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Abstract: Understanding the risks posed by potentially toxic metals (PTMs) in large regions is impor-
tant for environmental management. However, regional risk assessment that relies on traditional field
sampling or administrative statistical data is labor-intensive, time-consuming, and coarse. Internet
data, remote sensing data, and multi-source data, have the advantage of high speed of collection,
and can, thereby, overcome time lag challenges and traditional evaluation inefficiencies, although,
to date, they are rarely applied. To evaluate their effectiveness, the current study used multi-source
data to conduct a 1 km scale assessment of PTMs in Yunnan Province, China. In addition, a novel
model to simulate potentially hazardous areas, based on atmospheric deposition, was also proposed.
Assessments reveal that risk areas are mainly distributed in the east, which is consistent with the
distribution of mineral resources in the province. Approximately 3.6% of the cropland and 1.4%
of the sensitive population are threatened. The risk areas were verified against those reported by
the government and the existing literature. The verification exercise confirmed the reliability of
multi-source data, which are cost-effective, efficient, and generalizable for assessing pollution risks in
large areas, particularly when there is little to no site-specific contamination information.

Keywords: fine-scale polluted risk assessment; internet data mining; cropland vulnerability; human
health; heavy metals contamination; management strategies

1. Introduction

Potentially toxic metals (PTMs) contamination resulting from anthropogenic activities,
particularly industrial activities related to metalliferous mining, smelting, and refining,
poses a serious threat to the environment and human health [1,2]. In this sense, precisely
assessing the risk state is a prerequisite for environmental management and risk reduction.

Contamination risk assessments conducted at local to regional scales can be divided
into two major groups: site-specific assessments [3,4] and regional assessments [5,6]. Site-
specific assessments produce absolute evaluations of risk for one or more contaminated sites
through sampling and laboratory analyses [7]; they typically involve, for example, carcino-
genic and non-carcinogenic risk indices [7,8]. In contrast, regional scale risk assessments
are concerned with a large expanse of land or territory, usually an administrative area [9].
As they aim to evaluate the relative importance of risks by ranking them magnitude-wise
for the entire region [10], they are often referred to as relative evaluation methods [11].

Implementing a risk prevention management plan is usually a regional-scale exer-
cise [12], and regional assessments are more feasible for developing comprehensive control
strategies than site-specific assessments [10]. Furthermore, regional assessments aiming to
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identify and screen for potential contaminated sites requiring further investigation [13–15]
generally constitute the critical first mapping step toward the overall identification, assess-
ment, and management of contaminated sites [16].

However, regional investigations remain sparse [17]. The primary impediment may
be the difficulty in obtaining data. For regions where data are unavailable, administrative
statistical data or a meta-analysis is usually used for assessment [18–20]. For example, a
review of the published literature shows that provinces located in southern and southwest-
ern China are most contaminated by cadmium (Cd), hydrargyrum (Hg), lead (Pb), and
arsenic (As) [21–23]. These studies, however, were usually performed at a coarse scale,
e.g., the administrative unit scale [22,23]. The fate and transport of pollutants and their
dynamics depend on the spatiotemporal framework considered [10], and knowledge gaps
with respect to detailed risks limit their support for decision-making. Assessments at fine
scales (e.g., a gridded scale) are more effective, not only for describing risks in detail, but
also for aiding the precise mapping of high-risk areas.

For regions where field sampling data are available, assessments are generally con-
ducted using the sources–pathways–receptors (SPR) concept [10,11,14]. Risks are described
by sources (i.e., contaminated sites), pathways (i.e., water, air, and direct contact), and
receptors (i.e., environmental or human health) in terms of scores [10]. However, field
surveys over a large region are costly, laborious, and time-consuming. For example, China’s
first soil pollution census cost USD 125 million and took 9 years, from 2005 to 2013 [24].
More importantly, the survey data are usually confidential, making the search for new data
sources imperative for developing regional risk assessment frameworks.

