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Abstract: Earlier studies have examined various factors that may contribute to the contagion rate
of COVID-19, such as urban climatic and socioeconomic characteristics. However, there is a lack of
studies at the township level detailing the spatiotemporal settings of built environment attributes,
especially in the context of lockdown as a response to the global Omicron outbreak. In this study,
we extended the existing literature by relating the initial-stage Omicron pandemic conditions with
more comprehensive measures of the built environment, including density, diversity, design, distance
to transit, and destination accessibility. The variations from the confirmed clusters of COVID-19
and asymptomatic infected cases before, during, and after the lockdown throughout the Omicron
outbreak were identified geographically using GIS methods in 218 township-level divisions across
Shanghai during the lockdown period. We also compared the regression results of the ordinary
least-squares regression, geographically weighted regression, and geographically and temporally
weighted regression. Our results show that (1) among all the built environment variables, metro line
length, walking accessibility, hotel and inn density, and population exhibited positive significance in
influencing pandemic prevalence; (2) spatial and temporal variations were evident in the association
between accessibility, mobility, density-related built environment variables, and COVID-19 transmis-
sion across three phases: pre-lockdown, during lockdown, and post-lockdown. This study highlights
the importance of targeted public health interventions in densely populated areas with high demand
for public transit. It emphasizes the significance of transportation network layout and walking
accessibility in controlling the spread of infectious diseases in specific urban contexts. By considering
these factors, policymakers and stakeholders can foster urban resilience and effectively mitigate the
impact of outbreaks, aligning with the objectives of the 2030 UN Sustainable Development Goals.

Keywords: COVID-19; sustainable development goals; built environment; subdistrict; Shanghai;
geographically and temporally weighted regression (GTWR)

1. Introduction

“Rarely does a resident of any of the world’s great metropolitan areas pause to consider
the complexity of urban life or the myriad systems that operate round the clock to support
it” [1] (p. vii). The COVID-19 pandemic has underscored the importance of investigating
the complexity of urban systems, given that urban areas typically serve as the epicenter for
the transmission of emerging infectious diseases [2]. This holds true for many metropolitan
cities globally, such as New York and London. New York City experienced over one-fifth of
the total number of COVID-19 cases and deaths in the United States, which has exceeded
10 million [3]. The city’s diverse population includes significant minority communities
with notable health and socioeconomic inequalities [4]. Similarly, London stands out
within the UK for having the highest proportion of ethnic minority individuals concerning
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COVID-19 exposure and mortality risk factors [5]. These cities, usually characterized by
their high population density, large-scale population mobility, and hybrid use of land, are
more vulnerable in the face of a pandemic. They are more likely to be susceptible to high
infection rates and rapid dispraises, creating economic stagnation and posing challenges to
the city’s public health system [6,7].

The COVID-19 pandemic has disrupted progress toward the United Nations Sus-
tainable Development Goals (SDGs), especially in urban areas with disease transmission
epicenters [8,9]. Achieving SDG 3 for good health and well-being and SDG 11 for sus-
tainable and resilient cities and communities will require targeted strategies informed by
a nuanced understanding of how built environment factors influence infectious disease
spread over time and space. The built environment (BE), which comprises all aspects of our
existence, including the artificial surroundings that provide context for human activities,
ranging in scale from individual structures and parks or open spaces to whole neighbor-
hoods and cities [10], plays a significant role in shaping a city, it is imperative to explore
the relationship between the BE and pandemic prevalence.

Much research has uncovered the hidden transmission mechanisms of COVID-19
inside the BE. Typically, density is a significant urban BE variable that is substantially
associated with the proliferation of pandemics [11]. Many researchers have concluded that
a greater risk of COVID-19 transmission occurs in more populated and densely populated
districts [12–17]. Conversely, Zhang et al. compared the local GWPR and the traditional
GLM Poisson regression models to examine the association between sociodemographic
factors and COVID-19 incidence. Their results revealed a paradoxical finding where a lower
population density in cities was associated with higher COVID-19 incidence [18]. Similarly,
Liu’s study found a negative relationship between urban areas and population density in
relation to the spread of COVID-19 during the early stages of the pandemic [19]. Barak et al.
contend that city infection rates are determined by social makeup, politics, compliance,
and urban political attributes, challenging the conventional understanding of density as
the primary determinant of COVID-19 spread. They argue that population density is
conditional in infectious disease transmission [20]. Additionally, other density variables
in terms of housing [12,21], healthcare facilities [22,23], commercial facilities [24,25], green
space [26,27], and transportation facilities [21,28,29] were found to be related to the spread
of COVID-19. Researchers also discovered that indicators such as mixed-use development
index, walking accessibility, and the accessibility of healthcare facilities and transit were
related to the spread of COVID-19 [29–31]. These studies covered five dimensions: density,
diversity, design, destination accessibility, and distance to transit [32–34]. These dimensions
are commonly referred to as the 5Ds framework [35–37].

