where λ denotes a weight for the penalty term.
The GL [22] is an expansion of lasso that adds `1 penalty term on the differences

between ‘adjacent’ coefficients in addition to the `1 penalty term on the coefficients them-
selves. It can detect change points when it is applied to time-series analyses and borders
when it is applied to spatial analyses. The estimation of the linear regression model with
GL is represented by:

^
β = argmin

β

1
2

N

∑
i=1

(
yi −

K

∑
j=1

β jxij

)2

+ δλ
K

∑
j=1

∣∣β j
∣∣+ λ ∑

(i,j)∈C

∣∣βi − β j
∣∣ (6)

where λ and δ are hyperparameters of weights on penalty terms and C is a set of pairs of
adjacent coefficients.

The GL has been applied to detect discrete spatial heterogeneity. It is applied not
only to linear regression analyses [22–24] but also to many types of analyses, such as the
estimation of the region-specific spatial covariance function [25], the estimation of the
spatial and temporal quantile function [26], and the spatial cluster detection of point events
based on Poisson regression models [27–29].

2.2. ESF-GL-SVC

We propose an ESF-GL-SVC model to analyze continuous and discrete spatial hetero-
geneity simultaneously by combining the ESF-SVC and GL.

Continuous heterogeneity is represented by coefficients of ESF-SVC. The ESF-GL-SVC
model utilizes the eigenvectors whose Moran’s I statistics are larger than one-fourth of
Moran’s I statistics of the first eigenvector [31]. Discrete heterogeneity is represented by
coefficients of dummy variables α that are set for all subregions in the study area. Let
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D denote the subregion dummy variable matrix; the element Dir is one if point i is in
subregion r and zero otherwise. Then, the ESF-GL-SVC model is expressed as:

y =
K

∑
k=1

xk ◦βESF
k + Dα+ ε, βESF

k = βk1 + Eγk (7)

The estimation of the ESF-GL-SVC model with the GL regularization term can be
represented by Equation (8), where C denotes the set of combinations of adjacent subregions,
and λ, δ1, and δ2 are the hyperparameters.

(
^
α,

^
β,

^
γ

)
= argmin

α,β,γ

1
2

N

∑
i=1

yi −
K

∑
j=1

(
β j +

L

∑
l=1

eilγl j

)
xij −

M

∑
m=1

dimαm

2

+λ ∑
(p,q)∈C

∣∣αp − αq
∣∣+ δ1λ

M

∑
m=1
|αm|+ δ2λ

L

∑
l=1

K

∑
j=1

∣∣∣γl j

∣∣∣
 (8)

The second term, the `1 penalty term on the differences between coefficients of adjacent
subregions, enables the extraction of a series of subregions with the same level of spatial
discrete heterogeneity; it can mitigate the scale issues associated with the preset segmen-
tation of subregions. The third term, the `1 penalty term on the coefficients of subregion
dummy variables, and the fourth term, the `1 penalty term on the ESF-SVC coefficients,
have the effect of inducing a sparse solution. When data have only continuous spatial
heterogeneity, the third term functions to lead to an estimation result where the values of
the coefficients of subregion dummies are zero, and when data have only discrete spatial
heterogeneity, the fourth term functions to lead to an estimation result where the values of
the ESF-SVC coefficients are zero. The regularization for the coefficients themselves can
reduce the occurrence of parameter identification problems between the ESF-SVC and the
subregion dummy variable coefficients.

Three hyperparameters should be selected according to the fitness of the models. The
Bayesian information criterion (BIC) might be an option. However, since the estimated
coefficients would be biased due to the regularization terms of lasso [32], the model selection
utilized by the estimates of Equation (8) is not appropriate. Therefore, we proposed the
estimation of coefficients first by Equation (8), building a model that corresponds to the
estimated results by removing coefficients estimated as zero and setting a common dummy
subregion coefficient if adjacent subregions have the same estimates, estimate the model
without regularization terms, and evaluating the results by BIC. These procedures avoid
biased estimates, and the fitness of model would be evaluated appropriately. The estimation
of the ESF-GL-SVC model is executed by the ‘genlasso’ package [33] in R. This package
estimates coefficients by gradually varying hyperparameter λ under a fixed ratio of weights
δ. This study set both δ1 and δ2 in the estimation of fusion model and δ for the estimation
of GL as {0.1, 1, and 10} and searched for the estimation result with the minimum BIC
value. The BIC-based evaluation may also be useful in reducing the possibility of parameter
identification problems by selecting models with fewer non-zero coefficients.

