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Abstract: Statistical partitioning and publishing is commonly used in location-based big data services
to address queries such as the number of points of interest, available vehicles, traffic flows, infected
patients, etc., within a certain range. Adding noise perturbation to the location-based statistical
data according to the differential privacy model can reduce various risks caused by location privacy
leakage while keeping the statistical characteristics of the published data. The traditional statistical
partitioning and publishing methods realize the decomposition and indexing of 2D space from top to
bottom. However, they can easily cause the over-partitioning or under-partitioning phenomenon,
and therefore need multiple times of data scan. This paper proposes a grid clustering and differential
privacy protection method for location-based statistical big data publishing scenarios. We implement
location-based big data statistics in units of equal-sized grids and perform density classification on
uniformly distributed grids by discrete wavelet transform. A bottom-up grid clustering algorithm
is designed to perform on the blank and the uniform grids of the same density level based on
neighborhood similarity. The Laplacian noise is incorporated into the clustering results according
to the differential privacy model to form the published statistics. Experimental comparison of the
real-world datasets manifests that the grid clustering and differential privacy publishing method
proposed in this paper is superior to other existing partition publishing methods in terms of range
querying accuracy and algorithm operating efficiency.

Keywords: statistical release of big data; location privacy; differential privacy; privacy spatial
decomposition; grid clustering

1. Introduction

With the rapid proliferation of emerging technologies such as Mobile Internet and the
Internet of Things, numerous location-based big data services are becoming increasingly
popular in various fields, including, but not limited to, population distribution statistics [1],
urban planning and management [2], intelligent traffic scheduling [3], and disease epidemic
control [4]. Particularly, in the current critical period of COVID-19 pandemic, a series of
location-based big data applications (i.e., health codes, communication itinerary cards,
and close contact self-examination procedures) provide great convenience for epidemic
prevention and control in terms of epidemiological investigations, epidemic distribution
and statistical analysis, personnel and material scheduling, etc.

Location information is highly correlated with personal privacy. Improper release
or reverse reasoning analysis [5–7] of location-based big data statistics can easily lead
to the disclosure of personal privacy of a user’s specific location, movement trajectory,
living habits, health status, hobbies, economic conditions, etc., and may even endanger a
user’s property and life [8]. Therefore, addressing the above-mentioned privacy protection
issues during the publishing and utilization of location-based big data statistics remains
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an indispensable task and acts as a considerable bottleneck in the development of the big
data industry.

The statistical partition and publishing method is widely used in location-based big
data services. It can provide users with accurate and timely traffic statistics, facilitate
people to plan reasonable travel times and routes, and obtain high-precision Location Based
Services (LBS). When combined with the differential privacy model and once the noise
disturbance has been incorporated in the statistics of location-based big data, it can further
reduce the risk of users’ privacy leakage while maintaining the statistical characteristics
of the published data. During the COVID-19 pandemic, spatiotemporal location big data
provided case statistics, distribution analysis, and trajectory estimation for pandemic
prevention and control and which subsequently assisted in social resumption of work
and production. Figure 1 is a typical example of statistical publishing of location-based
big data, which depicts the spatial distribution of COVID-19 infectors in Hubei province
on 31 March 2020 [9]. Figure 2 is the result of RAPPOR, an anonymous crowdsourced
statistical data privacy-preserving technique based on differential privacy, wherein the true
sample distribution is shown in black, and the light green depicts the estimated distribution
based on the decoded Randomized Aggregatable Privacy-Preserving Ordinal Response
(RAPPOR) reports [10]. As can be observed from Figure 2, when the number of report
from users reaches one million, the statistical results reported according to RAPPOR closely
traced the statistical distribution of the real data, which does not affect the availability of
the published big data statistical results.

Figure 1. Spatial distribution of COVID-19.
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Figure 2. Normal distribution using RAPPOR.

The big data statistical publishing method based on the differential privacy model
protects the privacy of each user under the premise of ensuring data availability by adding
a certain random noise to the statistical publishing results. The partition structure of
spatial location information and the introduction of differential privacy noise lead to errors
between the published big data statistics’ results and the real statistical results. This may
reduce the availability of the released data. For example, a user queries the number of taxis
available within 1 km of their own location and the noisy statistics’ results returned by the
LBS system is 11. However, the real situation is that there are only two taxis within a user’s
query range. Therefore, such statistically released results are likely to mislead users to wait
for a long time, thereby resulting in an unsatisfactory LBS service experience. Similarly,
let us suppose that, in accordance with the location information of confirmed COVID-
19 patients in a certain area, the number of close contacts is about 12,000; nevertheless,
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the released statistical result after incorporating differential privacy noise turns out to be
8700. This can thus disrupt the supply of the medical aid equipment and other pandemic
prevention materials as they would not be able to cater to the needs of this region, thereby
delaying the timely treatment of patients. Therefore, improving the accuracy of location-
based big data statistical results on the premise of ensuring location privacy is an important
issue for big data services.

In order to reduce the impact of spatial partition structure and differential privacy
noise on the availability of published data, this paper hereby proposes a bottom-up grid
clustering algorithm and a corresponding differential privacy preserving data publishing
algorithm. The range counting querying errors are reduced, and the availability of released
statistical results is improved.

The rest of the paper is organized as follows: Section 2 reviews the state-of-the-art
pertinent to private spatial decomposition methods. Section 3 defines the differential
privacy model used for the publishing of location-based big data statistical information.
Section 4 analyzes the problems of traditional privacy spatial decomposition and introduces
the proposed grid clustering algorithm. Section 5 details the proposed statistical publishing
and differential privacy protection algorithms. Finally, Section 6 reports a set of empirical
studies, whereas Section 7 concludes the paper, laying out the limitations and future works
of the research.

