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Abstract: Preparedness against floods in a hazard management perspective plays a major role in the
pre-event phase. Hence, assessing urban vulnerability and resilience towards floods for different risk
scenarios is a prerequisite for urban planners and decision makers. Therefore, the main objective
of this study is to propose the design and implementation of a spatial decision support tool for
mapping flood vulnerability in the metropolis of Tehran under different risk scenarios. Several
factors reflecting topographical and hydrological characteristics, demographics, vegetation, land use,
and urban features were considered, and their weights were determined using expert opinions and
the fuzzy analytic hierarchy process (FAHP) method. Thereafter, a vulnerability map for different
risk scenarios was prepared using the ordered weighted averaging (OWA) method. Based on our
findings from the vulnerability analysis of the case study, it was concluded that in the optimistic
scenario (ORness = 1), more than 36% of Tehran’s metropolis area was marked with very high
vulnerability, and in the pessimistic scenario (ORness = 0), it was less than 1%was marked with
very high vulnerability. The sensitivity analysis of our results confirmed that the validity of the
model’s outcomes in different scenarios, i.e., high reliability of the model’s outcomes. The methodical
approach, choice of data, and the presented results and discussions can be exploited by a wide range
of stakeholders, e.g., urban planners, decision makers, and hydrologists, to better plan and build
resilience against floods.

Keywords: vulnerability mapping; GIS; risk in decision making; sensitivity analysis; Tehran

1. Introduction

Rapid urbanization and the lack of sufficient infrastructure alongside climate change
have presented unprecedented environmental hazards jeopardizing societal security [1,2].
In the meantime, floods are considered as the most serious natural hazards worldwide [3,4]
because they cause human losses and adverse effects on social and environmental develop-
ment [5,6], as well as financial losses, which are equivalent to 40% of the total economic
losses caused by natural hazards per year [7]. Global warming [8], low soil infiltration and
storage capacity during storm events [9], poor drainage system [10], population growth
and spatial expansion, and the consequent heterogeneous urban growth [11] are the main
causes of floods in urban areas. Between 1998 and 2015, floods alone affected 2.3 billion
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people worldwide [12], 95% of which live in Asia. According to Luo et al. [13], around
21 million people worldwide are affected by river floods each year, which may increase
to 54 million by 2030 due to socio-economic growth and climate change [8]. Therefore,
assessing urban flood vulnerability and disseminating this information to all stakeholders
in urban flood management is very important. Vulnerability is a condition that is deter-
mined by physical, socio-economic and environmental factors or processes and reduces the
preparedness of communities for the effects and consequences of hazards [14]. Vulnerability
is highly dependent on environmental conditions and contexts. In many cases, similar
outcomes are different in different social and economic situations, and these differences
can be attributed to the spatial distinction of vulnerability [15].

Due to its massive areal coverage, geographical location, topographic characteristics,
and climatic diversity, Iran is among the countries that are exposed to high damage from
natural hazards. For instance, out of 41 known accidents in the world, 31 to 33 types have
a history in Iran, the most common of which is floods [16]. Meanwhile, the metropolis
of Tehran, with an area of about 730 km2, is one of the largest cities in the world, with
special features and specifications. Tehran has 22 urban regions and a high concentration of
government organizations, industries, facilities, and services, which make its management
very complicated in the event of a natural hazard. Tehran has the highest positive in-
coming migration rate since 1976. The main part of this event was due to socio-economic
opportunities and inequality in terms of services and wealth distribution [17]. This wave
of migration has led to an unprecedented boom in the construction industry, turning
open lands and grasslands into impervious surfaces. Several factors have contributed to
witnessing large number of floods in Tehran, such as physical development ranging from
700 m to 2200 m of elevation; steep slopes in the northern and eastern parts of the city
on the doorstep of the Alborz mountains; extensive urban and industrial development,
even in the riverbeds; ignoring the ecosystem services; reduced soil infiltration; and the
lack of an efficient and proper sewage network. Therefore, mapping vulnerable areas of
Tehran against floods in order to minimize its consequences is crucial for a better allocation
of resources.

The general purpose of multi-criteria decision analysis (MCDA) is to assist in the
process of decision making by facilitating the selection of the most optimal choice among
existing options. These techniques operate on a combination of spatial data and user
preferences, according to a predefined decision rule [18–20]. The underlying logic be-
hind integrating the geographical information system (GIS) and MCDA is that these two
separate fields of study may act in synergy with one another [21,22]. On the one hand,
GIS-technology provides a comprehensive tool for storing, manipulating, analysing, and
representing geographical information, while MCDA yields a rich array of structural meth-
ods and algorithms for decision making, design, evaluation, and prioritization of options.
The idea behind this integration is to extend GIS-based technology to give the user (decision
maker) a degree of control over preferences (priorities of options) [23,24]. The main rele-
vance of MCDA to spatial decision making is its capacity for identifying the most optimal
solution and constructing a structured and creative approach to problem solving [25,26].

