
Citation: Wang, L.; Jin, G.; Xiong, X.;

Zhang, H.; Wu, K. Object-Based

Automatic Mapping of Winter Wheat

Based on Temporal Phenology

Patterns Derived from Multitemporal

Sentinel-1 and Sentinel-2 Imagery.

ISPRS Int. J. Geo-Inf. 2022, 11, 424.

https://doi.org/10.3390/

ijgi11080424

Academic Editors: Wolfgang Kainz,

Giuseppe Modica and

Maurizio Pollino

Received: 16 June 2022

Accepted: 20 July 2022

Published: 26 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Object-Based Automatic Mapping of Winter Wheat Based
on Temporal Phenology Patterns Derived from Multitemporal
Sentinel-1 and Sentinel-2 Imagery
Limei Wang , Guowang Jin *, Xin Xiong, Hongmin Zhang and Ke Wu

Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China;
20162017@nynu.edu.cn (L.W.); xiongxinhbhh@163.com (X.X.); zhmin1206@163.com (H.Z.);
wk187399@163.com (K.W.)
* Correspondence: jytwlm@nynu.edu.cn; Tel.: +86-19513314582

Abstract: Although winter wheat has been mapped by remote sensing in several studies, such
mapping efforts did not sufficiently utilize contextual information to reduce the noise and still
depended heavily on optical imagery and exhausting classification approaches. Furthermore, the
influence of similarity measures on winter wheat identification remains unclear. To overcome
these limitations, this study developed an object-based automatic approach to map winter wheat
using multitemporal Sentinel-1 (S1) and Sentinel-2 (S2) imagery. First, after S1 and S2 images were
preprocessed, the Simple Non-Iterative Clustering (SNIC) algorithm was used to conduct image
segmentation to obtain homogeneous spatial objects with a fusion of S1 and S2 bands. Second, the
temporal phenology patterns (TPP) of winter wheat and other typical land covers were derived from
object-level S1 and S2 imagery based on the collected ground truth samples, and two improved
distance measures (i.e., a composite of Euclidean distance and Spectral Angle Distance, (ESD) and the
difference–similarity factor distance (DSF)) were built to evaluate the similarity between two TPPs.
Third, winter wheat objects were automatically identified from the segmented spatial objects by the
maximum between-class variance method (OTSU) with distance measures based on the unique TPP
of winter wheat. According to ground truth data, the DSF measure was superior to other distance
measures in winter wheat mapping, since it achieved the best overall accuracy (OA), best kappa
coefficient (Kappa) and more spatial details for each feasible band (i.e., NDVI, VV, and VH/VV),
or it obtained results comparable to those for the best one (e.g., NDVI + VV). The resultant winter
wheat maps derived from the NDVI band with the DSF measure achieved the best accuracy and
more details, and had an average OA and Kappa of 92% and 84%, respectively. The VV polarization
with the DSF measure produced the second best winter wheat maps with an average OA and
Kappa of 91% and 80%, respectively. The results indicate the great potential of the proposed object-
based approach for automatic winter wheat mapping for both optical and Synthetic Aperture Radar
(SAR) imagery.

Keywords: winter wheat mapping; multitemporal remote sensing images; image segmentation;
object-based approach; similarity measure; OTSU; optical imagery; SAR imagery

1. Introduction

Wheat is one of the most important and widely distributed crops in the world, with
the highest yield and sown area. About one-third of the world’s population feeds on it [1].
It is mainly sown in the temperate zone of the northern hemisphere, which accounts for
more than 90% of global wheat production [2]. China, Russia, and the United States are the
major wheat producers, accounting for about fifty percent of the global output [3]. Under
the pressures of climate change, urban expansion, and geopolitical conflicts, the sown area
of winter wheat is changing at different spatial and temporal scales [4–6]. The resulting
food supply crisis and the sharp rise in international wheat prices pose a massive threat to
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the regional and global economy and food security. Aside from its socioeconomic function,
as one of the largest agricultural ecosystems in the world, wheat plays an essential role
in the water cycle, carbon budget, and soil biochemistry [7–9]. The timely and accurate
monitoring of wheat sowing information is important to global food security, the social
economy, and the environment.

Remote sensing-based crop mapping has been studied for several decades over the
world. These studies use various remote sensing images and classification approaches
based on crop-specific signatures to map crops. Some studies directly use the spectral
bands, vegetation index (VI) values, or a combination thereof during the crop phenological
period as the primary inputs for rule-based classification such as decision trees [10–12].
Shape features (e.g., curve slope, the second derivative, curve amplitude) and phenological
metrics (e.g., start of the season, end of the season, season length, fastest growth, peak
growth, fastest drying) extracted from the VI temporal patterns by Fourier transforms,
curve-fitting functions, Whitkett filters, logistic/sigmoid functions, or a combination thereof
are widely used for supervised and unsupervised classification methods [13–15]. Texture is
a kind of context information often used in crop classification. Commonly used algorithms
for texture feature extraction include the gray level concurrence matrix (GLCM), Markov,
the Kalman filter, the Gabor filter, wavelet transform, etc. These methods can be used
to process optical and synthetic aperture radar (SAR) imagery either directly or through
improvements [16]. A common way to classify crops is by fusing the texture features of an
SAR image with the spectral VI features of an optical image [17]. Although the efficiency
of texture features for different remote sensing data and different application scenarios is
still quite uncertain, many studies have indicated that the addition of texture information
indeed improves the classification accuracy to a certain extent [18]. Image segmentation
is another way to utilize context information and reduce the noise in crop classification.
Some studies use object-based classification methods to extract a crop’s sown area based on
segmented objects [19]. Although the object-based approach can reduce the salt-and-pepper
noise in the classification maps [20], the classification accuracy is greatly affected by the
segmentation accuracy. The segmentation error may lead to totally wrong classification
results. To avoid this problem, some studies use superpixel segmentation to generate
over-segmented objects, which can suppress noise and improve classification accuracy [21].