2.3. Performance Evaluation by Simulation Experiments

We evaluated the performance of ESF-GL-SVC applied to simulated data with contin-
uous and discrete spatial heterogeneity. The settings for the simulation data generation are
outlined below.

We set a square with side length 1 as a study area and generated a predetermined
number of points in it. The coordinates of points are generated by the uniform distribution
between 0 and 1. Simulated data were generated from:

y = 1 ◦βESF
1 + x ◦βESF

2 + Dα+ ε, βESF
k = βk1 + Eγk, ε ∼ N

(
0, σ2

ε I
)

(9)

where x is a vector of explanatory variables whose elements are generated from the uniform
distribution between 0 and 1.
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To generate the data values with continuous spatial heterogeneity at each point, we
set a spatial proximity matrix C by the gaussian kernel whose width is 0.2, obtained eigen-
vectors of the matrix MCM by the approximate calculation by [34], selected eigenvectors
whose eigenvalues were larger than one-fourth of the largest eigenvalues according to [31],
and generated simulation data at each point by setting coefficients βs and γs. To simulate
spatially varying coefficients with different structures of spatial heterogeneity for each
trial, one eigenvector was randomly selected for each explanatory variable. The coefficient
γ of selected eigenvectors was set to one and other coefficients were set to zero. The
non-spatially varying coefficients, β1 and β2, were set to one.

To generate the data value with discrete spatial heterogeneity, we divided the study
area into 10 by 10 square subregions with side length 0.1 and assigned a dummy variable
to each subregion. Let α denote a vector of subregion dummy variables and D denote
a matrix to assign subregion dummy variables to each point. The coefficients of dummy
variables of the four subregions in the center of study area in fifth and sixth rows and fifth
and sixth columns were set to one and the other coefficients were set to zero.

Then the simulated value at each point was generated adding disturbances indepen-
dent and identically distributed according to a normal distribution.

Table 1 summarizes the simulation data generation settings for the following three
experiments. The first two experiments evaluate the performance of ESF-GL-SVC by
changing the amount of data and the size of variance of disturbances. The last experiment
compares the performance of ESF-GL-SVC with those of ESF-SVC and GL. Simulation data
are generated 1000 times for all experiments. The codes for the simulation experiments are
available in the Supplementary Materials.

Table 1. Settings for simulation data generation.

Effect of Amount
of Data

Effect of Magnitude of
Variances of
Disturbances

Performance
Comparison with
Previous Models

βESF
1

β1 1.0

Coefficients of eigenvectors A randomly selected coefficient of eigenvector is set to 1.0 and
other coefficients are set to zero.

βESF
2

β2 1.0

Coefficients of eigenvectors A randomly selected coefficient of eigenvector is set to 1.0 and
other coefficients are set to zero.

α Coefficients of subregion dummies α45 = α46 = α55 = α56 = 1.0 and other coefficients are set to zero.

Other
settings

Standard deviation of disturbances 0.1 0.1, 0.2, 0.4, 0.8 and 1.2 0.1
Average number of points in

a subregion 2, 5, 10, 20, and 50 20 20

Bandwidth of kernel density function
to build proximity matrix C 0.2

2.3.1. Effect of Amount of Data on Performance of ESF-GL-SVC

Five different settings were set for the total number of points to check the effect on
model estimation. When generating data whose average numbers of points in each subre-
gion were set to two, five, and ten, the numbers of points in each subregion were controlled
to be the same and the position of points were randomly set inside each subregion. When
generating the data by other settings, points were randomly distributed in the whole area
and then the number of points in each subregion was not the same.

Figure 1 shows the relationship between amount of data and Moran’s I statistics of
residuals, and Figures 2 and 3 show the root mean square error (RMSE) between simulated
and estimated coefficients and the average of estimation variances of coefficients of the
intercept βESF

1 and the explanatory variable βESF
2 , respectively.
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The precision of estimation increases as the number of points increases. When the
numbers of points in each subregion are two and five, the RMSEs between simulated and
estimated coefficients and estimation variances are quite large; however, when the number
of points in each subregion exceeded 10, it was confirmed that the estimation precision was
high and the spatial correlation in residuals were removed. The experiment suggests that
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the estimated results are stabilized when the number of points in each subregion is larger
than 10.