With the rapid development of 3S (geographic information system, GIS; global position
system, GPS; and remote sensing, RS), location-based services (LBS) and internet data
mining technology, internet data, remote sensing images, and reanalysis data, among
others, multi-source data rendered their superiority for the rapid detection of pollution
sources and the determination of receptor sensitivity [25,26]. Specifically, these data have
the advantage of a high collection speed [27,28], and can, thereby, overcome time lag
challenges and traditional evaluation inefficiencies. However, the application of multi-
source data in regional risk assessment is rare, and multi-source data for promoting regional
risk assessment are largely unknown.

The objective of this study was to apply multi-source data for PTMs regional risk
assessment on a gridded scale, and evaluate the effectiveness of such data for risk iden-
tification and assessment. Yunnan Province, a metal-mining center in China, served as a
case study. The study here will improve our ability to assess, classify, identify, and map
contamination risks in large regions, and thereby better support decision-making.

2. Materials and Methods
2.1. Study Area

Yunnan is a typical province in the mountainous border area of southwest China
(31◦42′– 39◦35′ N and 105◦29′–111◦15′ E). It consists of 13 cities and 165 counties, covering
nearly 390 thousand km2. The dominant wind direction in the province is SSE–S–SSW, and
the average wind speed ranges from 2 to 6 m/s (Figure 1). Average annual precipitation
is generally high in the southwest, and exceeds 2000 mm [29]. In 2020, the population of
children (≤14 years old), adults, and the elderly (≥60 years old) was 9.23 million (19.57%),
30.93 million (65.52%), and 7.03 million (14.91%), respectively.

The province is rich in zinc (Zn), Cd, Pb, and tin (Sn) mine resources [30]. By 2010,
142 types of mineral deposits had been discovered in the province, accounting for 83%
of those identified nationally [31]. Intensive metal mining and processing activities have
seriously damaged environmental and public health. According to previous studies,
Yunnan and two other provinces are the most polluted provinces in China due to Cd,
copper (Cu), Pb, and Zn contamination [23,32]. In addition, a high incidence of lung
disease as an occupational hazard was observed in Yunnan’s miners, due to exposure to As
and radon [33].
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Figure 1. Study area. (a) Location of Yunnan in China; (b) predominant wind directions and speeds 
(m/s); (c) spatial distributions of elevation and wind speed magnitude and direction. 
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disease as an occupational hazard was observed in Yunnan’s miners, due to exposure to 
arsenic and radon [33]. 

2.2. Materials 
2.2.1. Pollution Sources Data 

Here, pollution sources refer to metal-related industrial plants. Using internet data 
mining technology, the industrial plants were crawled from major internet platforms in 
China, namely TianYanCha (https://www.tianyancha.com/, accessed on 12 February 2019) 
and the Green Network Environment Data Center (GNEDC) (http://www.lvwang.org.cn/, 
accessed on 12 February 2019). Via collection, cleaning, geographic location transcoding, 
and coordinate correction, details of 1710 industrial plants were obtained. Data for each 
plant included name, location, duration of operation, industrial type, and an industrial 
index (II). The last parameter describes the adverse effects of pollution-related enterprises, 
by evaluating the illegal storage, disposal, and discharge activities of a given industrial 
plant [34]. Among the 1710 plants, 1354 (79.1%) were in operation in 2020, and the 
remaining ones (18.5%) were closed (Table 1). 

Table 1. Description of the data used in this study. 

 Data Resolution Time Span Data Collection or Generation 

Sources  
Metal-related industrial 
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Collected from the internet platforms using an 
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Figure 1. Study area. (a) Location of Yunnan in China; (b) predominant wind directions and speeds
(m/s); (c) spatial distributions of elevation and wind speed magnitude and direction.