Classification is the most applied method for crop mapping. The decision tree classifier
relies on a lot of manual interpretation and analyses of the VI, spectral bands, or other
temporal patterns of different land cover types, from which the detailed rules for the
extraction of target crops are established [22]. This process is often inseparable from
professional knowledge and experience and requires a lot of human labor. When this
set of rules is applied to the cross-time and cross-space tasks, the original rules may be
invalid because of the skewing of feature curves resulting from the environmental changes
such as precipitation, drought, farmland management, cloud-related noises, etc. Therefore,
new rules must be established repeatedly. Random forests (RF), support vector machines
(SVM), spectral angle mapping (SAM), and the maximum likelihood classifier (MLC) are
the most commonly used supervised classifiers [23–25]. Supervised classification often
requires many training samples to train the classifier. The training samples are generally
obtained by fieldwork and visual interpretation, bringing a big workload and limiting the
spatio-temporal transferability of the supervised methods. At the same time, the collected
samples in a given year cannot be used for another year’s classification. This is mainly
due to changes in the planting structure and the surface landscape across years, so the
training samples must be collected repeatedly, resulting in low cross-year repeatability
and the high cost of human labor. K-means, the iterative self-organizing data analysis
techniques algorithm (ISODATA), fuzzy C-means (FCM), and change vector analysis (CVA)
are unsupervised classification methods that are commonly used [26–28]. Although it is
not necessary to train the classifier using many training samples for unsupervised methods,
much post-classification work is unavoidable in order to obtain qualified results.
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In both supervised and unsupervised classifications, the classification accuracy is
greatly affected by the similarity measures. The similarity between two samples is often
estimated by the distance measures and similarity measures [29,30]. The algorithm used to
calculate the distance and similarity even determines whether the classification is correct or
not. Euclidean distance (ED) is a commonly used definition that refers to the actual distance
between two points in n-dimensional space or the natural length of a vector. It is widely
used to measure the distance between two vectors to represent their similarity [31]. ED is
easily affected by the vector dimension and the correlation of characteristic parameters.
Spectral angle cosine distance (SAD) [32] evaluates the similarity of two vectors by calculat-
ing the cosine of their included angle, representing the relative difference in direction. SAD
would consider the samples (1,10,100) and (10,100,1000) to be pretty similar, but obviously,
the two samples are pretty different. Different measures have their own characteristics
and advantages, and understanding these measures can help us deal with or optimize
the problems encountered in these fields. The current crop classification research mainly
focuses on feature engineering and classification algorithm, but there are few investigations
and analyses on distance and similarity measures.

Over the past ten years, remote sensing images of various spectral, spatial, and
temporal resolutions have been used to identify specific crops using the spectral bands,
time-series VI values, phenological metrics, or a combination of several features. Optical
satellite images are primarily used [33–35], including the medium-resolution imagery
(e.g., Terra MODIS, Aqua MODIS, NOAA/AVHRR, SPOT-VEGETATION), high-resolution
images such as Landsat, ASTER NDVI, Sentinel-2 (S2), SPOT, and very high-resolution
images (e.g., Gaofen-1 WFV, IKONOS, Worldview III). SAR imagery such as Sentinel-1
(S1), Radarsat-2, TerraSAR-X, and Gaofen-3 have also been used in crop classification and
mapping studies [36,37], but far from the level that optical images have been used. Previous
studies [38–42] show that the supervised classifiers and rule-based decision trees at the
pixel-level are the primarily used methods for mapping winter wheat mainly based on
optical remote sensing images and training samples by fieldwork and visual interpretation.

In this study, two study sites were selected in Nanyang city in Henan Province because
Henan Province is China’s largest wheat producer, accounting for about a quarter of the
country’s wheat production. Automatic winter wheat mapping using satellite remote
sensing data remains a challenge in Henan due to the heterogeneous and fragmentary
agricultural landscape, a high probability of cloudy weather over a year, and the similar
phenology patterns of winter wheat to those of other vegetation classes and other crops.
In response to these problems, we developed an automatic object-based approach to map
winter wheat in the study areas.

2. Study Areas and Ground Truth Data
2.1. Study Areas

Nanyang city (110◦58′–113◦49′ E, 32◦17′–33◦48′ N) is located in the southwest of
Henan Province in the central part of China, and is the most significant agricultural city in
Henan with the largest land area and population. Nanyang has the most wheat-sown area
in Henan, and the total wheat output accounts for 10 percent of China’s total output. In most
areas of Nanyang, the wheat–corn rotation is the dominant farming system throughout
the year. Winter wheat is planted in October and harvested in May–June of the following
calendar year. After the winter wheat harvest, corn will be sown in early June and harvested
in late September in the same calendar year. Because the corn has a short growing cycle
and is intolerant to cold, the overwintering field crops are almost all wheat, with only a
tiny proportion of crops such as winter rapeseed. In this work, two study areas are used to
illustrate the effectiveness of the proposed method.