2.3.2. Effect of Magnitude of Variances of Disturbances on Performance of ESF-GL-SVC

Five different settings for the standard deviations of disturbances were tested to
determine their effect on model estimation. Figures 4 and 5 show the RMSEs between the
simulated and estimated coefficients and the estimation variances of coefficients of the
intercept βESF

1 and the explanatory variables βESF
2 , respectively.
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parameter identification problems between continuous and discrete spatial heterogenei-
ty. If both continuous and discrete spatial heterogeneity exists, they would fail to extract 
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Figure 5. Variances of disturbances and estimated βESF
2 . (a) RMSEs between simulated and estimated

coefficients; (b) average of estimation variances.

When the standard deviations of disturbances were set to 0.8 and 1.2, the spatially
varying coefficients were not estimated properly. The RMSEs between simulated and
estimated coefficients and the estimation variances of coefficients were large at these
settings. Considering that the values of 1 ◦ βESF

1 + x ◦ βESF
2 + Dα, the simulated values

before adding disturbances, had a standard deviation of 0.710 in the average of simulations,
it is confirmed that the spatial heterogeneity of coefficients cannot be specified if the
standard deviation of disturbances exceeds that of the effect of explained variables.
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2.3.3. Comparison with Previous Models

We estimated the coefficients of ESF-GL-SVC, ESF-SVC, and GL models and evalu-
ated their performances by the BIC calculated by the model without regularization terms,
Moran’s I statistics of residuals, and the RMSEs between simulated and estimated coeffi-
cients of each location. The plot of spatial distribution of estimated coefficients were also
considered for the evaluation.

The distributions of BIC and Moran’s I statistics of residuals for data with continuous
and discrete spatial heterogeneity are shown in Figure 6, the distribution of RMSEs between
simulated and estimated coefficients and the average of estimation variances of coefficients
and are shown in Figures 7 and 8, respectively, and the spatial distributions of simulated
and estimated coefficients by three models at one simulation are shown in Figure 9.
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The distribution of BICs and Moran’s I statistics of residuals reveals that the ESF-
GL-SVC outputs the results with the smallest BIC, removing the spatial autocorrelation
from the residuals. The differences between the estimators by the ESF-GL-SVC and the
simulated coefficients are very small, representing the continuous heterogeneity by the
estimates of spatially varying coefficients and the discrete heterogeneity by the estimates of
subregion dummy coefficients. On the other hand, the ESF-SVC and GL models failed to
remove the spatial autocorrelation from the residuals, and the estimators were different
from the simulated coefficients with large variances.
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Figure 9 indicates that the ESF-SVC represents the discrete heterogeneity by the contin-
uous spatially varying coefficients and the GL represents the continuous heterogeneity by
the discrete subregion-based coefficients. Even though the coefficients of subregion dummy
variables of the proposed model could potentially be used to represent continuous spatial
heterogeneity, only discrete heterogeneity is extracted in this estimation by them. This may
indicate that the regularization for the coefficients of the subregion dummy variables and
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the model selection based on BIC are effective in avoiding parameter identification prob-
lems between continuous and discrete spatial heterogeneity. If both continuous and discrete
spatial heterogeneity exists, they would fail to extract the structure of spatial heterogeneity.

The experiments confirmed that the ESF-GL-SVC model showed better performance
than the others for the data with continuous and discrete spatial heterogeneity.

3. Application to Apartment Rent Data
3.1. Data and Models

We applied the ESF-GL-SVC, ESF-SVC, and GL models to the apartment rent data in
the Shibuya, Setagaya, and Meguro wards in the southwestern part of the Tokyo Metropoli-
tan area in 2017. The data was collected by ‘At Home Co., Ltd.’; the company publishes
real estate price information.

High-rise condominiums whose number of floors exceed 15 were excluded as their
rents have a different pricing structure from the pricing of other apartments. If the rent data
from one building make up most data for that neighborhood, it might cause difficulties in
estimating coefficients because the most explanatory variables have the same or similar
values. Thus, to avoid such issues, only one apartment was randomly selected from each
floor of each building. Consequently, the total number of records was 13,748.