Various methods have been used to investigate the relationship between pandemics
and BE. Many scholars have adopted ordinary least-squares (OLS) as their primary study
method [11,38]. In contrast, others have used structural equation modeling [24], spatial
modeling [39–41], machine learning algorithms [42,43], and geographically weighted re-
gression (GWR) [18,21,22]. As a linear regression technique, OLS does not inherently
incorporate spatial relationships or explicitly consider spatial dependencies [44]. While
other methods have addressed the spatial relationship between the BE and the spread of
COVID-19, they have overlooked the temporal aspect as a significant driver of infection
rates. This oversight arises from the fact that COVID-19 cases are distributed spatially
and temporally, and the transmission patterns of newly acquired infections may exhibit
variability throughout the day and across consecutive days [45]. Chen et al. employed
geographical and temporal weighted regression (GTWR) to analyze the impact of popula-
tion movement on COVID-19 transmission, considering spatial and temporal factors [46].
Their findings indicate that GTWR effectively captures the dynamic and location-specific
connections between COVID-19 and population mobility. In a related study, Ling and
colleagues developed a mobility-augmented GTWR model to quantify the spatiotemporal
influences of social-demographic factors and human activities on COVID-19 dynamics [47].
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Further, many studies to date have addressed pandemic transmission at different
geographical scales. For example, Sy et al. conducted a macroscale investigation and found
that higher-population counties in the United States exhibit higher rates of SARS-CoV-2
transmission through the evaluated data from 3221 counties [48]. In contrast, Credit
adopted a community-based microscale approach to examine the relationship between
observed COVID-19 testing and case rates in ZIP codes for Chicago and New York [49].
The study’s results surprisingly indicated that the ZIP codes with the highest case rates
tend to have lower population densities, pedestrian and bike commuting rates, and median
incomes. Previous studies on urban density focused on larger areas, but examining specific
temporal and locational data is necessary to understand density variations within cities.
Aggregated densities at the city or county level are inadequate for assessing health risks
related to person-to-person interactions. Population density varies within counties, and
models should consider finer spatial resolutions, such as the sub-county level, for accurate
COVID-19 analysis [50,51]. China’s ‘grid governance’ scheme, integrating community
support and control functions at the district, street, and residential community levels,
has effectively managed the COVID-19 outbreak since its inception [52]. Accordingly,
investigating mesoscale areas such as administrative districts at or below the county level
(e.g., township-level divisions) is optimal for separating urban density’s impact relative to
internal and external connections.

The global COVID-19 pandemic led to various prevention and control measures
implemented in different regions. Heterogeneity in COVID-19 transmission patterns was
influenced by urban complexity and population mobility. Earlier studies have examined
various factors that may contribute to the contagion rate of COVID-19, such as urban
climatic and socioeconomic characteristics. However, research on the spatiotemporal
influence of BE factors on COVID-19 transmission is still limited, especially using multi-
source big data analytics approaches. Table S1 presents a comprehensive summary of
scholars’ research on COVID-19, including the geographical scope, research methods,
variables, and notable findings. This compilation is based on an extensive review of the
relevant literature.