In the field of flood vulnerability modelling, various studies have been performed us-
ing MCDA methods and GIS [27–31]. For example, Chakraborty and Mukhopadhyay [32]
investigated urban flood vulnerability in Bengal, India, using GIS–Analytic Hierarchy
Process (AHP). They used spatial criteria in two categories of vulnerability and risk. In
addition, the AHP method was used to obtain the weight of the criteria, and the linear
weight combination method was used to combine the criteria. Their results showed that
vulnerability levels are higher at areas located particularly along the India–Bangladesh
international border in the south, southeast, and southwest and in some isolated clusters in
the central and north-central parts. Eini et al. [33] evaluated flood vulnerability in Kerman-
shah. This study employed the fuzzy analytic hierarchy process (FAHP) method. Economic,
social, and infrastructural criteria were considered for flood vulnerability analysis. The
results indicated that the infrastructure criterion has the highest impact weight on the
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vulnerability. In general, population, urban texture, and distance to the major drainage
channels are the most important factors in increasing flood risk. Similarly, Feloni et al. [34]
identified flood-prone areas in Attica, Greece, using the FAHP method. Morphological
and hydrological criteria were used. They concluded that, regarding the Attica region, the
potentially flood-prone areas are concentrated in the Attica basin and in the lowlands of
Western and Eastern Attica. Hadipour et al. [35] used the AHP–Weighted Linear Combina-
tion (WLC) combination to map flood vulnerability in Bandar Abbas. They used a total of
10 spatial criteria. A total of 10 spatial criteria were considered. They used the AHP-WLC
combination to gain weight and prepare for flood vulnerability. A total of 10 spatial criteria
were considered. They used the AHP-WLC combination to gain weight and prepare for
flood vulnerability. The vulnerability map showed that the eastern and western regions
have a larger area of very high vulnerability class. In a study in Melbourne, Rashetnia
and Jahanbani [36] developed a fuzzy-rule-based flood vulnerability index considering
the hydrological, social, and economic aspects of flood damages to assess and map flood
vulnerability. It was found that 51.6% of the total area of the study area was in the class
with low and very low vulnerability, while 7.6% was in the class with high and very high
vulnerability. Hussain et al. [37] used the GIS-WLC technique to identify flood-vulnerable
areas in Khyber Pakhtunkhwa, Pakistan. A set of 18 criteria was divided into three cate-
gories: physical, socioeconomic, and coping capacity. The results demonstrated that 25% of
the western-middle area to the northern part of the study area comprises high to very high
vulnerability because of the proximity to waterways, high rainfall, elevation, and other
socioeconomic factors.

A review of previous studies shows that in order to prepare a flood vulnerability
map, first, the effective criteria were identified, and then a classified vulnerability map was
created using a combination of different criteria. However, none of the models used in
previous studies has included the concept of risk in the decision to map flood vulnerability.
Therefore, this study attempts to address this important research gap for the first time. The
ordered weighted averaging (OWA) model is used to inject the concept of risk in decision
making and vulnerability mapping in multiple scenarios, the results of which can facilitate
the decision-making process for managers and planners.

The paper is organized as follows: Section 2 provides a brief description of the study
area and describes the materials and methods used; Section 3 reports the results of the
analysis; Section 4 discusses the implication of the results; and Section 5 discusses the
conclusions that can be drawn.

2. Materials and Methods
2.1. Study Area and Data

Tehran city is the centre of Tehran province and is the most populous city and the
capital of Iran. With a population of 9,259,009, it is the 37th most populous city in the world.
The city is geographically located at 51◦17′ to 51◦33′ E and 35◦36′ to 35◦45′ N (Figure 1).
Tehran is spread on the southern slopes of the Alborz Mountain range. Annual rainfall
in Tehran is intentionally affected by altitude differences. It is 422 mm in the north and
145 mm in the south. The number of rainy days follows this pattern, which varies between
89 days in the north and 33 days in the south [38]. Numerous rivers drain rainwater and
transfer it to the plains downstream. The general direction of rivers and canals is mainly
towards the urban area. This can cause flash floods in the streets of Tehran, and if the
storms are heavy and the rain continues, floods will occur. At the same time, the urban
area of Tehran hosts several canals and rivers that are responsible for the drainage of the
upstream basins as well as the collection of rainwater in the urban area of Tehran. In some
parts of the city, where the price of land is high, the bed of rivers and water channels inside
the city have been attacked, and their cross-section has been reduced and limited. This can
affect the natural regime of the river and the flow path and cause irreparable damage in the
event of heavy rainfalls.
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Figure 1. Geographical location of the study area.

In general, the surface water of the Tehran Basin consists of three systems: (i) rivers
and streams (such as the Kan river) that flow to the southwest of Tehran; (ii) rivers and
streams (such as the Sorkheh Hesar river) that flow southeast of Tehran; and (iii) streams
and canals (such as the Darband river) in the central and southern parts of Tehran [39].
Sudden flood events reported in Tehran are shown in Table 1. The first recorded flood was
in 1954, in which 2154 people died. In 1987, heavy rains caused flooding of surface waters,
injuring 1027 people and killing 1010. It also caused more than USD 7 million in economic
losses. In total, 1267 people have been injured and 3482 have died in floods since 1954.

Table 1. Summary of the floods that occurred in Tehran (Adapted with permission from [17]).

Year Death Injured-Missing
People

Houses Destroyed
and Damaged

Economic
Losses (K$)

1954 2150 - - -

1955–1986 118 40 - 10,700

1987 1010 1027 862 7,655,000

1988 146 106 100 150,000

1989–2010 39 65 348 38,000

2012 8 7 - 21,000

2015 11 22 - -
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In this study, raster and vector spatial datasets were used to prepare a flood vulnera-
bility map. Raster data included elevation, slope, aspect, vegetation density, rainfall, land
use, flow accumulation, and impervious surfaces. Vector data included population density,
river, health centres, road, soil type, and fire station. Expert knowledge was used to obtain
the weight of criteria, ArcGIS was used for pre-processing of the layers and spatial analysis,
and IDRISI was used to prepare a vulnerability map. The research data specifications are
shown in Table 2.

Table 2. Characteristics of the used data.

Row Data Resolution/Scale Source

1 elevation 30 m https://earthexplorer.usgs.gov/
(accessed on 12 February 2021)

2 slope 30 m Extracted from the Digital Elevation
Model (DEM)

3 aspect 30 m Extracted from the DEM

4 population density 1:2000 https://www.tehran.ir/
(accessed on 8 April 2021)

5 river 1:50,000 https://frw.ir/ (accessed on 25
January 2021)

6 vegetation density 30 m https://earthexplorer.usgs.gov/
(accessed on 18 April 2022)

7 land use 30 m https://earthexplorer.usgs.gov/
(accessed on 22 February 2021)

8 flow accumulation 30 m Extract from the DEM

9 impervious surfaces 30 m https://earthexplorer.usgs.gov/
(accessed on 22 February 2021)

10 fire stations 1:50,000 https://www.tehran.ir/
(accessed on 8 April 2021)

11 health centres 1:50,000 https://www.tehran.ir/
(accessed on 8 April 2021)

12 soil type 1:100,000 https://gsi.ir/
(accessed on 25 January 2021)

13 rainfall 250 m https://wapor.apps.fao.org/
(accessed on 25 January 2021)

14 road 1:50,000 http://www.ncc.org.ir/
(accessed on 18 March 2021)

2.2. Methodology

Six main steps were taken in this study to prepare a vulnerability map of urban areas
to floods (Figure 2):

Step 1: Using expert opinions and the research literature, important and effective
criteria were identified to determine the vulnerability of urban areas to floods. After
collecting the criteria based on a pairwise scale model, a questionnaire on criteria weighting
was presented to experts.