The dependent variable is the logarithm of rent per square meter in Japanese Yen
(JPY), and explanatory variables are the logarithm of ‘floor level,’ ‘building age,’ ‘property
size,’ ‘walking time to the nearest train station’ (hereafter, ‘time to train service’), and
‘average of travel time by train service to five major stations located in central business
districts (CBD)’ (hereafter, ‘time to CBD’). As there are properties whose building ages
are zero, we added one when we calculated the logarithm of building age. The selected
major stations were Shinjuku, Ikebukuro, Shibuya, Tokyo, and Shinagawa, which serve
the largest numbers of passengers in the Tokyo Metropolitan area. We surveyed the travel
time that includes the half of train headway to five major stations when leaving the station
at noon on weekday on the public transport route planning service of Yahoo! Transit and
calculated the weighted average by the numbers of passengers at major stations. Table 2
summarizes the descriptive statistics of dependent and explanatory variables. Since the
scales of explanatory variables affect the regularization terms on the estimation of each
coefficient, the explanatory variables were standardized to zero mean and unit variance.

Table 2. Descriptive statistics of dependent and independent variables.

Average Maximum Minimum Standard
Deviation

Rent (JPY/month) 121,000 2,000,000 10,000 94,100
Rent per square meter

(JPY/square meter/month) 3340 35,900 505 759

Floor level (floors) 2.59 14.0 1.00 1.59
Building age (years) 20.2 35.0 0.00 9.30
Property size (m2) 37.2 445 10.0 24.2

Travel time to train service (min) 7.33 28.0 1.00 4.10
Travel time to CBD (min) 24.8 37.4 9.64 5.39

To represent continuous heterogeneity by spatially varying coefficients in the ESF-
GL-SVC and ESF-SVC models, the elements of spatial proximity matrix C were set by
inputting distances between properties into the gaussian kernel function with the band at
500 m intervals from 1 km to 5 km. For each band setting, the eigenvectors of MCM, whose
eigenvalues are larger than the one-fourth of the largest eigenvalue, were selected as the
explanatory variables in the two models. In this application, we selected the band of 4.5 km
for the ESF-GL-SVC and 2 km for the ESF-SVC that output the smallest BIC by each model.
In the GL estimation, ward-based coefficients for explanatory variables were estimated to
represent the heterogeneity of valuation in global scale.
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To represent discrete spatial heterogeneity by subregion dummies in the ESF-GL-SVC
and GL models, the study region was divided into 445 neighborhoods (cho and cho-me in
Japanese) and at least one real estate property existed in 431 neighborhoods. A subregion
dummy was set for each neighborhood except the reference neighborhood, Hachimanyama
3 cho-me. The selected reference neighborhood is the neighborhood where the root mean
square of residuals by ESF-SVC is the minimum. The adjacency of the coefficients of
subregion dummies is set when neighborhood polygons share borders.

This analysis used the same search process of the best hyperparameter setting for
each model as the simulation experiments; δ1 and δ2 in the ESF-GL-SVC model and δ in
the GL are set to {0.1, 1, 10}, and the estimation was performed by changing λ using the
R package of ‘genlasso’. The results with the `1 regularization were used only to select
variables whose estimators are non-zero; then, BICs were calculated via OLS estimation of
models with selected variables. The code and sample data for the analysis are available in
the Supplementary Materials.

3.2. Estimation Results

Table 3 summarizes the estimated results of the three models. First, all three models
effectively consider the spatial autocorrelation of dependent variables, as Moran’s I statistics
of residuals indicate that residuals do not have spatial autocorrelation. Second, it is
confirmed that the ESF-GL-SVC model shows the best performance as the coefficients of
determination is the maximum and the BIC is the minimum.

Table 3. Estimated results of three models.

Selected
Hyperparameters

Band for Spatial
Proximity Matrix

C (meters)

Number of
Utilized

Eigenvectors
BIC

Adjusted
Coefficient of

Determination

Moran’s I of
Residuals

ESF-GL-SVC {δ1, δ2, λ} = {1, 1, 0.427} 4500 5 −18.015 0.6540 −0.00016
ESF-SVC {λ} = {0.576} 2000 11 −17.290 0.6278 0.00131

GL {δ, λ} = {1, 0.652} −17.122 0.6280 0.00171

The estimated intercepts and coefficients of explanatory variables by the ESF-GL-SVC
and ESF-SVC models are summarized in Tables 4 and 5, respectively, and the estimated
ward-based coefficients by GL is summarized in Table 6. The spatial distribution of in-
tercepts is shown in Figure 10, the spatial distributions of the subregion coefficients by
the ESF-GL-SVC and GL model are shown in Figure 11, and the spatial distributions of
coefficients of explanatory variables are shown in Figures 12–16.

Table 4. Statistics of estimated coefficients by ESF-GL-SVC.