This research aims to fill the gaps in the existing literature by utilizing GTWR to
investigate the spatiotemporal relationships between BE attributes and COVID-19 spread
to provide data-driven insights for enhancing pandemic preparedness and response. Specif-
ically, our study incorporates time latency as a contributing factor and a location parameter
to account for spatial heterogeneity before, during, and after the Shanghai lockdown
during the Omicron outbreak. The findings highlight the significance of geographic and
temporal context in shaping transmission dynamics. The GTWR model, at the township
level, can effectively account for both temporal and spatial heterogeneity and accurately
identify the uneven distribution of COVID-19 cases and the complex relationship between
its risk factors. The results emphasize the need for tailored interventions based on place-
specific relationships and temporal shifts rather than one-size-fits-all measures. Overall,
the study generates evidence to guide resilient urban planning and policymaking aligned
with SDG 11. The data-driven understanding of how BE factors influence infectious disease
transmission can inform targeted improvements to urban form, mobility networks, and
access to services to mitigate pandemic impacts.

The remainder of this paper is structured as follows. In Section 2, the study area and
dataset are introduced, as well as the research framework and regression analysis. Section 3
describes the basic framework of the GTWR model and its counterpart models used in the
study, such as OLS and GWR. The results of the three regression models are also compared
and assessed. In Section 4, the key findings from the coefficients of the GTWR model are
analyzed in detail, both temporally and spatially. The conclusions and suggestions for
future research are summarized in the last part of the paper.
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2. Methodology

As a leading global city, Shanghai has pursued rapid urbanization and economic
growth, resulting in high population density and an extensive transportation infrastructure.
However, these attributes may contribute to infectious disease transmission. This study uses
diverse data sources and analytical techniques to investigate spatiotemporal correlations
between factors in the BE and COVID-19 transmission at the township level across Shanghai.
The collected data includes COVID-19 case counts, demographic and economic variables,
and a comprehensive set of BE metrics encompassing density, diversity, design, destination
accessibility, and distance to transit measures. Understanding the associations between
urban form metrics and pandemic spread can inform targeted interventions aligned with
Shanghai’s objectives for sustainable development.

The methodological framework, presented in Figure 1, outlines the key processes of
compiling data from various sources, including BE, socioeconomic, and COVID-19 case data
(Table S2). Data cleaning and variable selection procedures were implemented to address
issues such as multicollinearity and enhance model parsimony. Spatial autocorrelation
analysis facilitated the exploration of spatial relationships among variables. The regression
techniques allowed for comparative modeling of the spatially and temporally varying
connections between the urban environment and COVID-19 transmission.
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2.1. Study Area

Shanghai is a megacity with over 25 million residents and a land area of 6341 km2,
which is divided into 16 districts (substantially bigger than US counties) and 218 township-
level divisions (including subdistricts or towns). The main ring roads within the inner city
of Shanghai spread out from the inner ring road in the order of the middle ring road, the
outer ring road, and the suburb ring expressway (Figure 2).
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In February 2022, Shanghai experienced a new outbreak of COVID-19 caused by
the Omicron variant of the SARS-CoV-2 virus. The government responded by locking
down different parts of the city at different times, with the entire city being locked down
from 1 April 2022. The lockdown was lifted after 95 days. Until 31 July 2022, Shanghai
had 650,464 positive cases, peaking at 5487 daily on 28 April 2022. Most locations had
three levels of management: closed, control, and prevention. Asymptomatic infections
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peaked at 25,173 per day on 13 April 2022, then slowly dropped (Figure 3). The government
began loosening restrictions in May 2022, and the city gradually restored regular production
and living order after 1 June.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 6 of 37 
 

 

In February 2022, Shanghai experienced a new outbreak of COVID-19 caused by the 
Omicron variant of the SARS-CoV-2 virus. The government responded by locking down 
different parts of the city at different times, with the entire city being locked down from 1 
April 2022. The lockdown was lifted after 95 days. Until 31 July 2022, Shanghai had 
650,464 positive cases, peaking at 5487 daily on 28 April 2022. Most locations had three 
levels of management: closed, control, and prevention. Asymptomatic infections peaked 
at 25,173 per day on 13 April 2022, then slowly dropped (Figure 3). The government began 
loosening restrictions in May 2022, and the city gradually restored regular production and 
living order after 1 June. 

 
Figure 3. Shanghai COVID-19 case statistics. 