Step 2: Using a set of GIS spatial analysis tools for these criteria, the information layers
were prepared as GIS maps. GIS layers were then assigned to these criteria.

Step 3: Using the expert opinions and the weighting method of FAHP, the weight of
each layer and criterion was calculated.

Step 4: Minimum and maximum functions were used for dimensionless crite-
rion mapping.

Step 5: By combining the criteria map using the OWA model, a map of urban area
vulnerability to floods in different degrees of risk was prepared.

https://earthexplorer.usgs.gov/
https://www.tehran.ir/
https://frw.ir/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://www.tehran.ir/
https://www.tehran.ir/
https://gsi.ir/
https://wapor.apps.fao.org/
http://www.ncc.org.ir/
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Step 6: The modelling results were evaluated using the sensitivity analysis method.
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Figure 2. The proposed method for mapping flood vulnerability. Note: Normalized difference
vegetation index (NDVI) and Normalized Difference Built-up Index (NDBI).

2.2.1. Rescaling Criteria

After selecting a set of effective criteria to prepare the vulnerability map, each criterion
was stored as a GIS map in a spatial database. Depending on the type of criteria, different
tools were used to prepare the criteria maps. As an example, the spatial tool “Euclidean dis-
tance” was used to prepare a criterion map of “distance from medical centres”. To evaluate
all the criteria together, it is necessary to convert the layers into comparable units [14,40,41].
The “maximum” values for some criteria and “minimum” values for others are more
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important when preparing a vulnerability map, and so the “maximum” and “minimum”
values were rescaled. The criteria were divided into two categories: benefit criteria (cri-
teria whose maximum amount is important) and cost criteria (criteria whose minimum
amount is important). Benefit criteria included flow accumulation, elevation, slope, aspect,
impervious surfaces, population density, and rainfall that have been standardized using
Equation (1), and cost criteria included vegetation density, land use, river, health centres,
fire station, and soil type standardized using Equation (2) [14].

nij =
rij − rmin

rmax − rmin
(1)

nij =
rmax − rij

rmax − rmin
(2)

2.2.2. FAHP

The AHP method is widely used in selecting an option from among other options.
However, in this method, pairwise comparisons are made for each level to select the best
option using a nine-point scale [42]. Thus, the use of AHP has its weak points: (1) AHP
is mainly used in crisp decisions, (2) it examines a very unbalanced scale of judgment
(3), uncertainties in individual judgments are not taken into account, and (4) the rating
of this method is almost inaccurate [43]. Subjective judgment, choices, and the actions
of decision-makers have a huge effect on AHP outcomes. In addition, it is plausible that
people’s assessments of quality indicators are always subjective and, therefore, inaccurate.
Conventional and classical AHP seems inadequate and inefficient in meeting the exact
needs of decision-makers. FAHP was proposed in Chang [44] to model this type of uncer-
tainty in human preferences. This combined decision-making technique provides a more
accurate understanding of the decision-making process.

The steps for performing Chang’s FAHP include the following [44]:
Step 1: Drawing of a hierarchical tree. At this stage, the hierarchical structure of the

decision is first drawn using the target, criteria, and sub-criteria levels.
Step 2: Formation of pairwise comparison tables and accountability based on trian-

gular fuzzy numbers in Table 3. In this step, like the AHP method, pairwise comparisons
must be created and answered in pairs based on fuzzy numbers.

Table 3. Linguistic scales to express the degree of importance in FAHP.

Fuzzy Numbers Verbal Expression

(1, 1, 1) Equal importance

(1, 1.5, 1.5) Low to moderate preference

(1, 2, 2) Moderate preference

(3, 3.5, 4) Moderate to high preference

(3, 4, 4.5) High preference

(3, 4.5, 5) High to very high preference

(5, 5.5, 6) Very high preference

(5, 6, 7) Very high to quite high preference

(5, 7, 9) Quite high preference

Step 3: Matrix of pairwise comparisons. At this stage, the agreement matrices are
formed according to the decision tree and using the opinions of experts, and then the
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compatibility rate is calculated according to the Gogus and Butcher [45] method. The
pairwise comparison matrix is calculated from Equation (3):

∼
A =


1

∼
a12 . . .

∼
a1n

∼
a21 1 . . .

∼
a2n

. . . . . . 1 . . .
∼

an1
∼

an2 . . . 1

 (3)

Step 4: Calculation of Si. The Si for each row of the pairwise comparison matrix, which
is itself a triangular fuzzy number, is calculated from Equation (4):

Si =
m

∑
j=1

Mj
gi
⊗
[

n

∑
i=1

m

∑
j=1

Mj
gi

]−1
(4)

In this relation, i represents the row number and j represents the column
number. Mj

gi
in this relation, triangular fuzzy numbers are even comparison matri-

ces. The values of ∑m
j=1 Mj

gi
, ∑n

i=1 ∑m
j=1 Mj

gi
,
[
∑n

i=1 ∑m
j=1 Mj

gi

]
−1 can be calculated from

Equations (5)–(7), respectively:

m

∑
j=1

Mj
gi
=

(
m

∑
j=1

lj,
m

∑
j=1

mj,
m

∑
j=1

uj

)
(5)

n

∑
i=1

m

∑
j=1

Mj
gi
=

(
n

∑
i=1

li,
n

∑
i=1

mi,
n

∑
i=1

ui

)
(6)

[
n

∑
i=1

m

∑
j=1

Mj
gi

]
−1 =

(
1

∑n
i=1 ui

,
1

∑n
i=1 mi

,
1

∑n
i=1 li

)
(7)

In the above Equations, li, ui, and mi are the first to third components of fuzzy
numbers, respectively.