2.2. Materials
2.2.1. Pollution Sources Data

Here, pollution sources refer to metal-related industrial plants. Using internet data
mining technology, the industrial plants were crawled from major internet platforms in
China, namely TianYanCha (https://www.tianyancha.com/, accessed on 12 February
2019) and the Green Network Environment Data Center (GNEDC) (http://www.lvwang.
org.cn/, accessed on 12 February 2019). Via collection, cleaning, geographic location
transcoding, and coordinate correction, details of 1710 industrial plants were obtained.
Data for each plant included name, location, duration of operation, industrial type, and an
industrial index (II). The last parameter describes the adverse effects of pollution-related
enterprises, by evaluating the illegal storage, disposal, and discharge activities of a given
industrial plant [34]. Among the 1710 plants, 1354 (79.1%) were in operation in 2020, and
the remaining ones (18.5%) were closed (Table 1).

Table 1. Description of the data used in this study.

Data Resolution Time Span Data Collection or Generation

Sources Metal-related industrial
plants that registered online - 1982–2020 Collected from the internet platforms

using an internet data mining technology

Pathways
Soil texture 1 km - Downloaded from the Harmonized World

Soil Database

Precipitation 1 km 2006–2020
Yearly data

Interpolated from station records using
the cubic spline interpolation method,

with elevation as an independent
covariate in the ANUSPLIN software

Wind speed 0.1◦ 1990–2020
Monthly data

Generated by ERA5 weather
forecasting models

Relief amplitude 1 km -
Calculated based on DEM images using

the window analysis method and the focal
statistics function in ArcGIS [35]

Receptors NPP 1 km 2000–2020
Yearly data

Downloaded from MODIS remote
sensing images

Population densities of
children and the elderly 1 km 2020 Simulated by a spatialization technique

https://www.tianyancha.com/
http://www.lvwang.org.cn/
http://www.lvwang.org.cn/
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2.2.2. Pathways Data

According to the ‘Plot in Production Plant Risk Screening and Risk Classification
Technical Regulations (Try Out)’ of China [36], the pathways data mainly consisted of
soil texture, multi-year average precipitation, multi-year average wind speed, and relief
amplitude (Table 1).

2.2.3. Receptors Data

For the receptors data, according to the ‘Technical guidelines for risk assessment of
soil contamination of land for construction (HJ 25.3–2019)’ [37], cropland and humans are
treated as the main receptors. The elderly population and children were selected as the
sensitive populations, due to their relatively poor immunity [21], and the density of the
sensitive population was estimated by using a spatialization technique [38]. Details are
shown in the Supplementary Material (Figure S1).

The productivity of cultivated land served as the indicator of cropland vulnerability.
It was quantified by the MODIS net primary productivity (NPP) products (MOD17A3H),
because NPP is strongly correlated with agricultural productivity [39].

2.3. Methodology

The methodology comprised three steps, which are outlined in Figure 2. The first
step was to collect regional data for the risk assessment, as mentioned above. A detailed
description of the other two steps is provided in the following paragraphs.
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2.3.1. Potentially Hazardous Area Simulation

Industrial activities typically threaten the surrounding areas [40]. Accordingly, we
defined an area around each industrial plant as the potentially hazardous area (PHA).
Any area within the PHA could face risks, whereas areas lying outside the PHA were
considered risk-free. In the previous literature, a buffer area of a radius d was used to
denote the PHA [10,11], e.g., 6.5 km [41]. However, industrial plants vary greatly in terms of
their production scale, operation duration, production technology, and geo-environmental
locations, and adopting a uniform PHA for all industrial plants is, thus, not justified.
Instead, an adaptive PHA simulation is needed for accurate assessments [10].