The first study site (Site 1) is in the Wancheng district (Figure 1). The primary land
covers include the built-up land, cultivated land, the woodland, water bodies, and others
(Table 1). The woodland area is small and mainly includes four types: evergreen woodland,
deciduous woodland, orchard, and flowers. Water-related features are mostly small in size
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and easily form mixed ground objects with surrounding vegetation, and mainly show the
characteristics of mixed pixels in remote sensing images. Cultivated land covers more than
90% of the area, and winter wheat is the primary field crop. There is also a large amount of
unsown farmland, which is set aside for planting peanuts in late April. In addition, a small
amount of farmland is planted with woodland and flowers. In this site, various types of
woodland and water-related objects that are small in area are the main factors decreasing
the accuracy of winter wheat identification.
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Figure 1. Location of the study sites and the ground truth: (a) Location of the two sites; (b,d) The
ground truth samples overlayed on a false-color composite image (Red: NIR, Green: Red, Blue:
Green), and (c,e) the ground truth parcels of main land cover types.

The second study site (Site 2) is in Fangcheng county (Figure 1). In this study site,
winter wheat and winter rapeseed are the dominant crops in overwintering. Aside from
the rapeseed and built-up area, there is also a large amount of unsown farmland, which is
set aside for planting peanuts in late April. Given that the phenological periods of winter
wheat and winter rapeseed overlapped to a certain extent and their temporal phenology
patterns (TPP) are pretty similar, rapeseed is a crucial factor for decreasing the accuracy of
winter wheat identification in this area. Therefore, the main purpose of selecting this study
site is to examine the effectiveness of the proposed method in distinguishing winter wheat
from winter rapeseed.

2.2. Ground Truth Data

A field survey and the interpretation of human–computer interactions are adopted
to obtain ground truth data. Firstly, a field survey was carried out in the spring of 2020
(March to May) in the study areas. Orvey map software was used to record the field
locations of sampling points and take photos (Table 1), and the representative samples
of various land covers were obtained (Figure 1). Then, the ground truth parcel maps
(Figure 1) of various land covers in both study sites were drawn using QGIS software.
Based on field sampling points, Google Earth imagery, Sentinel-2 color-composite images
in March 2020, and NDVI time series maps, a Semi-Automatic Classification Plugin (SCP)
of QGIS was used [21] to obtain the parcels of various land covers in the study areas in



ISPRS Int. J. Geo-Inf. 2022, 11, 424 5 of 22

2020 using the semi-supervised classification algorithm. For classifying the mixed pixels,
the ‘minimum distance’ classification algorithm in SCP was first used to obtain the initial
parcel boundaries, and then the boundaries were manually adjusted by referring to high-
resolution images from Google Earth and Sentinel-2 color-composite images to classify
the mixed pixels into the most likely category. The resultant parcel maps produced by the
QGIS were taken as the ground truth maps to evaluate the accuracy of the resultant winter
wheat maps in the study areas.

Table 1. Photos of representative land cover types taken during the field survey.

Date Winter Wheat Winter Rapeseed Unsown Peanut Orchard Woodland

15 March
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3. Methodology

We developed an automatic object-based approach to map winter wheat in the study
areas (Figure 2). First, image segmentation was conducted based on the fusion of optical
and SAR imagery to obtain the homogeneous spatial objects. Then, an automatic classi-
fication approach was introduced into winter wheat mapping. The proposed similarity
measures were evaluated by comparing them with the commonly used measures. Finally,
the effectiveness of optical images, SAR images, as well as SAR–optical image fusion in
winter wheat classification was systematically studied and analyzed.
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3.1. Remote Sensing Images and Preprocessing

The COPERNICUS/S2_SR collection available on Google Earth Engine (GEE) is used
in this study. Each scene contains 12 spectral bands representing surface reflectance (SR)
scaled by 10,000 with a spatial resolution of 10 m, 20 m or 60 m. In addition, three QA
bands are present, with one (QA60) being a bitmask band with cloud mask information.
The S2 images needed for this study were preprocessed using the following steps (Figure 3):
(1) Image selection. The COPERNICUS/S2_SR collection was screened by setting the study
time interval (i.e., 1 October 2019 to 1 July 2020) and the study areas, and ten spectral bands
were selected for use (Table 2); (2) Pansharpening. The bands with spatial resolutions of
20 m and 60 m were processed by pansharpening to obtain a consistent spatial resolution of
10 m (Figure 4); (3) Cloud removal. The COPERNICUS/S2_CLOUD_PROBABILITY data
collection was used to remove clouds from each scene. We found that it is not consistently
efficient to use the QA60 band to remove clouds, similar to how most studies were carried
out. The use of COPERNICUS/S2_CLOUD_PROBABILITY data allowed us to obtain
images with a much better quality; (4) Temporal linear interpolation. This was performed
by using two adjacent image values before and after the data holes. Through interpolation,
data holes at specific phenological dates caused by cloud removal were filled to obtain
continuous image profiles; (5) VI calculation. Five spectral vegetation indexes (i.e., NDVI,
mNDWI, LSWI, EVI, and BSI) were calculated and added to the S2 spectral bands. The
calculation formulas of VIs from S2 imagery are shown in Table 3; (6) Temporal medium
value filter. A 15-day equal-interval image dataset (namely, S2_15DAY) of ten spectral
bands and five VIs was obtained by medium value filtering in the time dimension, which
was ready to be used (Table 2).
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Table 2. Description of preprocessed S1 and S2 imagery at pixel level.