Step 5: Calculation of the degree of Si relative to each other. In general, if
M1 = (l1, m1, u1) and M2 = (l2, m2, u2) are two triangular fuzzy numbers, according
to the pairwise comparison matrix, the magnitude of the ratio M1 to M2 is defined
as Equation (8):

V(M2 ≥ M1) =


1 if m2 ≥ m1
0 if l1 ≥ u2

l1−u2
(m2−u2)−(m1−l1)

otherwise
(8)

On the other hand, the magnitude of a triangular fuzzy number is obtained from K of
another triangular fuzzy number from Equation (9):

V(M ≥ M1, M2, . . . , Mk) = V(V ≥ M1) and (M ≥ M2)and . . . and (M ≥ Mk) = minV(M ≥ MI), i = 1, 2, . . . , k (9)

Step 6: Calculation of the weight of criteria and alternatives. Equation (10) is used to
obtain the weights of criteria and alternatives in pairwise comparison matrices:

d′(Ai) = Min V (Si ≥ Sk) for k = 1, 2, . . . , n; k 6= i (10)
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Therefore, the non-normalized weight vector will be in Equation (11):

W′ =
(

d′(A1), d′(A2) . . . d′(An)
)

Where A(i = 1, 2, . . . n) (11)

Step 7: Calculation of the final weight vector. To calculate the final weight vector, the
weight vector calculated in the previous step must be normalized, using Equation (12):

W = (d(A1, d(A2), . . . , d(An))
T (12)

2.2.3. OWA Operator

In multi-criteria decision making (MCDM), the goal is to integrate the criteria with
a general decision function. The weighted average weighting method introduced by
Yager [46], which uses aggregation operators, introduces the general decision function.
This is a method of combining criteria in multi-criteria decision-making by establishing
Equation (13) for a set of input data x = (x1x2. . . . .xn) that are to be aggregated:

Fv = (x1. . . . xn)
n

∑
i=1

vi bi. x ∈ In (13)

where bi, the ith value of x, is sorted from ascending to descending weights, and vi is the
element vector OWA operator’s degree. The OWA operator consists of two characteristics
that indicate the behavior of the OWA operator: (i) degree of ORness or risk-taking, and (ii)
the trade-off between criteria [47,48].

The degree of ORness or risk-taking indicates the position of the OWA operator
between the AND (minimum) and OR (maximum) relationships. This degree indicates
the degree to which the decision-maker emphasizes the worse or better values of a set
of criteria or the risk-aversion and risk-taking of the decision-maker [49]. The degree of
ORness is defined using the following Equation (14):

ORness =
1

n− 1

n

∑
i=1

(n− i)vi, 0 ≤ ORness ≤ 1 (14)

The higher the ORness, the more optimistic or risk-taking the decision-maker, and
the lower the ORness, the greater the decision-maker’s pessimism or risk-aversion [50].
In general, an OWA operator with an ORness greater than 0.5 represents a risk-taking
and optimistic decision-maker. An ORness = 0.5 represents a neutral decision-maker, and
an Orness less than 0.5 represents a risk-averse and pessimistic decision-maker [51,52].
It should be noted that the closer the behavior of the OWA operator to the OR or MAX
operators, the closer the Orness value is to 1. While the behavior of this operator is closer
to the AND and MIN operators, the Orness value is closer to 0. Therefore, the vectors
V∗ = (0.0.0. . . . . 1)T as the weight vector of the AND operator and V∗ = (1.0 . . . .0)T as
the OR operator, and VA =

(
1
n . 1

n . . . . 1
n

)
as the weight vector of the weighted linear

combination (WLC) operator, are shown in Equation (15):

ORness (V∗) = 0. ORness (V∗) = 1. ORness (VA) = 0.5 (15)

The second characteristic of the OWA operator is the degree of trade-off between the
criteria. The degree of trade-off indicates the extent to which one criterion is exchanged or
affected by other criteria [53]. The trade-off is defined as Equation (16):

trade− off = 1−
√

n
n− 1

n

∑
i=1

(Vi−
n

n− 1
)2. 0 ≤ trade− off ≤ 1 (16)

According to the two main characteristics of the OWA operator, a wide range of
different risk conditions can be defined, and a vulnerability map can be generated for each
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condition. Different scenarios are placed in the triangular space shown in Figure 3. This
triangle, in other words, represents the decision space of the OWA operator.
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According to Figure 3, it should be said that the minimum risk is the same as the AND
operator, the maximum risk is the OR operator, and the average risk is the weighted linear
combination (WLC) operator. Naturally, different scenarios of operators can be generated
between AND and OR.

2.2.4. Sensitivity Analysis

One of the most important steps in a multi-criteria evaluation analysis is the sensitivity
analysis. Sensitivity analysis is generally the study of the effectiveness of the output results
of the input variables of a model [54]. Obviously, due to the existence of different sources
of errors, the final output of the evaluation models, which is the ranking of options, is also
affected by these errors, and the accuracy of the results should be checked [55,56]. In multi-
criteria evaluation, sensitivity analysis is performed with systematic changes in the weight
and values of the criteria, and its effect on the final ranking of options is performed [57]. In
other words, by analyzing the sensitivity of a multi-criteria evaluation model, the variability
in the final results of the model (consistency of results) is investigated [58]. Given that the
weight of the criteria is obtained using expert opinions that are accompanied by subjective
judgments, the probability of error within them is higher, so if applying changes in the
weight of the criteria and re-evaluating the final results of the evaluation of changes was not
significant, the results of the model can be trusted [59]. A common method of sensitivity
analysis is to increase or decrease the weight of a criterion by P percent, so that the sum of
the new weights is equal to one, as in Equation (17). The weight of the other criteria (Ci) is
also reduced or increased by the ratio given in Equation (18) [60]:

W(P) =
n

∑
1

W (Ci, P) = 1 (17)

where W (Ci, P) is the i-th standard weight in changes of P percent. If the mth criterion
changes by P as a percentage, its new value is obtained from Equation (18):

W(Cm, P) = W(Cm, 0) + W(Cm, 0)× P, 1 ≤ m ≤ n (18)
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In addition, the weight of other criteria for establishing in Equation (17) is obtained
from Equation (19):

W(Ci, P) = (1−W(Cm, P))×W(Ci, 0)/(1−W(Cm, 0), i 6= m, 1 ≤ i ≤ n (19)

3. Results

The weight of each of the criteria used was determined according to the opinions of
33 experts (including specialists in urban management, GIS, and flood engineering) and
the FAHP method (Figure 4). Criterion weight values are between 0 and 1, with the former
indicating the least importance and the latter indicating high importance. The sum of the
values of all criteria is 1. Among the criteria selected to prepare the flood vulnerability
map, the criteria of population density and soil type had the highest and lowest weight
and importance, respectively. According to the results, the adjustment rate for calculating
the weight of the criteria based on expert opinions is less than 0.1. In other words, it shows
the acceptability and compatibility of experts’ opinions.
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Figure 4. Weight and importance of criteria affecting flood vulnerability.

For each criterion, a map of different criteria was prepared using spatial analysis
(Figure 5). For example, using “Euclidean Distance” and “Interpolation” spatial analyses,
distance from river and rainfall maps were prepared, respectively. The values of the criteria
are normalized between 0 and 1 using the minimum and maximum methods, with a value
of 0 indicating a very low vulnerability and 1 indicating a very high vulnerability. Areas
with high vulnerability are different in each criterion. This feature of the criteria indicates
that each area has a specific vulnerability. Finally, areas that have the highest values in all
criteria and thus very high vulnerabilities are selected. For example, in the criteria map
of elevation and slope, the northern and northeastern regions have a high elevation and
slopes because they are close to the Alborz mountain range, which indicates that these
regions are more vulnerable than other regions. In addition, the standard population
density map shows that the central regions have a high density due to the density of service
and commercial activities, which makes them more vulnerable than other regions.
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Figure 5. The criteria map (a) elevation; (b) aspect; (c) distance from health centres; (d) flow accumu-
lation; (e) vegetation density; (f) land use; (g) distance from river; (h) rainfall; (i) impervious surfaces;
(j) distance from fire station; (k) distance from road; (l) papulation density; (m) soil type; (n) slope.

Vulnerability maps can be generated in different risk scenarios (from the most pes-
simistic to the most optimistic) through the equations provided in the previous sections.
Vulnerability maps in this study have been generated for 11 different risk scenarios
(ORness = 0, 0.1, 0.2, . . . , 1) (Figure 6). In these maps, the degree of vulnerability of
each pixel is shown with a real number in the range [0,1], and finally, the pixels are classi-
fied into five vulnerability classes: “very low” (0–0.2), “low” (0.2–0.4), “moderate” (0.4–0.6),
“high” (0.6–0.8), and “very high” (0.8–1).
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Figure 6. Flood vulnerability map (a) ORness = 0; (b) ORness = 0.1; (c) ORness = 0.2; (d) ORness = 0.3;
(e) ORness = 0.4; (f) ORness = 0.5; (g) ORness = 0.6; (h) ORness = 0.7; (i) ORness = 0.8; (j) ORness = 0.9;
(k) ORness = 1.

Analysis of the results (Table 4) shows that the degree of flood vulnerability increases
with an increasing degree of risk-taking. The degree of risk-taking is the proximity of the
OWA operator to the OR operator. As the degree of risk-taking increases, the number
of pixels in the “very low” vulnerability class decreases, and the number of pixels in
the “very high” vulnerability class increases. In other words, in the “very risk-averse”
scenario (ORness = 0), the class area with very high vulnerability is 168 hectares, and in
the “very risk-taking” scenario (ORness = 1), the class area with very high vulnerability is
22,250 hectares. In the first case (risk-averse), areas are considered vulnerable when all their
pixels in all criteria have high values and comprehensiveness. Risk-averse managers and
planners in the field of planning and projects related to flood vulnerability reduction mostly
seek areas in which all the criteria are effective in the best possible way for the allocation
of credit. However, in the second case (risk-taking), the pixels that are most likely to be
vulnerable are selected as vulnerable areas. This mode can be used when managers and
planners do not have economic and time constraints.

In this study, sensitivity analysis was performed 154 times with a weight change
(11 times for each criterion) for all criteria (14 criteria), and vulnerability maps were
produced with new weights. The greatest changes compared to the initial state (Figure 7a)
were in the sensitivity analysis of the “distance from river” criterion and the least changes
were in the sensitivity analysis of the “rainfall” criterion. Considering that by changing the
weight of the input criteria, there were no significant changes in the model results, it can
be said that, based on the sensitivity analysis test, the results of the model are reliable. As
can be seen from Figure 7b, most changes were made at ORness = 0.6, which is negligible.
Most changes were about 1% and 5% at most. The results of weight change were much less
for other criteria, which indicates the acceptable stability of the results of the vulnerability
model in different scenarios of sensitivity analysis, i.e., high reliability of the model results.
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ORness = 0.9 2003 8931 10,348 24,756 15,071

ORness = 1 1220 5360 7103 25,176 22,250

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 16 of 21 
 

 

ORness = 0.9 2003 8931 10,348 24,756 15,071 

ORness = 1 1220 5360 7103 25,176 22,250 

In this study, sensitivity analysis was performed 154 times with a weight change (11 

times for each criterion) for all criteria (14 criteria), and vulnerability maps were produced 

with new weights. The greatest changes compared to the initial state (Figure 7a) were in 

the sensitivity analysis of the “distance from river” criterion and the least changes were 

in the sensitivity analysis of the “rainfall” criterion. Considering that by changing the 

weight of the input criteria, there were no significant changes in the model results, it can 

be said that, based on the sensitivity analysis test, the results of the model are reliable. As 

can be seen from Figure 7b, most changes were made at ORness = 0.6, which is negligible. 