Average Maximum Minimum Standard
Deviation

Intercept 8.077 8.210 7.915 0.07134
Floor level 0.02577 0.03185 0.02089 0.00231

Building age −0.05642 −0.04493 −0.07519 0.00729
Property size −0.08240 −0.01915 −0.13630 0.02801

Time to train service −0.02520 −0.00586 −0.05727 0.01316
Time to CBD −0.03331 −0.00823 −0.04780 0.00921
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Table 5. Statistics of estimated coefficients by ESF-SVC.

Average Maximum Minimum Standard
Deviation

Intercept 8.088 8.313 7.827 0.09753
Floor level 0.02512 0.03560 0.01374 0.00461

Building age −0.05684 −0.04557 −0.07106 0.00598
Property size −0.08165 0.01688 −0.13348 0.03389

Time to train service −0.02661 −0.00061 −0.05945 0.01088
Time to CBD −0.04206 0.04879 −0.16013 0.04536

Table 6. Estimated ward-based coefficients by GL.

Ward Shibuya Meguro Setagaya

Intercept 8.100 (Common for Three Wards)
Floor level 0.02838 0.02513 0.02519

Building age −0.05068 −0.05581 −0.05890
Property size −0.03989 −0.07641 −0.10063

Time to train service −0.02424 −0.01816 −0.03097
Time to CBD −0.03093 −0.04049 −0.08261
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3.3. Discussion through Comparison of Results by Three Models
3.3.1. Intercepts and Coefficients of Subregion Dummies

First, we focused on the intercepts by the ESF-GL-SVC and ESF-SVC models (Figure 10)
and subregion dummies using the ESF-GL-SVC model (Figure 11a). The sum of estimated
results of intercepts and subregion dummies by the ESF-GL-SVC model and the estimated
results of intercepts by ESF-SVC model have higher values in the eastern part of the study
area, which is closer to the CBD, indicating that the rents are expensive in the area. However,
the maximum intercept shown in Table 4 is smaller than that in Table 5, as the discrete
spatial heterogeneity is represented by the coefficients of the subregion dummies by the
ESF-GL-SVC model.

The south of Meguro ward is a well-known high class residential area; the ESF-GL-
SVC model extracted the discrete spatial heterogeneity represented by positive subregion
coefficients and the ESF-SVC model extracted the continuous spatial heterogeneity by
larger values of spatially varying intercept. In the next section, we will comment on which
identification of spatial heterogeneity is appropriate with the results of the estimation of
the coefficients of the explanatory variables.

Second, we compared the estimates by the GL with those by the two other models. The
estimated intercept by GL is close to the averages of the coefficients by the ESF-GL-SVC and
ESF-SVC models. The number of subregions with non-zero coefficients by the GL is larger
than that by the ESF-GL-SVC model; the GL model represents the spatial heterogeneity of
rent by the subregion-based heterogeneity (Figure 11b). The result of GL indicates similar
spatial patterns to those of the ESF-GL-SVC and ESF-SVC models; however, the GL model
has higher BIC and lower adjusted coefficient of determination than the ESF-GL-SVC
model; it seems that the discrete spatial heterogeneity only is not appropriate for the spatial
heterogeneity representation of rent.

3.3.2. Coefficients of Explanatory Variables

First, it is confirmed that all three models can distinguish whether the coefficients
of the explanatory variables have spatial heterogeneity. The spatial patterns of estimates
reveal that the coefficients of ‘floor level’ and ‘building age’ have weak heterogeneity,
but the coefficients of ‘property size’, ‘time to train service’, and ‘time to CBD’ have
strong heterogeneity.

Second, the estimates by the ESF-GL-SVC and ESF-SVC models are similar, except for
the coefficients of ‘time to CBD’. The estimates for ‘property size’ and ‘time to train service’
are almost the same for the ESF-GL-SVC and ESF-SVC models, and the estimates for the
GL also show similar spatial patterns, although the spatial resolution of the ward-based
coefficients is quite low.

If the neighborhood-based coefficients are set for all explanatory variables in the GL
model, it might be possible to represent the spatial heterogeneity of coefficients more
precisely; however, as the order of calculation of GL is estimated as O(mn2 + Tm2), where
m is the number of constraints, n is the number of explanatory variables, and T is the
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number of iteration and should be larger or equal to m [22], the feasibility of estimation
of high resolution model with large m and n is low. Thus, the ESF-GL-SVC model has
advantages over the GL model in utilizing the spatially varying coefficient model to express
the continuous spatial heterogeneity.