To simulate the PHA, industrial types, operation time, precipitation, and wind were
considered, referring to the ‘Technical Provisions for the Detailed Investigation of Soil Pol-
lution in Agricultural Land’ [42]. The effect of wind on PTMs dispersal is directional [43,44].
Prevailing winds strongly influence the delivery of PTMs [45–47], and tend to form an ellip-
tical pollution footprint in surrounding areas downwind from the pollutant source [48,49].
Thus, the area impacted by wind was presumed to be an ellipse [50,51], whereas a circle
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was assumed for the area impacted by factors other than wind, because their dispersion
effect tends to be directionless. On this basis, the conceptual model used for the PHA
simulation has the following steps:

1. Simulating the elliptical area impacted by wind. The location of a given industrial
plant constitutes the vertex of the ellipse, and the direction of its major axis is consistent
with that of the prevailing wind. The lengths of the major and minor axes are shown
in Table 2. Each monthly wind condition generates an ellipse (Figure 3a);

Table 2. Dispersal distances from metal mining, smelting, and refining industries [42].

Metal Mining Industry (Base Distance is 1.0 km)

Adjustment Factors Adjusted Distance (km)

Duration of operation (years) <15 0.0
≥15 +0.5

Multi-year mean precipitation (mm) <400 +1.0
400–800 0.0

>800 −0.5
Dispersal distance by wind

Monthly wind speed (m/s) Minor axis Major axis
<3 1.0 km 1.5 km
3–5 1.5 km 2.0 km
5–7 2.0 km 2.5 km
>7 3.0 km 3.5 km

Metal Smelting and Refining Industry (Base Distance is 1.5 km)

Adjustment factors Adjusted distance (km)
Duration of operation (years) <5 0.0

5–15 +1.0
> 15 +2.0

Multi-year mean precipitation (mm) <400 +0.5
400–800 0.0

>800 −0.5
Dispersal distance by wind

Monthly wind speed (m/s) Minor axis Major axis
<2 2.0 km 3.0 km
2–4 1.5 km 2.5 km
>4 1.0 km 2.0 km
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generated by enveloping the merged feature.

2. Simulating the circular area impacted by other factors. A circle buffer is generated
based on industrial types, operation time, and multi-year mean precipitation of the
location. The radius of the circle is equal to the sum of the base distance and adjusted
distances (Figure 3b, Table 2);

3. Merging the circle buffer with all the ellipses (Figure 3c);
4. Defining the smoothed enveloping surface extracted from the merged feature as the

final PHA (Figure 3d).
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2.3.2. Regional Risk Assessment of Potentially Toxic Metals (PTMs)

In contrast to the coarse assessments in the previous literature, risk was assessed at a
1 km scale in the current study. The choice of the 1 km scale originated from the ‘Technical
Provisions for the Detailed Investigation of Soil Pollution in Agricultural Land’ [42]. As
indicated by the guideline, areas impacted by metal mining, smelting, and refining indus-
tries are generally located 1 to 5 km from industrial plants. With this in mind, we chose
a 1 km scale for our assessment to properly capture the minimum impacted area. Based
on the SPR concept, the risk was scored by the hazard posed by the industrial plants, the
dispersal of the pathway, and the vulnerability of the receptor.

The hazard score (H) was estimated by three indicators using Equations (1) and (2).
To obtain detailed spatial information on hazard, the H scores were interpolated to a 1 km
spatial resolution raster for the extent of the PHA by using the inverse distance-weighted
(IDW) method [52]. Subsequently, the H scores were normalized according to Table 3.

Hn = DTn + IIn + Kn (1)

DTn =

{
2020− Ts operative industrial plant

Te−Ts
2020−Te

closed industrial plant
(2)

where DT, II, K, Te, and Ts are the duration time, industrial index, kernel density, and the
start and the end operative time points of the nth industrial plant, respectively; DT, II, and
K were normalized to 0–1 before calculating H.

Table 3. Scores used for indicators normalization in the case study.