Most changes were about 1% and 5% at most. The results of weight change were much 

less for other criteria, which indicates the acceptable stability of the results of the vulner-

ability model in different scenarios of sensitivity analysis, i.e., high reliability of the model 

results. 

 

Figure 7. Cont.



ISPRS Int. J. Geo-Inf. 2022, 11, 380 17 of 21
ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 17 of 21 
 

 

 

Figure 7. (a) Vulnerability sensitivity analysis with initial weights; (b) vulnerability sensitivity anal-

ysis by changing the weight criterion of the distance from river. 

4. Discussions 

Iran has been witnessing a large number of natural hazards, in particular floods, due 

to the massive mountainous basins in the country as well as the long drought seasons that 

turn flash floods to devastating events. Tehran has been affected by a large number of 

floods and carries a large risk of citizens, infrastructure, and assets to them. Hence, this 

study aimed at proposing a spatial decision support system for identifying vulnerable 

areas using the GIS-MCDA combination to inform the decision makers and stakeholders 

about the potential flood damages so that they can build resilience against them. 

The preparation of a flood vulnerability mapping at different risk levels used in this 

study consists of two major steps. In the first step, using the research background and the 

expert knowledge, the effective influential criteria for floods were identified. In the second 

step, a flood vulnerability map was prepared for different risk scenarios. Based on our 

knowledge of past studies and expert opinion, a comprehensive set of criteria including 

topographical and hydrological characteristics, demographics, vegetation, land use, and 

urban features was included in the flood vulnerability assessment. The FAHP method was 

used to determine the weight of the criteria. Most previous articles have used the AHP 

model. However, this approach is criticized in terms of accounting for uncertainty of rank-

ing priorities of the scoring criteria [61,62]. The FAHP model allows decision makers to 

better define their preferences in fuzzy environments [63]. This model has been used for 

weighting the criteria for the allocation of landfills [64], solar farms [65], hospitals [66], 

wind farms [67], and electric vehicle charging stations [67]. In addition, in these studies, 

different models based on MCDA such as WLC and AHP have been used to combine the 

criteria. Each of these models has advantages and disadvantages. One of the most im-

portant limitations of these models is lack of considering the concept of risk in decision 

making. Therefore, in this study, the OWA model was used to map the flood vulnerability. 

OWA outputs flood vulnerability maps for various risk-based decision scenarios. In re-

cent years, the efficiency of this model has been confirmed in a number of studies for the 

allocation of renewable energy farms [50] and residential complexes [68], tourism plan-

ning [69], thermal comfort mapping [70], and placing municipal solid waste landfills [71]. 

Our sensitivity analysis showed that the change in the weight of the criteria did not lead 

to large changes in the areal extent of the vulnerability classes, which is an advantage. 

Figure 7. (a) Vulnerability sensitivity analysis with initial weights; (b) vulnerability sensitivity
analysis by changing the weight criterion of the distance from river.

4. Discussions

Iran has been witnessing a large number of natural hazards, in particular floods, due
to the massive mountainous basins in the country as well as the long drought seasons that
turn flash floods to devastating events. Tehran has been affected by a large number of
floods and carries a large risk of citizens, infrastructure, and assets to them. Hence, this
study aimed at proposing a spatial decision support system for identifying vulnerable areas
using the GIS-MCDA combination to inform the decision makers and stakeholders about
the potential flood damages so that they can build resilience against them.

The preparation of a flood vulnerability mapping at different risk levels used in this
study consists of two major steps. In the first step, using the research background and
the expert knowledge, the effective influential criteria for floods were identified. In the
second step, a flood vulnerability map was prepared for different risk scenarios. Based
on our knowledge of past studies and expert opinion, a comprehensive set of criteria
including topographical and hydrological characteristics, demographics, vegetation, land
use, and urban features was included in the flood vulnerability assessment. The FAHP
method was used to determine the weight of the criteria. Most previous articles have
used the AHP model. However, this approach is criticized in terms of accounting for
uncertainty of ranking priorities of the scoring criteria [61,62]. The FAHP model allows
decision makers to better define their preferences in fuzzy environments [63]. This model
has been used for weighting the criteria for the allocation of landfills [64], solar farms [65],
hospitals [66], wind farms [67], and electric vehicle charging stations [67]. In addition, in
these studies, different models based on MCDA such as WLC and AHP have been used
to combine the criteria. Each of these models has advantages and disadvantages. One
of the most important limitations of these models is lack of considering the concept of
risk in decision making. Therefore, in this study, the OWA model was used to map the
flood vulnerability. OWA outputs flood vulnerability maps for various risk-based decision
scenarios. In recent years, the efficiency of this model has been confirmed in a number of
studies for the allocation of renewable energy farms [50] and residential complexes [68],
tourism planning [69], thermal comfort mapping [70], and placing municipal solid waste
landfills [71]. Our sensitivity analysis showed that the change in the weight of the criteria
did not lead to large changes in the areal extent of the vulnerability classes, which is an
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advantage. Furthermore, due to the flexibility of our approach in terms of data type and
format and there being no dependency on geographical conditions, the proposed approach
can be used for other case studies globally.

5. Conclusions and Recommendations

Unprecedented population growth, unregulated land governance, e.g., allocation
of land around rivers and canals for development and increased soil sealing due to de-
velopment activities, and lack of innovative nature-based solutions for such practices in
developing countries have caused urban floods across the world, jeopardizing human
lives and urban infrastructure. Vulnerability mapping to urban floods and identifying
high-risk areas can inform stakeholders and urban planners across different stages of the
hazard management cycle, i.e., the pre-crisis, during-crisis and post-crisis phases, which
can promote societal security in times of crises. This study demonstrated the design and
implementation of a methodical approach for vulnerability mapping for an exemplary
case study of Tehran with its unique placement in the slope of the high Alborz Moun-
tains. The analysis of the importance of factors using FAHP showed that the variables of
population density, flow accumulation and the river’s footprint are more important. The
results of flood vulnerability mapping showed that the northern and eastern regions are
highly susceptible to floods because runoff caused by rainfall in the northern and eastern
mountains of Tehran enters the urban area of Tehran by rivers and canals. Our findings
proved that the OWA model is very flexible in combining large input factors for vulner-
ability mapping across diverse risk scenarios for spatial decision-making processes. The
different risk scenarios ranges from very pessimistic to very optimistic scenarios in which
the degree of optimism in decision-making increases as the percentage of risk increases
too. A risk-averse decision-maker accounts for very difficult conditions in decision-making.
Therefore, between different options, it chooses an option that has ideal conditions in terms
of different criteria, so the number of suitable options in this case is limited. For risk-taking
decision-makers, it is the opposite.