Datasets Original Bands Derived Bands

S1_15DAY VV, VH
VH/VV, gray_asm, gray_contrast,

gray_corr, gray_ent, gray_var,
gray_idm, gray_savg

S2_15DAY

B2, Blue; B3; Green; B4; Red; B5;
Vegetation red edge 1; B6; Vegetation red

edge 2; B7; Vegetation red edge 3; B8;
Near Infrared1 (NIR1); B8A; Narrow near
infrared (NIR2); B11; Short wave infrared

1 (SWIR1); B12; Short wave infrared 2
(SWIR2)

NDVI; mNDWI; LSWI; EVI; BSI
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Table 3. Vegetation indices calculated from Sentinel-2 imagery.

VIs Description Equations

NDVI Normalized difference
vegetation index (ρB8 − ρB4)/(ρB8 + ρB4)

mNDWI Modified normalized
difference water index (ρB3 − ρB11)/(ρB3 + ρB11)

EVI Enhanced vegetation index 2.5(ρB8 − ρB4)/(1 + ρB8 + 6ρB4 − 7.5ρB2)
LSWI Land surface water index (ρB8 − ρB11)/(ρB8 + ρB11)

BSI Bare soil index (ρB4+ρB11)−(ρB8+ρB2)
(ρB4+ρB11)+(ρB8+ρB2)

ρ is the surface reflectance of Sentinel-2 imagery, and the band names for Sentinel-2 imagery are reported in
Table 2.
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The Sentinel-1 mission provides data from a dual-polarization C-band SAR instrument
at 5.405GHz. The COPERNICUS/S1_GRD collection available on GEE was used in this
study. Each scene contains two polarization bands, VV+VH (VV: single co-polarization, verti-
cal transmit/vertical receive; VH: dual-band cross-polarization, vertical transmit/horizontal
receive), and also includes an additional angle band that contains the approximate inci-
dence angle from ellipsoid in degrees at every point. Each scene was preprocessed with
the Sentinel-1 toolbox using the following steps to derive the backscatter coefficient in
each pixel: orbit file application, border noise removal, thermal noise removal, radiomet-
ric calibration, and terrain correction using SRTM 30 DEM and ASTER DEM. The final
terrain-corrected values are resampled to a resolution of 10 m and converted to decibels via
log scaling (10*log10(x)). The COPERNICUS/S1_GRD collection was selected according
to the time range (1 October 2019 to 1 July 2020) and the study areas, and VV, VH, and
VH/VV polarization bands were chosen to be used. A multitemporal GAMMA filtering
with a kernel of 5 × 5 was applied to remove speckle noise for each scene [43]. A 15-day
equal-interval dataset of three polarization bands was obtained by the mean value filter in
the time dimension. The VH/VV band was derived by the ratio of VH and VV polarization
bands. Then, the GLCM algorithm was applied to the dataset and derived seven texture
parameters for each image pixel. As a result, a 15-day dataset (namely, S1_15DAY) consist-
ing of three polarization bands (i.e., VV, VH, VH/VV) and seven texture bands (Table 2)
was ready to be used.

3.2. SNIC Segmentation with a Fusion of S1 and S2 Imagery

The purpose of superpixel segmentation was to obtain spatial objects with high
homogeneity that remain stable throughout the whole phenological period of winter wheat.
The derived spatial objects were used for generating the object-level TPP for each land
cover and for the object-based winter wheat classification. We used a fusion of optical
and SAR imagery for SNIC segmentation. Two median composite images (i.e., S2_202003,
S1_202003) respectively derived from all S2 images and S1 images sensed in March 2020
were fused (i.e., S1S2_202003) to implement the segmentation for several reasons: (1) The
magnitude of winter wheat temporal pattern in March is significantly higher than that
of any other land covers. During this period, wheat is most distinguishable from other
land cover types; (2) The greenness of other vegetation types in March is lower than in
April, so the vegetation disturbance to winter wheat extraction is minor. At the same time,
the vegetation signals of the vegetation-related mixed pixels in remote sensing images are
weak, so they have less interference in land cover classification; (3) The medium value filter
can significantly reduce image noise to improve the accuracy of the segmentation results
especially for SAR images. The example images of the S1 sensor in both sites are displayed
in Figure 5 to demonstrate the effects of the temporal median filtering for reducing the
speckle noise in SAR imagery.

For the purpose of segmentation, ten spectral and polarization bands of the fused
image S1S2_202003 were used for segmentation, including B2, B3, B4, B5, B8, B11, B12,
VV, VH, and VH/VV (Table 4). Band names of the S2 imagery bands used in image
segmentation are reported in Table 2. The segmentation with several other inputs was
taken into consideration for the purpose of comparison. Furthermore, to evaluate the effect
of texture information on SAR image segmentation, we extracted seven texture parameters
with the GLCM algorithm and obtained the image S1_202003_GLCM, and compared its
segmentation result with that of other inputs.

GEE provides three segmentation algorithms, namely G-means, K-means, and SNIC.
SNIC is a kind of superpixel clustering algorithm that outputs a band of cluster IDs
and the per-cluster averages for each of the input bands [44], which is represented by
“ee.Algorithms.Image.Segmentation.SNIC (image, size, compactness, connectivity, neigh-
borhoodSize, seeds)” on GEE. SNIC has been proven effective and efficient in several studies [45].
We applied the SNIC algorithm using the configuration as ee.Algorithms.Image.Segmentation.SNIC
(S1S2_202003, 20, 2, 8, 256, seedGrid (20, ‘hex’)). The information on the inputs for the SNIC
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algorithm is listed in Table 4. Finally, a raster image was exported, representing the mean
values of each input band for each spatial object.
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Table 4. Input imagery and the corresponding bands for SNIC segmentation.