2. Related Work

Privacy spatial decomposition is one of the important means to realize the application
of location-based big data statistical publishing. The statistical release and differential
perturbation of location-based information within the partition and indexing area facilitate
reducing the risk of users’ location privacy. The traditional privacy spatial decomposi-
tion methods partition the 2D space from top to bottom and index the partition areas
either according to location independent grid or tree structure or some location-based
hierarchical structures.

The grid-based partition and indexing structure is the most common privacy decompo-
sition methods, wherein the uniform grid (UG) method and the adaptive grid (AG) method
are the typical representatives [11]. The former separates the 2D space into equal sized grids
and calculates the statistical result in the units of grid. The latter performs a further grid
partition on the dense areas based on the UG method. In [12], the authors employ contour
maps to describe the distribution of location points in spatial crowdsourcing services and
partition the spatial area into disjointed units to protect workers’ location privacy. The
partition method proposed in [13] firstly obtains the preliminary density-adaptive grid
partition by judging the distribution of location-based information on the longitude and
latitude directions, and, subsequently, the adaptive grid partition was performed on the
dense grids to save unnecessary partition process and reduce publishing errors. In [14], the
authors propose a three-layer adaptive grid partition method based on Bernoulli random
sampling technology which employs the exponential mechanism and high-pass filtering
technology to filter out grids smaller than the predefined threshold on the second layer
of the partition structure but continues to partition the grid larger than the predefined
threshold. The location privacy protection scheme proposed in [15] uses a three-layer
adaptive grid structure and a fully pyramid grid algorithm based on differential privacy.
In [16], the authors use the statistical information of particle distribution to extract the
optimal spatial decomposition so that each unit contains particles with uniform spatial
distribution. A common problem with the grid-based partition method method is difficult
to balance the noise error with the uniform assumption error, which affects the accuracy of
the published statistical results.

The tree structure has better hierarchical characteristics and can provide more con-
venient spatial range querying services. The Quad-opt algorithm [17] separates the 2D
space using a complete quad-tree structure and designs a post-adjustment method which
improves the range counting querying accuracy to a certain extent. However, the complete



ISPRS Int. J. Geo-Inf. 2022, 11, 404 4 of 21

quadtree structure does not consider the distributions of data, thereby resulting in a large
uniform assumption error. In [18], the complete quadtree partition results are adjusted
and merged bottom-up in accordance with the uniformity conditions in order to reduce
the uniformity assumption error. In [19], the authors separate the entire area into four
sub-units of different sizes and recursively invoke the same partition process until a rea-
sonable spatial structure is obtained. In [20], the authors propose an Unbalanced quadtree
partition method based on regional uniformity and which traverses the subtree according
to the depth-first strategy and adaptively carry out partition according to the uniformity.
However, tree-based partition methods need more recursive operations, and, therefore,
the execution efficiency of the partition and publishing algorithm is dragged down. Some
privacy spatial decomposition methods organically combine grid-based and tree-based
structures to form hybrid partition structures [21,22], thereby improving the accuracy of
range counting querying services.

Clustering analysis plays an important role in data mining process for a long time.
Cluster data records that are spatially close to each other in the same area not only facilitates
improving the accuracy of statistically released data but also protects the location informa-
tion corresponding to a single record. This kind of grid-based or density-based clustering
algorithm [23–27] can be used to classify data of any shape. Since it only requires less
calculations pertinent to the distance between a small number of grid nodes, the clustering
algorithm has a high level of efficiency. In [28], the authors propose a location-based big
data clustering algorithm based on density and grid partition. The proposed cell distance
analysis model greatly reduced the distance calculation and the traversal of the location
points. In [29], the authors propose an online data stream clustering method based on
density grids. The grid-based method is employed to reduce the number of calls of the
distance function, thereby improving the clustering quality. In [30], the authors propose
a strongly connected grid clustering algorithm for the parallel processing of clustering
based on MapReduce. Grid clusters with strong connectivity are merged by calculating the
connectivity weight matrix so as to realize efficient clustering of location data. With the
improvement of machine learning methods, high-performance grid clustering and density
clustering algorithms are gradually increasing. Combining the above clustering algorithms
with the publishing of location-based statistical information can improve the availability
of published data on the basis of making full use of the distribution characteristics of
location-based data. Research in this area has a very broad application space.

3. Differential Privacy

Definition 1 (ε-Differential Privacy [31,32]). For a pair of neighboring datasets T1 and T2 with
‖ T1 − T2 ‖1≤ 1, a randomized algorithm K with domain N is ε-differentially private if, for all
S ⊆ Range(K), there is:

Pr[K(T1) ∈ S] ≤ eε × Pr[K(T2) ∈ S] (1)

The parameter ε in Formula (1) is referred to as the privacy budget. The smaller the
value of ε, the higher is the degree of privacy protection provided by the algorithm K. Even
if an attacker obtains all the data except for a specific target record, the attacker still cannot
determine whether records corresponding to a target exist in the original dataset, thereby
realizing privacy protection.

Definition 2 (Sensitivity [33]). For a given query mapping function f , the sensitivity 4 f is
defined as the maximum L1-norm distance between the output of the query mapping function on
neighboring datasets T1 and T2:

4 f = max
T1,T2

‖ f (T1)− f (T2) ‖1 (2)

Definition 3 (The Laplace Mechanism [33]). For numeric queries, the Laplace mechanism
achieves differential privacy protection by incorporating a small amount of independent noise to
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the output of the query mapping function f . Let f (T) represent the result obtained by the query
mapping function f on the original dataset T; then, the query result returned by the Laplace
mechanism can be expressed as K(T) = f (T) + η, wherein η is a continuous random variable
satisfying the Laplace distribution (centered at 0) with scale b, and its probability density function
can be expressed as:

Pr[η = x] =
1
2b

e−
|x|
b (3)

Combined with the definition of sensitivity, the incorporated independent noise
satisfies a zero-mean Laplace distribution of magnitude b = 4 f

ε .