Indicators Classes Scores Classes Scores Classes Scores

Sources Hazard (H) ≥0.5 5 [0.15,0.5) 3 <0.15 1

Pathways

Soil texture (ST) Sand 5 Silt loam 3 Clay loam 1
Precipitation (P)

(mm/yr) ≥1000 5 [400,1000) 3 <400 1

Wind speed (WS)
(m/s) <2 5 [2,4) 3 ≥4 1

Relief amplitude (RA)
(m) ≥1500 5 [1000,1500) 3 <1000 1

Receptors Yield of cropland High yields 5 Moderate yields 3 Low yields 1
Sensitive population density

(per/km2) ≥3000 5 [1000,3000) 3 <1000 1

The pathway dispersal score (P) was obtained using Equation (3). The four assessment
indicators were normalized prior to the calculations (Table 3). The normalization of soil tex-
ture and precipitation was based on the ‘Technical Provisions for the Detailed Investigation
of Soil Pollution in Agricultural land’ [42], and the normalization of relief amplitude was
based on the terrain division standard [53].

Pi =
1
4
(STi + pi + WSi + RAi) (3)

The receptor vulnerability scores (V) were expressed as the productivity of cropland
and the population density. The type of cropland was determined based on the NPP
according to the method of Shi et al. [54].

The respective risk score (R) posed to cropland and sensitive populations of the ith
grid cell was characterized by Equation (4), and the total overall risk was summed by the
two assessed risk scores (Equation (5)):

Ri = Hi × Pi ×Vi (4)

Roverall = Rcropland + Rpopulation (5)
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where Roverall, Rcropland, and Rpopulation represent the assessed overall, cropland, and sensi-
tive population risks, respectively.

Subsequently, the risk at the county level was determined by summing the risk at the
gridded level within the administrative area. The risk scores were then divided into three
classes (low, moderate, and high) according to the natural breakpoint method [11]. The
high-class areas were designated as high-risk areas.

3. Results
3.1. Spatial Distribution of the Industrial Plants

The industrial plants were grouped into the following categories: metal-mining (948)
and metal-smelting and refining (762) industries, which mainly include Cu, Zn, and Sn
tailing, as well as smelting plants. The industries were established between 1982 and
2020; further information on the duration, industrial index, and hazard scores is presented
in Table S1. Spatially, the plants are concentrated in the eastern province, especially in
Honghe City, followed by the cities of Kunming, Qujing, and Baoshan (Figure 4). The high
abundance of resource-oriented industrial plants is consistent with the distributions of
mineral resources in the province [55].
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3.2. Risk Assessment Results
3.2.1. Risk Assessment at the 1-km Scale

The three components of the SPR concept include hazard, pathway, and vulnerability
scores (Figure 5). Generally, the hazard score map corresponds to the distribution of
the industrial plants (Figure 5a). Higher values are mainly distributed in the east of the
province, such as in the cities of Honghe and Wenshan. The distribution difference of the
pathway scores in the province is mainly determined by soil texture and relief amplitude.
The high-score areas are located in the cities of Honghe, Baoshan, and Kunming (Figure 5b).
Regarding vulnerability, the high-score areas of sensitive population vulnerability are about
21.1%, whereas the number of croplands is about 8.0% (Figure 5c).

The 1 km scale risk maps reveal that risk areas are mainly distributed in the east, with
the high-risk areas primarily concentrated in Honghe City, which contains central and north-
eastern Gejiu County (Figure 6). Statistically, approximately 3.6% of cropland (2952 km2) is
found to be threatened, where 278 km2 of cropland faces a high risk (Figure 7a). Regarding
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population assessment, the sensitive population of 680,000 people, facing a greater risk,
accounts for 1.4% of the total population (Figure 7b).
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3.2.2. Risk Assessment at the County Scale

For cropland risk assessment, the counties of Gejiu and Tengchong are identified as
high-risk areas (Figure 8a). Tengchong incurs the maximal threat to cropland, as it has
both the highest cropland vulnerability score (433) and the largest exposed cropland area
(137 km2) (Table S2, Figure 8d).