Third, the coefficients of ‘time to CBD’ reveal the advantage of ESF-GL-SVC model
over ESF-SVC. It is natural that the coefficients of ‘time to CBD’ are negative, but the
estimates by ESF-SVC have both positive and negative values, especially indicating large
positive values in the northwest and southwest corner of the study area. On the other hand,
the estimates by the ESF-GL-SVC model are all negative using the same eigenvector setting.

This indicates that ESF-SVC overfits to the dataset. It is caused by the utilization of
a shorter band for spatial proximity matrix C and more eigenvectors that represent local
spatial heterogeneity patterns in the ESF-SVC model. The cause of overfit is likely because
‘time to CBD’ has strong spatial autocorrelation on a global scale, although other explana-
tory variables do not. By multiplying the coefficients and explanatory variables, both of
which have spatial autocorrelation, it is possible to express the spatial autocorrelation of
dependent variables. The rents in the south of Meguro ward have strong local and discrete
spatial heterogeneity, represented by the estimated coefficients of subregion dummies
shown in Figure 11. The ESF-SVC model tried to express the local heterogeneity by the
intercept (Figure 10b) and the coefficient of ‘time to CBD’ (Figure 16b); as a consequence,
the coefficients of ‘time to CBD’ in the surrounding area were highly variable and difficult
to interpret. This misspecification by ESF-SVC is avoidable if the only longer band is set
for spatial proximity matrix C; however, when the longer band was set, the eigenvectors
represent only global spatial patterns, and the ESF-SVC model would lose explanatory
power for the local heterogeneity.

3.4. Summary of Application to Apartment Rent Data Analysis

The application to apartment rent data reveals that the ESF-GL-SVC model outper-
forms the two previous models; it has advantages in extracting both continuous and discrete
spatial heterogeneity, which apartment rent data have.

The ESF-GL-SVC model was able to estimate the spatially varying coefficients that
are interpretable, although the ESF-SVC model was not. The analysis by the ESF-GL-SVC
model clarifies the structure of spatial heterogeneity of the effect of explanatory variables.
The coefficients of property size have the largest spatial heterogeneity; the size does not
affect the rent per square meter near the CBD but decreases in suburban areas. It also
depicts the existence of discrete spatial heterogeneity by neighborhood-based coefficients.

4. Discussion

This study proposed an analysis to extract both continuous and discrete spatial hetero-
geneity by ESF-GL-SVC combining ESF-SVC and GL. Through the analysis of simulated
data and apartment rent data, it is confirmed that the ESF-GL-SVC model can separate
the continuous and discrete spatial heterogeneity of dataset. It is possible to avoid the
overfitting the dataset and output the interpretable estimates.

There are three ways to improve the ESF-GL-SVC model. The first improvement
would be the mitigation of the effect caused by biased estimates of lasso. It was pointed out
that the lasso estimator is biased toward zero and does not have an oracle property, which
consists of the consistency in variable selection and the asymptotic normality [32]. The
minimax concave penalty (MCP) was proposed to mitigate the bias [35] and was expanded
to the fused MCP [36], which can reduce the bias of GL. We analyzed the geographic
market segmentation of apartment rent [37] and the extraction of spatio-temporal changes
in real estate market prices [38] by fused-MCP and confirmed that the fused-MCP outputs
better estimates than the GL. However, there is an issue of computational complexity. The
construction of a fusion model of ESF-SVC and fused-MCP with efficient estimation is an
effective extension. The second improvement would be the mitigation of the overfitting
problem of ESF-SVC. Murakami et al. [10] proposed a random effects ESF-SVC (RE-ESF-



ISPRS Int. J. Geo-Inf. 2022, 11, 358 17 of 19

SVC) model based on the random effects specification of ESF [34], and Murakami et al. [39]
confirmed that RE-ESF-SVC is one of the models that can estimate the structure of spatially
varying coefficients accurately and is the most computationally efficient. The application
of RE-ESF-SVC would improve the estimation of spatially varying coefficients; however,
as the estimation of RE-ESF requires the restricted maximum likelihood method, the
introduction of regularization with the `1 norm or MCP functions might be challenging.
The third improvement would be to enhance the capability of the method to analyze spatial
heterogeneity at various scales. The proposed method is structured to analyze phenomena
consisting of global and continuous spatial heterogeneity and local and discrete spatial
heterogeneity. There might be local and continuous spatial heterogeneity, such as the
impact of a small park on the neighborhood environment, and global and discrete spatial
heterogeneity, such as the impact of regional boundaries in interconnected urban areas.
RE-ESF-SVC and multi-scale GWR [40] have been proposed as methods to consider various
scales in continuous spatial heterogeneity analysis, and group lasso [41] and tree structured
group lasso [42] are expected to consider multiple scales of discrete spatial heterogeneity.
Considering multiscale heterogeneity for both continuous and discrete spatial heterogeneity
is an important development direction for this research.