Theorem 1 (Serial Combination Characteristics [34]). For a set of randomized algorithms
{K1, K2, . . . , Kn} on the same dataset T, wherein Ki is an εi-differentially private algorithm
(1 ≤ i ≤ n). Then, their combination {K1, K2, . . . , Kn} is ∑n

i=1 εi differentially private.

Theorem 2 (Parallel Combination Features [34]). If the dataset T is composed of a set of
independent and disjoint subsets {T1, T2, . . . , Tn}, a set of randomized algorithms {K1, K2, . . . , Kn}
are εi differentially private, respectively; then, their combination {K1, K2, . . . , Kn} is max{εi}
differentially private.

Definition 4 (Noise Error). For any querying range Q, the error between the released statistical
results and the original statistical results after privacy protection processing is referred to as the
noise error:

Noise_Error(Q) = |Count(Q)− Count∗(Q)| (4)

wherein Count(Q) represents the statistical result of the original location-based information within
the querying range Q, and Count∗(Q) manifests the statistical result of the published data within
the same area.

Definition 5 (Uniform Assumption Error). Since the 2D space cannot be accurately partitioned
into a single point, the partition and publishing algorithms often assume that the location-based
information within the smallest partition area is uniformly distributed. The range counting querying
error transpired as a result of the uniform assumption estimate is called the uniform assumption error:

Uni_Error(Q) = |
m

∑
i=1

ri · Count(Pi)− Count(Q)| (5)

wherein Pi (i = 1, 2, . . . , m) represents the partition area that intersects with the querying range Q
and satisfies Pi ∩ Pj

1≤i,j≤m
∧

i 6=j
= ∅. ri (i = 1, 2, . . . , m) is the ratio of the intersection of the querying

range Q and the partition area, and Count(Q) represents the statistical result of the original
location-based information within the querying range.

4. The Grid Clustering Algorithm for Location-Based Big Data Statistical Information
4.1. The Problems of Traditional Privacy Spatial Decomposition

Unreasonable partition structure is likely to increase the publishing errors for location-
based big data statistical information. The errors mainly include differential privacy noise
error and uniform assumption error. If the local distribution of location-based big data
has the sparse characteristic as shown in Figure 3a, the accurate statistical value in the
querying range Q1, i.e., the red dotted box is 1. The returned query result after incorporating
differential privacy noise according to Definition 3 is about (3 + 2.6)× 4

9 ≈ 2.5 and which
is closer to the real statistical result. The partition and differential privacy protection
result of the local distribution of location-based big data are portrayed in Figure 3b. The
returned query result within the same range Q1 is about 1 + 6.3 = 7.3 (where 6.3 is the
noise error). From this example, we can observe that, if a partition structure possesses a
large number of empty nodes, i.e., grids with no location-based information, incorporating
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differential privacy noise introduces large noise error and reduces the querying accuracy of
the published results.

(a) (b)

Figure 3. The relationship of sparse data distribution and partition structure. (a) example of sparse
distribution; (b) corresponding partition and range query.

If the local distribution of location-based big data has the uniform characteristic as
depicted in Figure 4a, the accurate statistical value in the querying range Q2, i.e., the
blue dotted box, is 16. The returned query result after incorporating differential privacy
noise is about (148− 7.6)× 1

9 ≈ 15.6 and which is also closer to the real statistical results.
However, for the partition and differential privacy protection result of the corresponding
distribution portrayed in Figure 4b, the returned query result within the same range Q2 is
16− 6.9 = 9.1 (where 6.9 is the noise error). Therefore, the over-partitioning regions with
relatively uniform spatial distribution also leads to a decrease in the precision of range
counting queries.

(a) (b)

Figure 4. The relationship of uniform data distribution and partition structure. (a) example of
uniform distribution; (b) corresponding partition and range query.

If the local distribution of location-based big data has non-uniform characteristics as
portrayed in Figure 5a, the accurate statistical value in querying range Q3, i.e., the green
dotted box, is 3, and the returned query result after incorporating differential privacy noise
is (101+ 11.6)× 1

9 ≈ 12.5. The publishing error between the released and the real statistical
result is relatively high. However, for the partition and differential privacy protection result
of the corresponding distribution depicted in Figure 5b, the returned query result within
the same range Q3 is 3 + 1.1 = 4.1 (where 1.1 is the noise error). It can be observed that,
for areas with non-uniform spatial distribution, under-partitioning causes larger uniform
assumption error and affect the accuracy of range counting queries.
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(a) (b)

Figure 5. The relationship of non-uniform data distribution and partition structure. (a) example of
non-uniform distribution; (b) corresponding partition and range query.

4.2. Proposed Method

In order to overcome the above-mentioned problems during privacy spatial decom-
position, we propose a grid clustering algorithm for location-based big data statistical
information. Firstly, the 2D space covered by the location information is partitioned into
uniform grids in accordance with the minimum size of the range counting querying service
of location-based big data. The number of location points in each grid is counted and used
as the density of the grid. In many practical applications, including but not limited to,
population statistics, traffic statistics, and location based services, statistics are published
by means of range counting [35,36]. Therefore, our preliminary grid partition and statistical
method is in line with practical application scenarios. Secondly, the uniform distribution
judgment condition has been designed for the grid areas in a bid to determine the distribu-
tion characteristics of the non-empty grids. The grid density is graded via discrete wavelet
transform which, therefore, facilitates in achieving coarse clustering of location-based big
data statistical results. Finally, a bottom-up grid clustering algorithm is proposed. The
uniform grid and empty grid belonging to the same level of density are clustered and
merged according to the neighborhood similarity. This, therefore, reduces the noise error
and uniform assumption error in the released statistical results.