For the sensitive population risk assessment, two high-risk regions (Gejiu and Jianshui)
are distinguished (Figure 8b). The life expectancy there is 6 and 2 years lower than the
provincial average in 2000 and 2010, respectively [56]. The high-risk score of Jianshui is
mainly attributed to its large area of residential settlements (113 km2) exposed to industrial
plants (Table S2, Figure 8e).

In the overall risk assessment, four high-risk regions and eight moderate-risk regions
are identified (Figure 8c). Gejiu is threatened most significantly because it has the highest
hazard score (2325) and the highest dispersal pathway score (1745) (Table S2, Figure 8f).
This county is known as the “Tin Capital” for its world-class tin–polymetallic deposits [57],
and is home to 345 plants related to tin mining and smelting, nearly one third of the
province’s total. Consequently, its natural environment is largely affected by intensive
mining activities. This county had the highest male lung cancer mortality in a nationwide
survey conducted in 1973 [58], mainly due to occupational As exposure and smoking [59].
Although great efforts were made in cancer diagnosis and treatment, lung cancer remains
the leading cause of cancer-related mortality in Gejiu [57].

3.3. Verification

To verify the accuracy, we validated the three components and the assessed counties
at risk. The hazard scores were compared to heavy metals concentrations, which were
obtained by the meta-analysis. In total, 37 cases studies were collected from Google Scholar,
Web of Science, and China National Knowledge Infrastructure. Given that the current
study focuses on industrial plants, we further targeted publications whose study areas
were also industrial plants. In addition, to maintain a consistent period, we screened
the literature published between 2015 and 2020. Finally, a total of 16 cases studies were
reviewed (Table S3), and 932 soil samples were analyzed.

The seven main heavy metals in Yunnan Province, namely, As, Cd, Cr, Cu, Hg, Pb, and
Zn, were selected for the verification [60,61]. On the basis of heavy metals concentrations,
the Nemerow integrated pollution index (NIPI) was calculated, and divided into four levels:
safe (NIPI < 1), slight pollution (1 < NIPI < 2), moderate pollution (2 < NIPI < 3), and
heavy pollution (NIPI > 3) [62]. The results show that the counties of Xianggelila, Lanping,
Dongchuan, Huize, Longling, and Gejiu are heavily polluted (Figure 9h). Similarly, the
hazard scores of Xianggelila, Lanping, Dongchuan, Huize, and Gejiu are significantly
higher than those of the other counties (Figure 9i). This leads us to infer that the hazard
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scores estimated using online industrial plant data can reflect the pollution state of the
environment, to some extent.
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Figure 8. Risk assessment at the county scale for (a) cropland, (b) the sensitive population, and
(c) the overall risk in Yunnan. The critical regions are outlined in blue in (c) and are recognized
as crucial metal pollution regions by the national government. Decomposition of high-risk and
moderate-risk regions for (d) croplands, (e) sensitive population, and (f) the overall risk.
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In addition, the estimated receptor data, mainly the simulated population data, were
verified with statistical data (Figure S1). The main pathway data, including simulated wind
and precipitation data, were verified with meteorological station data (Figures S2–S4).

In terms of the verification of the risk assessment, the pollution regions identified by
the government were compared. In 2011, the national government reported 11 counties in
Yunnan as critically metal-polluted regions, mapped by the blue border in Figure 8c [63].
The 12 at risk counties identified in the current study were compared with those identified
by the government. Eight are consistent with the national report, indicating the effectiveness
of using multi-source data. Among the three inconsistent counties, Lanping and Jinping
counties have high hazard scores, but because of the few receptors in the PHA, their
vulnerability scores are low; thus, their overall risk scores are low based on this approach.
In addition, Luliang was removed from the list of critically polluted regions in response to
restoration efforts in 2015 [64]; therefore, it is not identified in our assessment.