Vulnerability maps borne by this study can serve as analytical tools for providing
solutions to reduce vulnerability through different practices such as re-allocation of infras-
tructure, residential and industrial activities exposed to risk, adaptation of nature-based
solutions, and landscape engineering for mitigating the impacts of urban floods. Other ap-
plications of vulnerability maps include informing land management plans, urban planning,
land-use allocation, land-use change, and per capita land use determination.

As per the research outlook, we recommend (a) to model urban morphological vul-
nerability, including the network of roads and facilities; (b) to include the future urban
development plans in the analysis and potential urban and population growth; (c) to
account for climate change impacts for such analysis such as futuristic projection of rainfall;
(d) to assess the social, economic, and environmental vulnerabilities caused by floods; e) to
elaborate the inclusion of expert knowledge and stakeholder analysis by opening up the
discussion table to them ensuring co-designing the methodical approach alongside them;
(f) development of a flood warning system available to the public for real-time awareness
of flood hazards that can contribute to societal security in the urban environments; (g) to
account for uncertainty for such studies and inform the end-users about the uncertainties
associated with the achieved results ensuring less bias in the consecutive decisions. The
latter can be applied based on fuzzy logic, e.g., type II fuzzy and intuitive fuzzy.
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25. Erbaş, M.; Kabak, M.; Özceylan, E.; Çetinkaya, C. Optimal siting of electric vehicle charging stations: A GIS-based fuzzy
Multi-Criteria Decision Analysis. Energy 2018, 163, 1017–1031. [CrossRef]

26. Mijani, N.; Shahpari Sani, D.; Dastaran, M.; Karimi Firozjaei, H.; Argany, M.; Mahmoudian, H. Spatial modeling of migration
using GIS-based multi-criteria decision analysis: A case study of Iran. Trans. GIS 2022, 26, 645–668. [CrossRef]

27. Atijosan, A.O.; Isa, I.; Abayomi, A. Urban flood vulnerability mapping using integral value ranked fuzzy AHP and GIS. Int. J.
Hydrol. Sci. Technol. 2021, 12, 16–38. [CrossRef]

28. Irawan, A.M.; Marfai, M.A.; Nugraheni, I.R.; Gustono, S.T.; Rejeki, H.A.; Widodo, A.; Mahmudiah, R.R.; Faridatunnisa, M.
Comparison between averaged and localised subsidence measurements for coastal floods projection in 2050 Semarang, Indonesia.
Urban Clim. 2021, 35, 100760. [CrossRef]

29. Ku, C.-A. Simulating future land use exposure to extreme floods in metropolitan areas based on an integrated framework. Urban
Clim. 2021, 35, 100738. [CrossRef]

30. Ouma, Y.O.; Tateishi, R. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Method-
ological overview and case study assessment. Water 2014, 6, 1515–1545. [CrossRef]

31. Rana, I.A.; Asim, M.; Aslam, A.B.; Jamshed, A. Disaster management cycle and its application for flood risk reduction in urban
areas of Pakistan. Urban Clim. 2021, 38, 100893. [CrossRef]

32. Chakraborty, S.; Mukhopadhyay, S. Assessing flood risk using analytical hierarchy process (AHP) and geographical information
system (GIS): Application in Coochbehar district of West Bengal, India. Nat. Hazards 2019, 99, 247–274. [CrossRef]

33. Eini, M.; Kaboli, H.S.; Rashidian, M.; Hedayat, H. Hazard and vulnerability in urban flood risk mapping: Machine learning
techniques and considering the role of urban districts. Int. J. Disaster Risk Reduct. 2020, 50, 101687. [CrossRef]

34. Feloni, E.; Mousadis, I.; Baltas, E. Flood vulnerability assessment using a GIS-based multi-criteria approach—The case of Attica
region. J. Flood Risk Manag. 2020, 13, e12563. [CrossRef]

35. Hadipour, V.; Vafaie, F.; Deilami, K. Coastal flooding risk assessment using a GIS-based spatial multi-criteria decision analysis
approach. Water 2020, 12, 2379. [CrossRef]

36. Rashetnia, S.; Jahanbani, H. Flood vulnerability assessment using a fuzzy rule-based index in Melbourne, Australia. Sustain.
Water Resour. Manag. 2021, 7, 13. [CrossRef]

37. Hussain, M.; Tayyab, M.; Zhang, J.; Shah, A.A.; Ullah, K.; Mehmood, U.; Al-Shaibah, B. GIS-Based Multi-criteria approach for
flood vulnerability assessment and mapping in district Shangla: Khyber Pakhtunkhwa, Pakistan. Sustainability 2021, 13, 3126.
[CrossRef]

38. Nadizadeh Shorabeh, S.; Hamzeh, S. Investigating the Effects of environmental and demographic parameters on the spatial
distribution of surface temperature of tehran by combining statistical and mono-window models. Phys. Geogr. Res. Q. 2019, 51,
263–282.