Definition 6 (Grid Uniformity). For a grid G with a density of Den(G), let Den(D1), Den(D2),
. . . , Den(Di) be the density of the sub-regions of grid G partitioned from horizontal, vertical,
diagonal, and other directions. If a row vector V = {Den(D1), Den(D2), . . . , Den(Di)} is
constructed, then the distribution uniformity of the grid G can be represented by the variance
Var(V) of vector V. If the following Formula (6) is satisfied, the grid G is said to be a uniformly
distributed grid:

|LFC− log10(
Den(G)

i
)2| ≤ θ (6)

wherein LFC = log10(Var(V)), i is the number of sub-regions after multi-directional segmentation
and θ is the threshold.

Definition 7 (Neighborhood Grid). Let Ci be the center of grid Gi and the distance between
any two grids with shared adjacent edge be 1. If the distance between grids Gi and Gj satisfies the
following Formula (7), the grid Gj is referred to as the neighborhood grid of the grid Gi (as shown in
Figure 6).

dis(Ci, Cj) ≤
√

2 (7)
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Figure 6. Neighborhood grids.

Regions with the same uniformity but having large differences in terms of their density
are not suitable for direct merging. Therefore, we employ the discrete wavelet transform
(DWT) so as to classify the matrix formed via the grids’ density. Subsequently, the grids
of different levels are merged according to the neighborhood similarity to form the final
publishing structure. DWT can decompose a signal into different sub-bands with frequency
and time information in a bid to realize localized and detailed analysis of time or space.
The decomposition process of DWT is depicted in Figure 7. The input signal X(n) is firstly
computed by the low-pass (marked as f _l(n)) and high-pass (marked as f _h(n)) horizontal
filters respectively, and is then down-sampled by a factor of 2. Subsequently, the outputs L1
and H1 are processed by the low-pass and high-pass vertical filters separately, and are again
down-sampled. If necessary, the next-level DWT decomposition can be performed on the
low-frequency coefficients (LL1) of the previous layer DWT according to the same method.
The low-frequency coefficients of the DWT transform contain most of the energy of a signal.
Therefore, the low-frequency coefficients of the density matrix after DWT transform were
selected to carry out the classification of grid density in this paper.

Figure 7. Decomposition process of DWT.

Definition 8 (Grid Density Grading). Let LL refer to the low-frequency coefficients of the original
grid density matrix after the 2D DWT transform. Given two thresholds, T1 = 1

3 LL and T2 = 2
3 LL,

the original grid density matrix can be classified into three levels:

Class(i, j) = {
1 if LL(i, j) ≤ T1
2 if T1 < LL(i, j) ≤ T2
3 if T2 ≤ LL(i, j)

(8)

Algorithm 1 delineates the detailed implementation mechanism of the grid clustering
algorithm proposed in this paper. Lines 1–18 perform uniform grid partition and density
statistics on the 2D space covered by the location dataset. The initial space is segregated
into empty grids (flag = 0), uniform grids (flag = 1) and non-uniform grids (flag = 2) by
uniformity judgement. The uniform grids are further graded via their density. Lines
19–34 complete various types of grid clustering: for uniform grids with flag = 1, the
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neighborhood grids with the same density classification are integrated to form a cluster; for
empty grids with flag = 0, similar clustering and merging are done on adjacent empty grids.
The above operation facilitates in reducing the incorporation of Laplace noise and avoiding
excessive accumulation of noise errors. For non-uniform grids with flag = 2, as discussed
in Section 4.1, a combination of this kind of area causes large uniform assumption errors.
Therefore, we will not cluster these type of grids via our proposed algorithm. Lines 35–36
return the final cluster structure matrix. Figure 8 portrays the results of the proposed grid
clustering algorithm by taking the location dataset, Storage, as an example (different colors
are used to represent different clusters).

Algorithm 1 Grid clustering algorithm.

Require: Location-based dataset D; partition granularity m; uniformity threshold θ; den-
sity grading threshold T1 and T2;

Ensure: Cluster structure matrix CSM; grid density matrix Den;
1: Partition the 2D space of location-based dataset D into m×m uniform grids
2: Den(i, j)=0, f lag(i, j)=0, Class(i, j)=0, uni_G(i, j)=0, null_G(i, j)=0, (i, j = 1, 2, ..., m)
3: for each grid do
4: Den(i, j)←− calculate the density of current grid
5: if Den(i, j) = 0 then
6: f lag(i, j) = 0
7: else
8: if uniformity of the current grid satisfies Formula (6) then
9: f lag(i, j) = 1

10: else
11: f lag(i, j) = 2
12: end if
13: end if
14: end for
15: cA←− complete DWT transform on Den and get the low-frequency coefficients
16: for each grid with f lag=1 do
17: Class(i, j)←− grid density grading according to Formula (8)
18: end for
19: for each uniform grid with f lag=1 do
20: for each class within Formula (8) do
21: if the current grid’s neighborhood grid satisfies Definition (7) then
22: uni_G ←− set the connected grid with the label of the current grid
23: else
24: uni_G ←−mark the current grid as a new sequence number
25: end if
26: end for
27: end for
28: for each empty grid with f lag=0 do
29: if the current grid’s neighborhood grid satisfies Definition (7) then
30: null_G ←− set the connected grid with the label of the current grid
31: else
32: null_G ←−mark the current grid as a new sequence number
33: end if
34: end for
35: CSM←−merge the matrix uni_G and null_G
36: return CSM, Den
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(a) (b)

(c) (d)

Figure 8. Grid partition and clustering process of Storage dataset. (a) grid partition; (b) density
matrix; (c) coefficient matrix after DWT; (d) grid clustering result.