Four counties not listed as critical regions by the national government are identified
here as risk regions: Jianshui, Mengzi, Yanshan, and Xuanwei. Both Jianshui and Mengzi
counties were included among the key investigated regions during the environmental
protection supervision in 2017 in Yunnan [65]. Yanshan was listed as a pilot project for
metal pollution prevention in 2016, whereas Xuanwei was estimated to have a very high
prevalence of lung cancer (4–8-fold higher than the national average) due to metal pollu-
tion [66]. Based on such data, we confirm that multi-source data can reliably be used for
regional risk assessment.
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4. Discussion
4.1. Contributions

Conducting an accurate regional risk assessment is one of the key prerequisites for
developing policies to control pollution [68]. However, the absence of sufficient data often
makes that a challenging task. Therefore, previous regional assessments were conducted
at a coarse level [17,18]. The current study proposed using multi-source data to overcome
this issue, particularly for regions where little or no information is available from site-
specific investigations [69]. The verification demonstrates the effectiveness of multi-source
data for identifying risks. This is mainly attributed to the multi-source data containing
metal-related industrial plants and information about their activities. Great damage to the
environment can be caused by PTMs-related activities, especially unsustainable production
activities [70,71]. Therefore, the multi-source data involving industrial activity information
can provide insight into hazard and risk extents.

Importantly, using multi-source data for large area assessment is cost-effective and
efficient when compared with the traditional sampling assessment framework. Hence, it
can supplement the sampling assessment method, and plays a significant role in reducing
the investigation costs. Furthermore, multi-source data, including internet data and remote
sensing images, are flexible data and can, therefore, be adapted to different regions; they
are global data and generally free. This means the proposed method can be a useful tool in
environmental policy decision-making, and be involved in regional or even global sustain-
able planning processes, such as the 2030 Agenda for the Sustainable Development Goals
(SDGs). The SDG 12 (Sustainable Consumption and Production) requires expanding and
accelerating international assessments of chemical risks [72], which coincides with the ad-
vantages of the proposed method. In addition, the SDG 3 (Health and Population) regards
reducing the number of deaths and illnesses from hazardous chemicals and pollution as
one of its associated targets [73], which also can be supported by the proposed method.

One of the key contributions of multi-source data to the assessments is to provide
gridded information. Regional assessments target the identification and screening of
actual or suspected contaminated sites needing further actions (such as investigation or
remediation). The grid-scale assessed results thereby represent a more precise guide for
further investigation than the administrative-scale results [74,75].

The novel PHA simulation model developed here estimates the potential contaminated
zone based on the factors associated with industrial plant production and the natural
environment. Unlike in previous studies, a special potential risk area was simulated for each
industrial plant, thereby resolving the challenges of an oversimplified approach [10,76].
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4.2. Management Suggestions

According to the dominant risk component, the 12 high- and moderate-risk coun-
ties can be grouped into four types: comprehensive, cropland-vulnerable, population-
vulnerable, and ordinary. The management proposals for each type are listed in Table 4.
In general, to optimize that the spatial layout, high-hazard plants in close vicinity to
cropland-intensive and densely populated areas should be either closed or moved to low-
risk regions. Furthermore, where prevailing winds are significant, industrial plants should
be established or relocated downwind of residential areas or cropland.

Table 4. Counties associated with different types of risk and the proposed management strategies.

Risk Types Counties Management Strategies

Comprehensive Gejiu,
Anning

(1) Strengthen supervision of potential polluting factories with probable
pollutants, and shut down or remove factories with excessive pollution;
(2) Adjust the industrial structure and reduce the proportion of industries
involved in pollution;
(3) Optimize the spatial layout and isolate the potential polluting factories
from cropland-intensive and densely populated areas by distance or barriers.

Cropland-vulnerable Tengchong,
Maguan

(1) Intensify the supervision of the discharge of existing potential polluting
factories to cropland, and shut down or relocate them when necessary;
(2) Optimize the spatial distribution of industries and keep the potential
polluting factories away from cropland-intensive areas, especially those with
high yields;
(3) Cultivate low-accumulation crops or purchase food from low-risk regions.