Input Imagery Input Bands

S2_202003 B2, B3, B4, B5, B8, B11, NDVI, LSWI, EVI, BSI
S2_15DAY NDVI
S1_202003 VV, VH, VH/VV

S1_202003_GLCM VV, VH, VH/VV, gray_asm, gray_contrast, gray_corr,
gray_ent, gray_var, gray_idm, gray_savg

S1S2_202003 B2, B3, B4, B5, B8, B11, B12, VV, VH, VH/VV

The boundary vector of the spatial objects will be used to process S1_15DAY and S2_15DAY
datasets to obtain object-level datasets (namely S1_15DAY_object and S2_15DAY_object).
The resulting datasets (i.e., S1_15DAY_object and S2_15DAY_object) represent the mean
values of each object for each temporal image, which will be used for the following
object-based analysis.

3.3. Generation of Object-Based Temporal Phenology Patterns

The TPP of each land cover type at a 15-day interval during the winter wheat phenol-
ogy period (1 October 2019 to 1 July 2020) was established based on the ground samples,
and the S1_15DAY_object and S2_15DAY_object images were established by the temporal
median filtering (Figure 6). The S1_15DAY_object and S2_15DAY_object are object-level
images generated by the SNIC segmentation. The neighborhood information introduced
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by the segmented objects reduces the influence of noise on pixels and improves the rep-
resentativity of TPP for each land cover type. The two winter wheat curves (i.e., WW1
and WW2) in Figure 6 are respectively derived from the two study sites in this study. Two
curves of winter wheat have similar overall trends but some small differences. These differ-
ences are likely caused by the combined effects of the geographical location, agricultural
management, and remote sensing imaging mechanism. The differences in TPPs between
winter wheat and other land cover types provide the fundamental basis for winter wheat
extraction and mapping.
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Figure 6. Temporal phenology patterns of VV (a), VH (b), VH/VV (c) and NDVI (d) bands for
winter wheat and typical land cover types derived from multitemporal S2 and S1 imagery over the
winter wheat season of 2019–2020 (Note: WW1 and WW2: winter wheat, BU: built-up, EW: evergreen
woodland, WB: water body, UP: unsown peanut, DW: deciduous woodland, OR: orchard, WR:
winter rapeseed).

Figure 6 shows that the NDVI temporal pattern of wheat is significantly different
from that of other land cover types at each phenological stage. During the sowing period
(October to November), the NDVI value of wheat is the lowest and lower than that of most
other land types (NDVI< 0.25); then, it increases rapidly (December–January) and enters
a fast-growing period (February–April). The NDVI value is significantly higher than all
other land types in the fast-growing period. In early May, wheat begins maturing, and the
NDVI value decreases rapidly (May-June) to the minimum value after harvesting, lower
than all other land types. During the whole growth period, the NDVI temporal pattern of
winter wheat has a significant difference in both shape and magnitude from other land
cover types, which indicates that the NDVI trajectory could be practical for distinguishing
winter wheat from other land cover types.

Unsown farmland is the second primary agricultural land use type besides wheat
and is set aside for sowing peanuts. Since the sowing time of peanuts is in late April,
unsown peanut land shows the characteristics of bare land for most of the time during the
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phenological period of winter wheat and it shows the features of peanut crops only after
the wheat harvest. Therefore, in the whole wheat phenology period, the NDVI patterns of
unsown peanut land and built-up land are pretty similar, and they are both significantly
different from the wheat’s NDVI pattern. Vegetation types during the phenological period
of wheat include evergreen woodland, deciduous woodland, orchard, and flowers. In the
whole wheat phenological period, NDVI patterns of various vegetation types are pretty
similar in shape and remain relatively stable. However, the NDVI values are much lower
than that of winter wheat during February–April, and remain at a high value after wheat
harvesting, which makes them significantly different from winter wheat. Water-related
land cover types in farming areas are very complex. In addition to the general waterbodies,
there are also paddy fields, fishponds, and lotus ponds. They are generally small in area
and can easily form mixed pixels in the remote sensing image with surrounding objects.
Additionally, vegetation growth and eutrophication cause the variation of waters NDVI
pattern during the wheat phenological period. However, in general, water-related land
cover types mainly display water characteristics, and the NDVI value is much lower than
crops, which can be easily distinguished from the wheat.

In general, VH, VV, and VH/VV bands display different temporal patterns (Figure 6).
The reason for this lies in the complex imaging mechanism of SAR sensors, as well as the
complex scattering mechanism of various land features that changes with time. The VV
temporal phenology pattern of winter wheat has significant differences to all the other
land cover types in in terms of curve shape over the whole period and curve magnitude at
several phenological stages (i.e., March–May), and these differences could be very helpful
for distinguishing winter wheat from all the other land covers. In contrast, although the VH
pattern of winter wheat is distinguishable from various vegetation types (e.g., evergreen
and deciduous woodland) over the whole period, it is very similar to water-related objects
and unsown peanut farming lands, which will probably lead to the failure to distinguish
winter wheat from these two kinds of land cover types. The VH/VV temporal phenology
pattern of winter wheat displays significant overall differences from most of the other land
covers but displays quite a similar curve shape with that of the winter rapeseed, indicating
its’ disadvantage for distinguishing winter wheat from winter rapeseed.