5. Statistical Publishing and Differential Privacy Protection Algorithm

In order to realize the privacy protection of the published location-based big data, it
is necessary to allocate the differential privacy budget according to the spatial indexing
structure and incorporate disturbance noise into the statistical results of each spatial region.
Algorithm 2 depicts the differential privacy preserving publishing process of location-
based big data. Firstly, according to Algorithm 1, the distribution structure of the whole
space is obtained. Then, the statistical results within each cluster are calculated, and the
Laplacian noise with a privacy budget of ε is incorporated into the statistical results of
each cluster. Finally, the noisy statistical results will be evenly allocated to each grid region
according to the number of grids within the cluster in a bid to balance the noise error and
the uniform assumption error and improve the usability of the published statistical results.
Figure 9 portrays the schematic of the grid partition structure and the clustering process,
wherein Figure 9a suggests the type of the underlying grid with red numbers (i.e., flag = 0
correspond to the empty grids, flag = 1 represent the uniform grids, and flag = 2 stand for
the non-uniform grids). Only adjacent empty grids or uniform grids possessing the same
density level can be integrated to form the grid clusters. Hence, neither the non-uniform
grids nor the uniform grids with different density levels can be merged to reduce the
uniformity assumption error.

(a) (b)

Figure 9. Illustration of the grid clustering result and the spatial indexing structure. (a) supposed
grid clustering result; (b) correspondent spatial indexing structure.
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Algorithm 2 Differential privacy preserving publishing algorithm.

Require: Cluster structure matrix CSM; grid density matrix Den; privacy budget ε; Sensi-
tivity S;

Ensure: Publish statistical result based on grid Den∗;
1: Den∗(i, j)=0
2: n←− calculate the number of clusters according to CSM
3: for each cluster do
4: u←− calculate the number of grids within the current cluster
5: sum_Den←− sum the density of the u grids according to Den
6: noisy_sum = sum_Den + Laplace( S

ε )
7: Den∗(i, j) = noisy_sum/u
8: end for
9: return Den∗

Corollary 1. Algorithm 2 can provide ε-differential privacy protection for the published location-
based big data statistical results.

Proof. For any querying range Q submitted by a user, the range counting query has the
following use cases:

(1) The querying range Q located within the area covered by a certain cluster as
depicted in Figure 10a. According to the grid clustering Algorithm 1 proposed in this paper,
the querying range Q may be included in a single underlying grid or in a region merged
by multiple underlying grids. In the former situation, it can be concluded that this single
underlying grid is a non-uniform grid and forms a cluster alone.Therefore, Algorithm 2
incorporates Laplace noise in this grid with a differential privacy budget of ε. In the latter
situation, Algorithm 2 incorporates Laplace noise to the merged region with a differential
privacy budget of ε. According to the parallel combination characteristics of the differential
privacy model described in Theorem 2, each grid that falls in the merged region satisfies
the differential privacy protection of max{εi} = ε.

(2) The querying range Q consists of the area covered by A (A ≥ 1) complete clusters
as depicted in Figure 10b. In this case, each cluster conforms to the first use case described
above. Therefore, according to the parallel combination characteristics of the differential
privacy model described in Theorem 2, all the A complete clusters included in the querying
range Q can provide differential privacy protection of max{εi} = ε.

(3)The querying range Q consists of the area covered by B (B ≥ 1) intersecting clusters
as depicted in Figure 10c. In this case, each of the intersecting area conforms to the case (1)
and can also provide differential privacy protection with a strength of ε.

(4) The querying range Q consists of area covered by A (A ≥ 1) complete clusters and
B (B ≥ 1) intersecting clusters, as depicted in Figure 10d. For the complete clusters falling
in the querying range Q, each cluster can provide ε differential privacy protection similar
to use case (2). For the clusters intersected with the querying range Q, the intersected
region conforms to use case (3) and provide ε differential privacy protection. Therefore, it
can also provide differential privacy protection of ε according to the parallel combination
characteristics of the differential privacy model.

Based on the above use cases, we can draw the conclusion that Algorithm 2 can
provide differential privacy protection of ε for the published location-based big data
statistical results.



ISPRS Int. J. Geo-Inf. 2022, 11, 404 12 of 21

(a) (b) (c) (d)

Figure 10. Three use cases of the querying range Q. (a) Use case (1); (b) Use case (2); (c) Use case (3);
(d) Use case (4).

6. Experiments and Analysis

In order to comprehensively evaluate the proposed grid clustering and differential
privacy protection publishing algorithm (GCDPP) for location-based big data statistical
information, we compare and analyze the proposed algorithm with a number of clas-
sical privacy spatial decomposition algorithms in terms of the availability of published
location-based big data statistical results, efficiency of the privacy protection publishing
algorithm, and the influences of partition granularity. The baseline methods include, but
are not limited to, uniform grid partition method (UG) [11], adaptive grid partition method
(AG) [11], standard deviation circle radius adaptive grid decomposition algorithm (SD-
CAG) [14], quadtree partition method (Quad-opt) [17], density-based quadtree partition
method (DBP) [19], and unbalanced quadtree partition method (unbalanced quadtree) [20].