39. Radmehr, A.; Araghinejad, S. Flood vulnerability analysis by fuzzy spatial multi criteria decision making. Water Resour. Manag.
2015, 29, 4427–4445. [CrossRef]

40. Qureshi, S.; Shorabeh, S.N.; Samany, N.N.; Minaei, F.; Homaee, M.; Nickravesh, F.; Firozjaei, M.K.; Arsanjani, J.J. A New Integrated
Approach for Municipal Landfill Siting Based on Urban Physical Growth Prediction: A Case Study Mashhad Metropolis in Iran.
Remote Sens. 2021, 13, 949. [CrossRef]

41. Shorabeh, S.N.; Argany, M.; Rabiei, J.; Firozjaei, H.K.; Nematollahi, O. Potential assessment of multi-renewable energy farms
establishment using spatial multi-criteria decision analysis: A case study and mapping in Iran. J. Clean. Prod. 2021, 295, 126318.
[CrossRef]

42. Saaty, T.L. Decision making—the analytic hierarchy and network processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35.
[CrossRef]

43. Chen, J.-F.; Hsieh, H.-N.; Do, Q.H. Evaluating teaching performance based on fuzzy AHP and comprehensive evaluation
approach. Appl. Soft Comput. 2015, 28, 100–108. [CrossRef]

44. Chang, D.-Y. Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. [CrossRef]
45. Gogus, O.; Boucher, T.O. Strong transitivity, rationality and weak monotonicity in fuzzy pairwise comparisons. Fuzzy Sets Syst.

1998, 94, 133–144. [CrossRef]
46. Yager, R.R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern.

1988, 18, 183–190. [CrossRef]
47. Malczewski, J. A GIS-based approach to multiple criteria group decision-making. Int. J. Geogr. Inf. Syst. 1996, 10, 955–971.

[CrossRef]
48. Zabihi, H.; Alizadeh, M.; Kibet Langat, P.; Karami, M.; Shahabi, H.; Ahmad, A.; Nor Said, M.; Lee, S. GIS Multi-Criteria

Analysis by Ordered Weighted Averaging (OWA): Toward an integrated citrus management strategy. Sustainability 2019, 11, 1009.
[CrossRef]

49. Malczewski, J.; Chapman, T.; Flegel, C.; Walters, D.; Shrubsole, D.; Healy, M.A. GIS–multicriteria evaluation with ordered
weighted averaging (OWA): Case study of developing watershed management strategies. Environ. Plan. A 2003, 35, 1769–1784.
[CrossRef]

http://doi.org/10.1016/j.renene.2022.01.011
http://doi.org/10.1016/j.energy.2018.08.140
http://doi.org/10.1111/tgis.12873
http://doi.org/10.1504/IJHST.2021.116239
http://doi.org/10.1016/j.uclim.2020.100760
http://doi.org/10.1016/j.uclim.2020.100738
http://doi.org/10.3390/w6061515
http://doi.org/10.1016/j.uclim.2021.100893
http://doi.org/10.1007/s11069-019-03737-7
http://doi.org/10.1016/j.ijdrr.2020.101687
http://doi.org/10.1111/jfr3.12563
http://doi.org/10.3390/w12092379
http://doi.org/10.1007/s40899-021-00489-w
http://doi.org/10.3390/su13063126
http://doi.org/10.1007/s11269-015-1068-x
http://doi.org/10.3390/rs13050949
http://doi.org/10.1016/j.jclepro.2021.126318
http://doi.org/10.1007/s11518-006-0151-5
http://doi.org/10.1016/j.asoc.2014.11.050
http://doi.org/10.1016/0377-2217(95)00300-2
http://doi.org/10.1016/S0165-0114(96)00184-4
http://doi.org/10.1109/21.87068
http://doi.org/10.1080/02693799608902119
http://doi.org/10.3390/su11041009
http://doi.org/10.1068/a35156


ISPRS Int. J. Geo-Inf. 2022, 11, 380 21 of 21

50. Firozjaei, M.K.; Nematollahi, O.; Mijani, N.; Shorabeh, S.N.; Firozjaei, H.K.; Toomanian, A. An integrated GIS-based Ordered
Weighted Averaging analysis for solar energy evaluation in Iran: Current conditions and future planning. Renew. Energy 2019,
136, 1130–1146. [CrossRef]

51. Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2015.
52. Nadizadeh Shorabeh, S.; Neysani Samani, N.; Jelokhani-Niaraki, M.R.J.-N. Determination of optimum areas for the landfill with

emphasis on the urban expansion trend based on the combination of the Analytical Hierarchy Process and the Ordered Weighted
Averaging model. J. Nat. Environ. 2017, 70, 949–969.

53. Kiavarz, M.; Jelokhani-Niaraki, M. Geothermal prospectivity mapping using GIS-based Ordered Weighted Averaging approach:
A case study in Japan’s Akita and Iwate provinces. Geothermics 2017, 70, 295–304. [CrossRef]

54. Ikonen, T. Comparison of global sensitivity analysis methods–application to fuel behavior modeling. Nucl. Eng. Des. 2016, 297,
72–80. [CrossRef]

55. Saltelli, A.; Tarantola, S.; Chan, K. A role for sensitivity analysis in presenting the results from MCDA studies to decision makers.
J. Multi Criteria Decis. Anal. 1999, 8, 139–145. [CrossRef]

56. Alemdar, K.D.; Kaya, Ö.; Çodur, M.Y. A GIS and microsimulation-based MCDA approach for evaluation of pedestrian crossings.
Accid. Anal. Prev. 2020, 148, 105771. [CrossRef] [PubMed]

57. Erlacher, C.; Anders, K.-H.; Jankowski, P.; Paulus, G.; Blaschke, T. A framework for cloud-based spatially-explicit uncertainty and
sensitivity analysis in spatial multi-criteria models. ISPRS Int. J. Geo Inf. 2021, 10, 244. [CrossRef]

58. Chen, Y.; Yu, J.; Khan, S. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ.
Model. Softw. 2010, 25, 1582–1591. [CrossRef]

59. Sadeghi-Niaraki, A.; Varshosaz, M.; Kim, K.; Jung, J.J. Real world representation of a road network for route planning in GIS.
Expert Syst. Appl. 2011, 38, 11999–12008. [CrossRef]

60. Eldrandaly, K.A. Exploring multi-criteria decision strategies in GIS with linguistic quantifiers: An extension of the analytical
network process using ordered weighted averaging operators. Int. J. Geogr. Inf. Sci. 2013, 27, 2455–2482. [CrossRef]
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