2.2. Datasets 
2.2.1. Infection Data 

Using our proposed method, we analyzed daily infection counts disclosed by the 
Shanghai government and measured phase shifts in the COVID-19 pandemic timeline. We 
obtained COVID-19 case data from the Shanghai Municipal Health Commission’s daily 
notifications between 20 February 2022 and 31 July 2022 in 16 districts and used ArcMap 
10.8 to geocode each infected community’s address to a spatial location with latitude and 
longitude for visualization. To ensure accurate comparisons of monthly results between 
March and July, we linked the number of infected individuals in each subdistrict or mu-
nicipality to the polygon attribute matrix. This allowed us to determine the number of 
monthly and cumulative infections for each division. 

2.2.2. Demographic and Economic Variables 
We estimated the population of township-level divisions in 218 selected census tracts 

within Shanghai’s administrative divisions using the preliminary results of the 2020 Chi-
nese Census. Internet real-estate pricing databases, such as Anjuke and Lianjia, were uti-
lized to calculate the average rental and lodging costs. After data cleaning, individual res-
idential unit rents and prices were mapped to their corresponding subdistricts or towns, 
and average values were calculated. 

  

Figure 3. Shanghai COVID-19 case statistics.

2.2. Datasets
2.2.1. Infection Data

Using our proposed method, we analyzed daily infection counts disclosed by the
Shanghai government and measured phase shifts in the COVID-19 pandemic timeline.
We obtained COVID-19 case data from the Shanghai Municipal Health Commission’s
daily notifications between 20 February 2022 and 31 July 2022 in 16 districts and used
ArcMap 10.8 to geocode each infected community’s address to a spatial location with
latitude and longitude for visualization. To ensure accurate comparisons of monthly results
between March and July, we linked the number of infected individuals in each subdistrict
or municipality to the polygon attribute matrix. This allowed us to determine the number
of monthly and cumulative infections for each division.

2.2.2. Demographic and Economic Variables

We estimated the population of township-level divisions in 218 selected census tracts
within Shanghai’s administrative divisions using the preliminary results of the 2020 Chinese
Census. Internet real-estate pricing databases, such as Anjuke and Lianjia, were utilized to
calculate the average rental and lodging costs. After data cleaning, individual residential
unit rents and prices were mapped to their corresponding subdistricts or towns, and
average values were calculated.

2.2.3. Built Environment Variables

We quantified the BE variables using the 5Ds framework and summarized the BE
indicators, descriptive statistics, and calculation processes in Table 1. During the prepa-
ration stage, GIS was instrumental in rapidly collecting and screening urban setting and
spatial attribute data from multiple sources. To measure the BE variables, we utilized
points of interest (POIs) data, a type of urban big data that accurately depicts the spatial
distribution of entities and functional facilities that support human activities in urban
environments [53–56]. We obtained the POIs dataset 2022 from Amap, one of China’s most
popular online map services [57,58]. We calculated the building area, urban greenery, water
body area, and transportation network density using vector polygons extracted from the
Open Street Map database.
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Table 1. BE variables based on 5Ds dimension.

Classification Variable Calculation Process

Density

Population density Total population divided by area.

Building density Building square footage divided by area.

Green space density
D
(
GSj

)
= ∑n

k=1 xk
Aj

(1)

where Xk (k = 1, 2, . . ., n) denotes the area of a single green space, n indicates the number of green spaces within the
same subdistrict/town, and Aj measures the area of subdistrict/town j.

Density of road length

D
(

Rdj
)
= ∑n

k=1 xk
Aj

(2)

where Xk (k = 1, 2, . . ., n) denotes the length of a single road segment after being divided by administrative
boundaries of subdistrict/town j, n indicates the number of roads within the same subdistrict/town, and Aj
measures the area of subdistrict/town j.

Density of bus line length

D
(

BusLinej
)
= ∑n

k=1 xk
Aj

(3)

where Xk (k = 1, 2, . . ., n) denotes the length of a single bus line segment after being divided by administrative
boundaries of subdistrict/town j, n indicates the number of bus lines within the same subdistrict/town, and Aj
measures the area of subdistrict/town j.

Density of metro line length

D
(

MetroLinej
)
= ∑n

k=1 xk
Aj

(4)

where Xk (k = 1, 2, . . ., n) denotes the length of a single metro line segment after being divided by administrative
boundaries of subdistrict/town j, n indicates the number of metro lines within the same subdistrict/town, and Aj
measures the area of subdistrict/town j.