Experimental location-based datasets include the facility location information datasets,
Storage http://www.infochimps.com/datasets/storage-facilities-by-neighborhood-2, ac-
cessed on 1 January 2022, and Landmark http://www.infochimps.com/datasets/storage-
facilities-by-landmarks, accessed on 1 January 2022, provided by Infochimps; Checkin
http://snap.stanford.edu/data/loc-gowalla.html, accessed on 1 January 2022, which pro-
vides location information from the social network site, Gowalla; and Taxi record dataset,
Yellow_trip (2009–2016) https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page,
accessed on 1 January 2022, provided by the New York City Taxi Management Committee.
The experimental platform selects the Alibaba Cloud Server ECS (ecs.r6.2xlarge: 8-core
CPU, 64 GB memory, 100 GB ESSD cloud disk, Windows Server 2019 Data Center Edition
64-bit), and all the algorithms are programmed in MATLAB.

6.1. Availability Analysis of the Published Location-Based Big Data Statistical Results

According to the application scenarios of location-based big data, the accuracy of
the range counting query has been employed to ascertain the availability of location-
based big data statistical publishing results. Range counting queries of different sizes are
implemented on the published results and compared with the baseline methods.

For parameter settings of the baseline algorithms, we refer to their corresponding
literature. Specifically, for the Storage dataset, the UG algorithm sets the constant parameter
c = 10, the AG and SDCAG algorithm employ the privacy allocation ratio of α = 0.5, the
Quad-opt algorithm adopts the partition depth of h = 6, the DBP algorithm set maximum
density difference β = 5, and Unbalanced quadtree algorithm use the uniformity judgment
threshold of θ = 0.01. The sensitivity of range counting query caused by incorporating
differential privacy noise is S = 1. For the other three big datasets, the constant parameter
was set to c = 1000 for the UG algorithm, division depth to h = 8 for the Quad-opt algorithm,
and other parameters remained unchanged. The information pertinent to range counting
queries of different sizes is depicted in Table 1. The differential privacy model incorporates
Laplace noise with privacy budgets of ε = 0.01, ε = 0.1, and ε = 1. Each type of query
was randomly generated for 1000 times to ascertain the average relative error between the
original and published statistical results. The definition of relative error is presented in For-
mula (9), wherein Q represents the querying range, Count(Q) returns the statistical result

http://www.infochimps.com/datasets/storage-facilities-by-neighborhood-2
http://www.infochimps.com/datasets/storage-facilities-by-landmarks
http://www.infochimps.com/datasets/storage-facilities-by-landmarks
http://snap.stanford.edu/data/loc-gowalla.html
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page


ISPRS Int. J. Geo-Inf. 2022, 11, 404 13 of 21

obtained within the querying range on the original location-based dataset, and Count∗(Q)
is the noisy statistical result obtained on the published dataset within the same range Q. In
order to prevent the denominator from being zero, we set ρ = 0.001× |T| according to the
UG algorithm [11], wherein |T| represents the size of the location-based dataset.

Table 1. Experimental datasets and querying range information.

Parameter Storage Landmark Checkin Yellow_trip

Data amount
(points) 8938 870,052 1,000,000 10,996,214

Dataset coverage
(longitude×latitude) 53◦ × 23◦ 57◦ × 25◦ 353◦ × 143◦ 1◦ × 1◦

Querying range
(longitude×latitude)

q1 1.25◦ × 0.625◦ 1.25◦ × 0.625◦ 6◦ × 3◦ 0.02◦ × 0.02◦

q2 2.5◦ × 1.25◦ 2.5◦ × 1.25◦ 12◦ × 6◦ 0.04◦ × 0.04◦

q3 5◦ × 2.5◦ 5◦ × 2.5◦ 24◦ × 12◦ 0.08◦ × 0.08◦

q4 10◦ × 5◦ 10◦ × 5◦ 48◦ × 24◦ 0.16◦ × 0.16◦

q5 20◦ × 10◦ 20◦ × 10◦ 96◦ × 48◦ 0.32◦ × 0.32◦

q6 40◦ × 20◦ 40◦ × 20◦ 192◦ × 96◦ 0.64◦ × 0.64◦

RE(Q) =
|Count∗(Q)− Count(Q)|

max{Count(Q), ρ} (9)

Figures 11–14 portray the comparison of querying accuracy, i.e., in terms of relative
error, on different datasets and privacy budgets. On the same experimental dataset, the
relative error of all the algorithms gradually decreases with an increase in the privacy
budget ε. The primary reason is that the increase in the privacy budget ε reduces the
incorporated Laplace noise, thereby shrinking the error between the published result and
the real statistical value. For all the datasets, as the querying range increases from small to
large, the relative error first increases and then decreases. This is mainly because, when
the querying range is small (e.g., of size q1 and q2), the included areas only contain some
underlying grids or merged cluster areas, and, therefore, the accumulated noise interference
is small, thereby making the querying error relatively low. When the querying range is
large (e.g., of size q5 and q6), the included areas contain more regions belonging to different
clusters, and, therefore, the uniformity assumption error is small, thereby making the
overall querying error relatively low.