3.4. Improved Similarity Measures

The TPPs of various land cover types tell us that different land features often have a
similar shape or magnitude of TPP, which change with the bands and features. Similarly,
due to the difference in climate, farming styles, weather conditions, and feature selection,
the same land cover often has a different shape or magnitude of TPP, which probably leads
to the errors in classification results. According to the analysis in Section 3.3, we believe
that the accuracy of winter wheat extraction can be improved by using a combination of the
shape similarity and the distance difference between TPPs over the phenological period.
ED and SAD are two commonly used measures to evaluate the similarity of two feature
vectors in the classification. Given two spectral feature vectors X = (X1, X2, ...XN) and
Y = (Y1, Y2, ...YN), the ED is calculated by:

ED(X, Y) =

√
n

∑
i=1

(Xi −Yi)
2 (1)

The cosine similarity cos(θ) between the two vectors can be calculated by:

cos(θ) =

n
∑

i=1
(Xi ×Yi)√

n
∑

i=1
Xi

2 ×
√

n
∑

i=1
Yi

2

(2)
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where θ is the angle between two feature vectors. Then, SAD can be calculated by:

SAD = 1− cos(θ) (3)

The size of ED is affected by the vector dimension, the range is not fixed, and the
meaning is vague. ED reflects the absolute difference in distance between two vectors but
ignores their shape similarity. In contrast, cos(θ) always remains ‘1’ when two vectors
are in the same direction, ‘0’ when they are orthogonal, and ‘−1’ when they are opposite,
regardless of the dimension and magnitude of the vectors. That is, SAD reflects the relative
difference in vector directions, which focuses on the shape similarity but ignores their
difference in absolute distance.

To avoid the disadvantages of a single measure, we built a composite distance measure
ESD by fusing ED and SAD using the formula:

ESD(X, Y) =
√

ED2 + SAD2

=
√

∑n
i=1 (Xi −Yi)

2 + (1− cos(θ))2 (4)

where ED represents the Euclidean distance of two temporal patterns, and SAD reflects the
shape difference between two temporal patterns.

Moreover, we introduce a new similarity measure DSF by fusing a difference factor
( f1) and a similarity factor ( f2 ),

DSF =

√
f1

2 + (100− f2)
2 (5)

f1 = (∑n
i=1|Xi −Yi|)/(∑n

i=1 Xi)× 100 (6)

f2 = 50× log
{
[1 + (1/n)∑n

i=1 (Xi −Yi)
2]
−0.5
× 100

}
(7)

where f1 represents the relative deviation of two vectors to evaluate the distance difference
and f2 is a factor used to assess the shape similarity of two vectors [46]. The DSF measure
considers both the shape and distance metrics of vectors and is expected to improve the
classification accuracy.

3.5. Object-Based Winter Wheat Mapping

The purpose of this step is to automatically identify winter wheat objects from
the segmented spatial objects using the OTSU algorithm based on TPPs derived from
S2_15DAY_object and S1_15DAY_object images. In the OTSU algorithm, the DSF was taken
as the similarity measure between TPPs, and the distance measure ED, the shape measure
SAD as well as the composite measure ESD were taken into the comparison. The OTSU al-
gorithm was used to find the optimal decision-making threshold automatically. Specifically,
first, the TPP of winter wheat obtained in Section 3.3 was used as the reference pattern.
Then, the DSF measure between the reference pattern and the TPP of each segmentation
object was calculated. Finally, the OTSU algorithm was applied to automatically find an
optimal threshold to distinguish winter wheat objects from the others.

4. Results
4.1. SNIC Segmentation Results

The SNIC segmentation results with different inputs were mapped in Figure 7. The
results showed that the segmentation result by S1 imagery alone was nowhere near that
of S2 imagery, and it was not significantly improved by adding texture features derived
by GLCM. In S1 segmentation maps, there are a lot of mixed spatial objects along the
boundaries, which may be caused by the lower spatial and spectral resolutions and the
speckle noise of SAR images. The segmentation result by S2 imagery alone was much better
than that of S1, since it benefited from the higher spatial and spectral resolutions and high
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signal-to-noise ratio of optical multispectral images. Specifically, the fusion of S1 and S2
imagery achieved the best segmentation result with more details. The segmentation lines
corresponded well to the boundaries of the ground features, and the segmented objects
had high interior homogeneity, proving the effectiveness of optical and SAR data fusion in
image segmentation.
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Figure 7. Segmentation results with the SNIC algorithm superimposed over the monthly compos-
ite S2 subset imagery of March 2020 in false color in Site 1: (a) segmented by S2_202003 input
bands; (b) segmented by the S2_15DAY NDVI time series; (c) segmented by S1_202003 input bands;
(d) segmented by S1_202003_GLCM input bands; (e) segmented by S1S2_202003 input bands. The
description of the input imagery and the corresponding input bands for the SNIC algorithm are
shown in Table 4. The false-color composite of the images is shown in Figure 1.
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4.2. Classification Results Based on NDVI Temporal Patterns

The object-level classification maps of the two study sites are displayed in Figures 8–10.
Figure 11 gives the classification accuracy of each combination of similarity measures
and bands. The performance was evaluated by overall accuracy (OA) and the kappa
coefficient (Kappa) based on the ground truth parcels in each study site. The comparison
and importance of various combinations were made in Figure 12.
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Figure 8. Classification maps from each combination of similarity measures and bands in Site
1: (a–d) VV_ED, VV_SAD, VV_ESD, VV_DSF; (e–h) VH_ED, VH_SAD, VH_ESD, VH_DSF; (i–l)
VH/VV_ED, VH/VV_SAD, VH/VV_ESD, VH/VV_DSF; (m–p) NDVI_ED, NDVI_SAD, NDVI_ESD,
NDVI_DSF; (q–t) NDVI + VV_ED, NDVI + VV_SAD, NDVI + VV_ESD, NDVI + VV_DSF.