Supplementary Materials: The code for simulation and rent analysis and the sample rent data are
available at: https://www.mdpi.com/article/10.3390/ijgi11070358/s1.
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15. Peng, Z.; Inoue, R. Identifying Multiple scales of spatial heterogeneity in housing prices based on eigenvector spatial filtering
approaches. ISPRS Int. J. Geo-Inf. 2022, 11, 283. [CrossRef]

16. Goodman, A.C.; Thibodeau, T.G. Housing market segmentation. J. Hous. Econ. 1998, 7, 121–143. [CrossRef]
17. Goodman, A.C.; Thibodeau, T.G. Housing market segmentation and hedonic prediction accuracy. J. Hous. Econ. 2003, 12,

181–201. [CrossRef]
18. Kulldorff, M.; Nagarwalla, N. Spatial disease clusters: Detection and inference. Stat. Med. 1995, 15, 707–715. [CrossRef] [PubMed]
19. Castro, M.C.; Singer, B.H. Controlling the false discovery rate: A new application to account for multiple and dependent tests in

local statistics of spatial association. Geogr. Anal. 2006, 38, 180–208. [CrossRef]
20. Brunsdon, C.; Charlton, M. An assessment of the effectiveness of multiple hypothesis testing for geographical anomaly detection.

Environ. Plan. B Plan. Des. 2011, 38, 216–230. [CrossRef]
21. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat.

Soc. Ser. B 1995, 57, 289–300. [CrossRef]
22. Tibshirani, R.J.; Taylor, J. The solution path of the generalized lasso. Ann. Stat. 2011, 39, 1335–1371. [CrossRef]
23. Inoue, R.; Ishiyama, R.; Sugiura, A. Identification of geographical segmentation of the rental apartment market in the

Tokyo Metropolitan Area. In Proceedings of the 10th International Conference on Geographic Information Science 2018,
Melbourne, Australia, 30 August 2018. [CrossRef]

24. Inoue, R.; Ishiyama, R.; Sugiura, A. Identification of geographical segmentation of the rental housing market in the Tokyo
Metropolitan Area by generalized fused lasso. J. Jpn. Soc. Civ. Eng. Ser. D3 (Infrastruct. Plan. Manag.) 2020, 76, 251–263.
(In Japanese) [CrossRef]

25. Parker, R.J.; Reich, B.J.; Eidsvik, J. A fused lasso approach to nonstationary spatial covariance estimation. J. Agric. Biol. Environ. Stat.
2016, 21, 569–587. [CrossRef]

26. Sun, Y.; Wang, H.J.; Fuentes, M. Fused adaptive lasso for spatial and temporal quantile function estimation. Technometrics 2016,
58, 127–137. [CrossRef]

27. Wang, H.; Rodríguez, A. Identifying pediatric cancer clusters in Florida using log-linear models and generalized lasso penalties.
Stat. Public Policy 2014, 1, 86–96. [CrossRef] [PubMed]

28. Choi, H.; Song, E.; Hwang, S.S.; Lee, W. A modified generalized lasso algorithm to detect local spatial clusters for count data.
AStA Adv. Stat. Anal. 2018, 102, 537–563. [CrossRef]

29. Masuda, R.; Inoue, R. Point-event cluster detection via the Bayesian generalized fused lasso. ISPRS Int. J. Geo-Inf. 2022, 11, 187. [CrossRef]
30. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 1996, 58, 267–288. [CrossRef]
31. Griffith, D.A.; Chun, Y. Spatial autocorrelation and eigenvector spatial filtering. In Handbook of Regional Science; Fischer, M.,

Nijkamp, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1477–1507. [CrossRef]
32. Fan, J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001, 95,

1348–1360. [CrossRef]
33. Arnold, T.B.; Tibshirani, R.J. Path Algorithm for Generalized Lasso Problems. 2020. Available online: https://cran.r-project.org/

web/packages/genlasso/genlasso.pdf (accessed on 20 March 2022).
34. Murakami, D.; Griffith, D.A. Random effects specifications in eigenvector spatial filtering: A simulation study. J. Geogr. Syst. 2015,