When we compare the relative errors of various privacy preserving publishing algo-
rithms on the same dataset, it can be observed that the UG and Quad-opt algorithm have
higher relative errors in contrast to the others under various privacy budgets. The reason is
that the spatial partition process of these two algorithms has nothing to do with the spatial
distribution of location-based information, which not only produces more empty nodes and
noise errors but also introduces more uniform assumption error owing to the non-uniform
distribution of the nodes. The AG algorithm performs an additional fine-grained partition
for the dense grids on the basis of the UG algorithm. However, it still cannot overcome
the large number of noise errors caused by the empty nodes in areas with sparse location
distribution. Therefore, the relative error of the AG algorithm is low when the querying
range is small and the value deteriorates when the querying range is large. In the SDCAG
algorithm, filtering and bucketing are used to reduce the noise error. Therefore, it provides
better accuracy of range counting query than the AG algorithm. The DBP and Unbalanced
quadtree algorithm implements a heuristic quadtree partition according to the uniformity
of the location distribution, thereby compensating the uniformity assumption error and
the noise error caused by the empty nodes to a certain extent. The proposed GCDPP
algorithm adopts the strategy of bottom-up neighborhood clustering. The initial uniform
grid partition takes into account the need for small-scale counting query services and
retains a better accuracy of location services. The bottom-up neighborhood grid clustering
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reduces the excessive partition of sparse regions and suppresses excessive noise errors. In
addition, it further facilitates merging the uniform regions of the same density level and
apportions the differential privacy noise. Therefore, the proposed algorithm achieves better
querying accuracy in contrast to the other algorithms under different datasets and different
privacy budgets.
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Figure 11. Comparison of querying accuracy on Storage dataset. (a) Storage dataset, ε = 0.01;
(b) Storage dataset, ε = 0.1; (c) Storage dataset, ε = 1.
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Figure 12. Comparison of querying accuracy on Landmark dataset. (a) Landmark dataset, ε = 0.01;
(b) Landmark dataset, ε = 0.1; (c) Landmark dataset, ε = 1.
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Figure 13. Comparison of querying accuracy on Checkin dataset. (a) Checkin dataset, ε = 0.01;
(b) Checkin dataset, ε = 0.1; (c) Checkin dataset, ε = 1.
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Figure 14. Comparison of querying accuracy on Yellow_trip dataset. (a) Yellow_trip dataset, ε = 0.01;
(b) Yellow_trip dataset, ε = 0.1; (c) Yellow_trip dataset, ε = 1.

6.2. Efficiency Analysis of the Privacy Protection Publishing Algorithm

Table 2 compares the time complexity of the proposed GCDPP algorithm with the
baseline methods. For a dataset encompassing n records, whilst the UG, AG, and SDCAG
algorithm have the same time complexity of O(n), the partition process of the UG algorithm
only scans the input data for one time, whereas the AG and SDCAG algorithm scan the
input data for at least two times to form a two-layer adaptive grid partition. The Quad-
opt algorithm performs a recursive quadtree partition on the input dataset. The overall
time complexity is about O(n log(n)). The partition process of the DBP and Unbalenced
quadtree algorithm is related with the specific distribution of location-based dataset and
partition depth of quadtree. In the worst scenario, for a location-based dataset with n
records and h partition depth, the time complexity of these two algorithms will be O(hn).
The proposed GCDPP algorithm first performs the same partition as the UG algorithm,
and then merges the neighbourhood grids of the same type and density grade to form the
clusters. Its time complexity is about O(n + n) ≈ O(n).

Table 2. Comparison of time complexity.

Algorithm Time Complexity

UG O(n)

AG O(n)

SDCAG O(n)

Quad-opt O(nlog(n))

DBP O(hn)

Unbalanced quadtree O(hn)

GCDPP O(n)

Figure 15 depicts the comparison in the execution time of all the privacy protection
algorithms on real location-based datasets. The parameter settings of these algorithms are
the same as those in Section 6.1. Since the strength of differential privacy budget has no
significant effect on the execution time of the statistical publishing algorithms, we take
ε = 1 as an example to conduct the experimental comparisons on the real location-based
datasets of different scales. From a macro perspective, the overall execution time of all
the algorithms increase with the size of the dataset. Specifically, the UG algorithm has the
lowest execution time and is hardly affected by the size of the dataset. The AG and SDCAG
algorithm perform an additional round of grid partition on the basis of the UG algorithm,
and, therefore, they take a much longer time. In order to reduce the noise error, the SDCAG
algorithm filters the grids with a raw count of 0 and allocates the similar grids into the same
bucket. Thus, the overall execution time is slightly higher than the AG algorithm. Although
the partition process of the Quad-opt algorithm does not consider the specific distribution
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state of the location information, the tree-based iterative process using depth-first traversal
is primarily affected by the size of the dataset. Therefore, the overall execution time of the
Quad-opt algorithm is significantly higher than other algorithms. The partition process
of the DBP and Unbalanced quadtree algorithm need to be combined with the specific
distribution of the location information. In the areas wherein the location distribution is
particularly sparse or dense, they can avoid unnecessary partition. Therefore, they received
better performance on the sparse dataset Storage and the dense dataset Yellow_trip. The
proposed GCDPP algorithm firstly implements the uniform grid partition stage and then
performs bottom-up neighborhood grid clustering. The grid-based clustering accelerates
the merging of the spatial regions and saves much time compared to the process of adaptive
grid partition and filtering. Thus, the execution time of the GCDPP algorithm is only
secondary to the UG algorithm. It can be expected that, with an increasing in the size of
dataset, the advantage of the proposed GCDPP algorithm will be more obvious.
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Figure 15. Comparison of operating efficiency of various algorithms under different datasets. (a) Stor-
age dataset, ε = 1; (b) Landmark dataset, ε = 1; (c) Checkin dataset, ε = 1; (d) Yellow_trip dataset,
ε = 1.