As reflected in Figure 11, the proposed DSF measure obtained the best OAs and
Kappas at both study sites. The location attribute and category attribute of the derived land
cover types by DSF measure have the highest consistency to the actual surface features.
With the DSF measure, NDVI achieved the best classification results and more spatial
details for Site 1 and Site 2. The NDVI + VV achieved similar results to NDVI so that this
band could be taken as an alternate strategy in both sites. As can be seen from the details of
the classification map, the proposed DSF measure significantly enhanced the separability
of winter wheat from any other land cover type with NDVI and NDVI + VV, producing
very impressive classification results for both sites (Figure 10).

The ED and ESD achieved similar classification results for NDVI and NDVI + VV
at both study sites (Figures 11 and 12). Both ED and ESD measures can distinguish
winter wheat from vegetation and other land cover types well, but they cannot accurately
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differentiate winter wheat from winter rapeseed. Much rapeseed is misclassified as winter
wheat, resulting in the derived area being much larger than the actual sown area. The
SAD measure obtained the lowest OA and Kappa because it muddled up winter wheat
with many parcels of winter rapeseed, unsown peanut, and vegetation types, resulting in
unacceptable classification results.
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Figure 9. Classification maps from each combination of similarity measures and bands in Site
2: (a–d) VV_ED, VV_SAD, VV_ESD, VV_DSF; (e–h) VH_ED, VH_SAD, VH_ESD, VH_DSF;
(i–l) VH/VV_ED, VH/VV_SAD, VH/VV_ESD, VH/VV_DSF; (m–p) NDVI_ED, NDVI_SAD,
NDVI_ESD, NDVI_DSF; (q–t) NDVI + VV_ED, NDVI + VV_SAD, NDVI + VV_ESD, NDVI + VV_DSF.
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posite of the images is shown in Figure 1. 
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Figure 10. The false-color composite of S2 subset images over typical orchard, lotus pond and built-up
(a), evergreen woodland (e), and winter rapeseed sites (i,m); and the corresponding classification
details of VV_DSF (b,f,j,n), NDVI_DSF (c,g,k,o) and NDVI + VV_DSF (d,h,l,p). The false-color
composite of the images is shown in Figure 1.
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Figure 12. Rank of the classification accuracy with each combination of bands and similarity measures
in both study sites: (a) OA of Site 1; (b) Kappa of Site 1; (c) OA of Site 2; (d) Kappa of Site 2.

4.3. Classification Results Based on VV, VH and VH/VV Temporal Patterns

The accuracy assessment showed that the classification accuracy with each similarity
measure varies with the bands. The proposed DSF similarity measure achieved superior
classification results than all the other measures in VV and VH/VV polarization bands
at both study sites. The location consistency (Kappa) and category consistency (OA) of
the classification maps produced by the DSF measure are higher than those of each other
similarity measure (Figure 11). Moreover, the DSF measure provided the most details in
classification results. Additionally, the VV polarization achieved very close classification
results to VH/VV in both sites.

Although the VV polarization could achieve the similar OA and Kappa with those
of NDVI using the DSF measure, it did not provide details that were as good as those of
NDVI, especially for Site 1 (Figure 10). Many narrow strip plots of unsown peanuts were
wrongly classified as winter wheat, resulting in an overestimate of the winter wheat area.
Compared to the performance for Site 1, VV provided more details for Site 2 with the DSF
measure. Both ED and ESD obtained similar classification results to DSF for Site 2, and their
classification results are very close. The confusing land cover types, such as winter rapeseed
and vegetations, were all well-distinguished by either of the three measures (Figure 9). In
contrast, the classification results of the SAD measure with VV polarization were much
poorer, and a large number of parcels of all other land cover types were misclassified into
winter wheat, resulting in a big overestimation of winter wheat’s sown area (Figures 8 and 9).
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The VH polarization achieved the worst classification results in both study sites. The
ED and ESD measures totally failed at wheat classification in both study sites because they
only distinguished residential land, but they could not distinguish water bodies, unsown
peanut, woodlands, and winter rapeseed from winter wheat, resulting in unacceptable
results (Figures 8 and 9). Although the SAD measure achieved better classification results
for both sites resulting from its better performance in distinguishing winter wheat from the
vegetation and rapeseed, the results of SAD were still not acceptable because most built-up
areas were misclassified as winter wheat, resulting in a big overestimation of the winter
wheat area in both sites. In summary, the classifications of the VH polarization for both
study sites were failed.

The VH/VV band could distinguish winter wheat from most land cover types well
(e.g., vegetation, built-up area, and unsown peanut), but it could not distinguish winter
wheat from winter rapeseed as well as the VV polarization, resulting in a big overestimation
of winter wheat. The performance of various similarity measures in the VH/VV is similar
to that of the VV polarization (Figure 11).

5. Discussion

A new similarity measure (DSF) is introduced and achieves the best classification
accuracy in all feature bands (e.g., NDVI, VV, VH/VV, NDVI + VV) and in both study
sites. The new measure considers both distance difference and shape similarity, which can
better describe the detailed differences between TPPs of land covers, thus obtaining better
classification results. Generally speaking, different land covers often have different TPPs
while the same land covers have the same TPPs. However, due to complicated biological
and abiotic factors, the TPPs of specific ground objects often have unpredictable nonlinear
distortion, resulting in the phenomena characterized by the ‘same object with a different
spectrum’ and a ‘different object with the same spectrum’, which makes feature extraction
and image interpretation difficult. Broad metrics may lead to a false alarm of target objects
and thus result in overestimates, while strict metrics may lead to omissions of target objects,
thus resulting in underestimates. Existing similarity measures have their advantages, and
some focus on the distance difference while some focus on the shape similarity. Using a
single measure to evaluate the correlation of two TPPs often results in great uncertainty in
classification results. In particular, in large-scale areas, the differences in climate, soil, and
topography lead to great variability in the TPPs of surface objects. Using a single distance
or shape measure will inevitably lead to great deviation between the predicted results and
the actual surface features.