Population-vulnerable Jianshui,
Huize

(1) Strengthen the supervision of potential polluting factories, and shut down
or relocate them when necessary;
(2) Optimize the spatial distribution and keep the potential polluting factories
away from densely populated areas.

Ordinary

Xuanwei,
Mengzi, Yanshan,

Wenshan, Dongchuan,
Yimen

(1) Strengthen the supervision of potential polluting factories and reorganize
or shut down factories with excessive pollution;
(2) Upgrade the market access threshold for factories and prohibit the
expansion of high-risk pollution-associated factories.

4.3. Limitations

Although the proposed approach achieves a desirable outcome, there are some uncer-
tainties that should be noted. First, bias was expected if there were omissions in the mining
data set. Industrial plants in China need to register for national government organizations,
such as the State Administration for Market Regulation, before operation, which enables the
government organizations to collect almost all industrial plant information across the coun-
try. The two main internet platforms we used, TianYanCha and GNEDC, have collected
information from government organizations on at least 280 million industrial plants across
China, capturing the majority of the sources of interest. However, for countries and regions
other than China, a pre-assessment of their mining data sets is strongly recommended. In
addition, there is a bias in that some small unregistered industrial plants were not included,
and this bias is also involved in national supervision. To address this issue, an application
of remote sensing images for identifying industrial plants and their emission activities is
recommended in future studies.

Ideally, the hazard of an industrial plant would be expressed in terms of its production,
volumes of produced waste, and toxicity characterization of released pollutants, among
others [10]. However, due to data limitations, the industrial index, the duration of operation,
and the kernel density (Equation (1)) were used to quantify the hazard in the current paper.
Despite this limitation, the industrial index was evaluated based on factory pollution
infractions and was, therefore, somewhat representative of the hazard posed by each
infraction. Nevertheless, with the support of additional investigations, the assessment is
amenable to refinement.
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Although atmospheric deposition is the predominant pathway of PTMs contami-
nation [77,78], waterbodies, as important exposure sources and potential exposure path-
ways [10], should also be considered as main pathways and receptors, whenever relevant
data are available. In addition, subgroups of sensitive populations, such as children, elderly
individuals, and immunocompromised individuals, may respond differently to PTMs
pollution [79]. For example, children are more likely to face non-carcinogenic risks due
to heavy metal pollution than elderly people [33]. Therefore, a stratification analysis is
expected to improve the assessment methodology. Nevertheless, the primary objective
here was to evaluate the effectiveness of multi-source data in regional risk assessment, and
stratified sensitive populations can be considered when such data are available.

Whilst the verification was conducted by comparing our results to government re-
ports and previous publications, a field point-level verification was lacking. The regional
assessment aimed at the prescreening of high-potential pollution zones before conducting
any point-level investigation. Therefore, we believe that cross-checking with government
reports and previous publications was a reasonable approach to verifying the reliability of
the results.

5. Conclusions

The difficulty in obtaining data is a primary impediment of regional risk assessment.
In this study, we proposed using multi-source data for regional risk assessment of PTMs,
and conducted a case study in Yunnan Province. The assessed results indicate that the
risk areas are mostly concentrated in the eastern province, with 3.6% of the cropland and
1.4% of the sensitive population suffering from contamination threats. At the county level,
there are 12 high- and moderate-risk counties, including Gejiu, which currently faces the
greatest risk. Furthermore, verification confirms the reliability of multi-source data. This
suggests that multi-source data can complement environmental field sampling to some
extent, which make sense when assessing remote large areas, given the large amounts of
resources usually involved in conducting (and maintaining) field collections. In addition,
except PTMs, multi-source data and the potentially hazardous area simulation developed
here are also applicable to expose other environmental contaminants.
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