6.3. The Influences of Partition Granularity

As discussed in Section 4.1, traditional privacy spatial decomposition methods are
easily affected by partition granularity, resulting in over-partitioning or under-partitioning
problems that not only impair the availability of published data but may also drag down
the efficiency of the entire data publishing algorithm. This section analyses the relation-
ships between partition granularity setting, accuracy of published results, and publishing
algorithm efficiency. Since the privacy budget strength has no obvious effect on the setting
of partition granularity, we take ε = 1 as an example to analyze the average error of the
published statistical results with different partition granularities. For the sake of fairness,
we keep the initial partition granularity of all the comparison algorithms basically the same.
The average error of the published statistical results can be expressed as follows:
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AE =
∑N

i=1 |Den∗i − Deni|
|T| (10)

wherein N is the initial partition granularity of the location-based dataset, and |T| represents
the size of the dataset. Deni stands for the original density of grid i, whereas Den∗i returns
the published density of the corresponding area.

Figure 16 portrays the average error of all the algorithms under different partition
granularity. It can be observed that, with an increase in the partition granularity, the average
error of the tree-based partition algorithms grows gradually, whereas the average error of
the grid-based partition algorithms do not change obviously. The primary reason is that,
when the partition granularity is small, the coverage area of a single grid will be large and
the published statistical result may contain more non-uniform assumption errors due to the
inhomogeneous distribution of data within the region. Nevertheless, the introduced noise
error will be small because of the less number of empty grids. With an increase in partition
granularity, the coverage area of each grid will be reduced. The non-uniform assumption
error for the grid area will decrease, whereas the total noise error will increase because the
number of empty grids may increase. The proposed algorithm achieves the lowest average
error on almost all experimental datasets demonstrating the advantage of the proposed
algorithm in the availability of the published statistical result.
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Figure 16. Partition granularity vs. average error. (a) Storage dataset, ε = 1; (b) Landmark dataset,
ε = 1; (c) Checkin dataset, ε = 1; (d) Yellow_trip dataset, ε = 1.

Intuitively, the execution time of partition algorithms will increase with the size of
dataset and partition granularity. Figure 17 depicts the execution time of all the algorithms
under different partition granularity. The partition progress of UG algorithm is independent
of the distribution of dataset, so it always maintains the lowest execution time and hardly
changes with the change of the partition granularity. For the other algorithms, the execution
time increases significantly with the partition granularity. The execution time of the AG and
SDCAG algorithms is slightly longer than that of the UG algorithm. With an increase in a
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dataset’s scale and distribution complexity, the efficiency of these two algorithms gradually
deteriorates, especially for the largest and most complex dataset Yellow_trip. For the
tree-based partition algorithms, the increase of partition gradually causes more recursive
operations and uniformity judgments; therefore, the execution time of these algorithms
suffers significantly. While the proposed GCDPP algorithm maintains the independent
grid partition just as the UG algorithm, its bottom-up grid clustering process overcomes
the excessive recursive operations. Therefore, with an increase in partition granularity,
the proposed algorithm is still better than the other algorithms. It is foreseeable that the
advantages of the proposed algorithm will be more obvious in the case of location-based
dataset with larger scale and more complex distribution.
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Figure 17. Partition granularity vs. execution time. (a) Storage dataset, ε = 1; (b) Landmark dataset,
ε = 1; (c) Checkin dataset, ε = 1; (d) Yellow_trip dataset, ε = 1.

7. Conclusions

The rapid development of big data technology and the widespread popularization
of mobile smart terminals has made various location-based services highly relevant to
the work and life of users. Accordingly, the issues of location privacy leakage caused
by the release of location-based big data statistics have started attracting widespread
attention. Achieving the release of statistics of location-based information via the spatial
decomposition method and the differential privacy protection model can effectively avoid
various risks caused by location privacy leakage on the premise of ensuring data availability.
In order to reduce the loss of data availability caused by over-partitioning and under-
partitioning in the traditional top-down spatial decomposition method, this paper proposed
a bottom-up grid clustering and differential privacy protection publishing method. The
accuracy of location-based services is met through uniform grid partition and density
statistics. Privacy protection of the published data is achieved by incorporating Laplace
noise to location-based big data statistics according to the differential privacy model. The
merging of the blank areas and the uniform distribution areas has been realized by the
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neighborhood grid clustering in order to reduce the noise error and the uniform assumption
error. Experiments and analysis on the real location-based datasets prove that the proposed
grid clustering and differential privacy publishing method have obvious advantages in
improving the range querying accuracy and operating efficiency.

However, the research still has some limitations. Firstly, most of the existing spatial
partition methods of location big data are based on grid or tree structures. However, the
areas where human actually work and live are primarily closely related to the distribution
of infrastructure and cannot be well represented by grids or tree structures. Geographic
segmentation methods such as road network structures did not have effective index meth-
ods and cannot achieve efficient querying services for location-based big data. Therefore,
how to design more detailed and flexible partition method combined with efficient index
structure will facilitate improving the availability of published results and is one of our
future works. Secondly, the paper only focuses on the statistical partitioning and publishing
of static location-based big data. However, a user’s location continuously and randomly
changes over time. The dynamic changes of the locations of large number of users make
the spatial partition structure of the previous statistical release time not applicable to the
next release time. Therefore, how to design a statistical partition and publishing method
combined with the dynamic change of location big data, and enhance the timeliness and
practicability of published statistical results under the premise of ensuring users’ privacy,
will be a further research direction. Finally, the paper discusses the statistical publishing
method of location-based big data based on the centralized differential privacy model.
The premise is that users’ locations are collected and statistically released via a trusted
third-party. However, there is no completely reliable platform in practical applications.
Problems such as technical failures, superuser leaks, and hacker attacks make the users’
original locations in danger. Therefore, transferring the privacy protection process of users’
locations to the their terminals and realizing local differential privacy location protection
have become the research hotspot in recent years.
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