17, 311–331. [CrossRef]
35. Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38, 894–942. [CrossRef]
36. Jing, B.; Yang, G.; Yu, X.; Zhang, C. Fused-MCP with application to signal processing. J. Comput. Graph. Stat. 2018, 27,

872–886. [CrossRef]
37. Inoue, R.; Ishiyama, R.; Sugiura, A. Identifying local differences with fused-MCP: An apartment rental market case study on

geographical segmentation detection. Jpn. J. Stat. Data Sci. 2020, 3, 183–214. [CrossRef]
38. Den, K.; Inoue, R. Extracting area and period of influence of new rail service on real estate market using fused-MCP. In Proceedings

of the GeoComputation 2019, Queenstown, New Zealand, 19 September 2019. [CrossRef]
39. Murakami, D.; Lu, B.; Harris, P.; Brunsdon, C.; Charlton, M.; Nakaya, T.; Griffith, D.A. The importance of scale in spatially varying

coefficient modelling. Ann. Am. Assoc. Geogr. 2019, 109, 50–70. [CrossRef]
40. Fotheringham, A.S.; Yang, W.; Kang, W. Multi-scale geographically weighted regression. Ann. Am. Assoc. Geogr. 2017, 107,

1247–1265. [CrossRef]

http://doi.org/10.1016/j.spasta.2019.02.003
http://doi.org/10.1016/j.atmosenv.2019.117205
http://doi.org/10.3390/ijgi9100577
http://doi.org/10.25436/E2201T
http://doi.org/10.3390/ijgi11050283
http://doi.org/10.1006/jhec.1998.0229
http://doi.org/10.1016/S1051-1377(03)00031-7
http://doi.org/10.1002/sim.4780140809
http://www.ncbi.nlm.nih.gov/pubmed/7644860
http://doi.org/10.1111/j.0016-7363.2006.00682.x
http://doi.org/10.1068/b36093
http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://doi.org/10.1214/11-AOS878
http://doi.org/10.4230/LIPIcs.GISCIENCE.2018.32
http://doi.org/10.2208/jscejipm.76.3_251
http://doi.org/10.1007/s13253-016-0251-8
http://doi.org/10.1080/00401706.2015.1017115
http://doi.org/10.1080/2330443X.2014.960120
http://www.ncbi.nlm.nih.gov/pubmed/25558468
http://doi.org/10.1007/s10182-018-0318-7
http://doi.org/10.3390/ijgi11030187
http://doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://doi.org/10.1007/978-3-642-23430-9_72
http://doi.org/10.1198/016214501753382273
https://cran.r-project.org/web/packages/genlasso/genlasso.pdf
https://cran.r-project.org/web/packages/genlasso/genlasso.pdf
http://doi.org/10.1007/s10109-015-0213-7
http://doi.org/10.1214/09-AOS729
http://doi.org/10.1080/10618600.2018.1442343
http://doi.org/10.1007/s42081-019-00070-y
http://doi.org/10.17608/k6.auckland.9842270.v1
http://doi.org/10.1080/24694452.2018.1462691
http://doi.org/10.1080/24694452.2017.1352480


ISPRS Int. J. Geo-Inf. 2022, 11, 358 19 of 19

41. Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2006,
68, 49–67. [CrossRef]

42. Zhao, P.; Rocha, G.; Yu, B. The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Stat.
2009, 37, 3468–3497. [CrossRef]

http://doi.org/10.1111/j.1467-9868.2005.00532.x
http://doi.org/10.1214/07-AOS584

	Introduction 
	ESF-GL-SVC: A Model to Analyze Continuous and Discrete Spatial Heterogeneity 
	Previous Models for Spatial Heterogeneity 
	Eigenvector Spatial Filtering-Based Spatially Varying Coefficient (ESF-SVC) Model 
	Generalized Lasso (GL) 

	ESF-GL-SVC 
	Performance Evaluation by Simulation Experiments 
	Effect of Amount of Data on Performance of ESF-GL-SVC 
	Effect of Magnitude of Variances of Disturbances on Performance of ESF-GL-SVC 
	Comparison with Previous Models 


	Application to Apartment Rent Data 
	Data and Models 
	Estimation Results 
	Discussion through Comparison of Results by Three Models 
	Intercepts and Coefficients of Subregion Dummies 
	Coefficients of Explanatory Variables 

	Summary of Application to Apartment Rent Data Analysis 

	Discussion 
	References