Although some composite measures have been expected to solve the above problems,
few of them are widely accepted and used. The reason for this is that these measures are
only a simple addition or multiplication between existing single measures, lacking scientific
explanation and sufficient practical proof. These measures may achieve good results
in small specific test areas, but the generalization performance in time and space often
cannot stand the test. In addition, the generalization ability of these similarity measures to
different sensors, features, and bands is also a great challenge to their performance. Their
performance varies with the input bands and features. When the TPPs of the same land
cover type extracted from different sensors or different bands have considerable nonlinear
variations, a qualified similarity measurement should be able to identify it and assign
a consistent attribute label for it. If this is not practical, finding an optimal and robust
similarity measure for each commonly used feature or band (e.g., NDVI, EVI, VV, VH) may
be a good alternative. This issue will be further studied in our future work.

The SNIC segmentation adopted in this study is a kind of superpixel clustering
segmentation algorithm, which has a simple principle and high time efficiency. The
algorithm generally divides a large surface feature into several spatial objects with high
homogeneity. It avoids including different surrounding parts across the boundary to ensure
the consistent category attribute for each object and significantly reduces the segmentation
error. In this study, the SNIC segmentation with the fusion of the S2 optical image and the S1
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SAR image achieves satisfactory segmentation results, which provided highly homogenous
spatial objects and perfect details. Most of the adjacent crops of different species in small
areas or thin strip plots are well separated, indicating that the combined use of optical and
SAR imagery has improved the separability of land covers. Although the SNIC algorithm
does not need to input the optimal segmentation scale, it needs to determine the density
of seed points, that is, the sampling interval of seed points. In this study, we use three
sampling intervals (i.e., 10, 20, and 30 pixels) to generate seed points and implement
the experiments under the three conditions. Finally, we find that the optimal sampling
interval of seed points is 20 pixels. In this case, the segmentation algorithm not only derives
the spatial objects with high homogeneity and consistent boundaries with actual ground
features but also provides fine ground details. The object-based approach may not show
significant advantages over pixel-level classification in small study areas, but it can provide
an excellent solution to the problems caused by highly heterogeneous surfaces, mixed
pixels, and image noise to significantly improve the accuracy and consistency of large
scale classification.

This study found that different spectral or VI bands displayed different performances
for land cover classification. These findings demonstrate that the ability of remote sensing
to distinguish land cover types varies with bands. NDVI has more potent universality
and shows excellent capability for distinguishing various land cover types. The NDVI
band achieves the best overall classification accuracy, although it is very close to that of
the NDVI + VV band. Surprisingly, the VV polarization of SAR imagery has produced
impressive results over various land cover types that are very close to those of the NDVI
band. The better performance of VV polarization in comparison with VH is because wheat
plants have dominant vertical structure so that the VV-polarized backscattered energy is
stronger than that from the VH-polarized signals [47]. As the growing season continues,
the vertical structure of wheat plants changes greatly, and wheat shows a unique temporal
phenology curve that is different from other land covers, which is beneficial to winter wheat
identification [48]. In addition, VV polarization achieves such good winter wheat maps
partly because of the speckle noise reduction by image segmentation. Based on segmented
spatial objects, VV polarization displays outstanding capability in distinguishing winter
wheat from other easily confused crops. This is very important for crop mapping with
multitemporal remote sensing. Because of the cloudy weather, optical imagery may be
unavailable during the crop growth period, which harms the temporal-phenology-based
classification. In this case, SAR imagery is expected to provide trusted alternatives. Due
to the complexity of the land surface composition and the mechanism for remote sensing
imaging, a single band or feature is prone to failure when trying to solve all problems in
most cases. Although the commonly used bands or features can be used as alternatives, they
can only possibly produce the second-best classification results. Exploring the dominant
bands or features for specific land cover types and using them for image interpretation
would potentially improve the land cover and land use classifications in nature.

6. Conclusions

This study developed an automatic object-based approach for winter wheat mapping
based on multitemporal optical and SAR imagery. The new DSF and ESD measures in
winter wheat mapping were evaluated with ground truth data and compared with the
commonly used ED and SAD measures. Additionally, the performance of optical and
SAR imagery with various combinations of bands and measures was also evaluated. The
results demonstrated that the DSF measure achieved the best classification results in all
feasible bands, with higher precision and more details than other similarity measures.
The classification results of ED in most bands were significantly better than those of SAD,
indicating that the absolute distance difference was more important than shape similarity
in assessing sample similarity. The ESD measurement achieved similar classification results
to ED, and the classification accuracy was not significantly improved. In terms of band
performance, the NDVI band showed a balanced performance in all land cover types
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and distinguished them very well. The overall accuracy of NDVI was better than the
three polarization bands of the SAR image, while the VV polarization also displayed
great potential for mapping winter wheat with the assistance of image segmentation.
The fusion of optical and SAR imagery achieved better results in image segmentation
and achieved evenly matched accuracy in winter wheat mapping compared to the best
single data, indicating that the fusion of remote sensing data had great potential in image
segmentation and classification. Overall, the developed approach worked well for winter
wheat mapping and provided beneficial inspiration and new ideas for crop classification
using multitemporal optical and SAR images.
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