Density of bus stop/metro station/road intersection

D
(

BuSj/MetroSj/RdInterj
)
=

Nj
Aj

(5)

where N indicates the number of bus stops/metro stations/road intersections within the subdistrict/town j, and Aj

measures the area (unit: km2) of subdistrict/town j. The unit used is number/km2.

Density of 12 categories * of POI datasets

D
(

POIk, j
)
= Nk

Aj
(6)

where N indicates the number of category k points within the subdistrict/town j, and Aj measures the area (unit:
km2) of subdistrict/town j. The unit used number/km2.

Design

Quantity of road length/bus line/metro line/bust
stop/metro station/road intersection

The quantity of road length/bus line length/metro line length was measured as the total length of road/bus
line/metro line within each subdistrict or town, while the quantity of bus stop/metro station/street intersection
was the number of street intersections in each subdistrict.

Green space area, waterbody area The total area of polygons with green space and waterbody attributes was calculated within the subdistrict/town area.

Quantity of 12 categories * of POI datasets The amount of 12 categories of POIs within each subdistrict was counted separately.
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Table 1. Cont.

Classification Variable Calculation Process

Destination accessibility

Accessibility to hospital/clinic, accessibility to
kindergarten/school, commuting accessibility,
accessibility to park

Opportunity-based measures could simply be to find the nearest destinations to an origin and calculate their
distances or to count the number of destinations or opportunities available within a specified distance from
an origin [59–62].

Ai =

{
∑j Mj, i f dij ≤ L

0, i f dij > L (7)

Walk accessibility, drive accessibility, radius setting:
500 meters and 10 kilometers

Betweenness was utilized to describe the road network accessibility [63]. It computes the number of times each
street x is traversed by the shortest path between any two street segments, y and z, within a defined analysis radius.

Betweenness(x) = ∑y∈N ∑z∈Ry W(y)W(z)P(z)OD(y, z, x) (8)

where

OD(y, z, x) =


1, if x is on the first geodesic found from y to z

1/2, if x = y 6= z
1/2, if x = z 6= y
1/3, if x = y = z

0, otherwise

(9)

Distance to transit Distance to bus stop/metro station

DOT(x) = ∑
y∈Rx1

p(y)
d(x, y) (10)

p(y) represents the weight of node y within a radius of R in the equation, where p(y) takes on values between 0 and
1. d (x, y) is the minimum topological distance between nodes x and y. In our study, p(x) indicates the community,
p(y) depicts the metro station or bus stop, and R is 1 kilometer or 15 minutes of walking.

Diversity of land use Land use mix

The Shannon Entropy Index was used to quantify the land use mix [64]:

DIk = − (∑M
i=1 Pk,i In Pk,i )

In M
(11)

where Pk, i is the quantity of POIs within subdistrict k, which belongs to sub-category i as a percentage of the total
amount of POIs in subdistrict k and denotes the number of POI sub-categories in subdistrict k.

Notes *: 12 categories of POI datasets, which are tourist attractions and scenic spots, shopping venues, science, education, and cultural buildings, hotels and inns, public toilets,
companies and enterprises, administrative authorities and social groups, residential quarters, restaurants, cafes, and bars, living service facilities, healthcare facilities, and sports and
leisure facilities, where k is one of the categories.
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2.3. Methods

All variables were logarithmically transformed and normalized before further model-
ing. We employed min-max normalization to mitigate the undesirable effects of sample
data. Undesirable effects of sample data encompass outliers and unequal feature scales.
Outliers deviate significantly from the majority and can distort the analysis. Min-max
normalization addresses outliers by compressing data within a specific range. It also
standardizes feature scales for comparability [65–67]. Stepwise regression was utilized to
select superior predictors from a larger set of potential predictors to avoid overfitting the
data and prevent misleading variable importance regression [68–72]. A total of 54 initial
explanatory variables were screened, resulting in the exclusion of 45 and the final selection
of the nine most relevant variables (Figure 4). To ensure the absence of multicollinearity,
we conducted a variance inflation factor (VIF) test, removing variables with VIF values
greater than five from the models [73–75].

We employed OLS regression to examine the relationship between BE and the spa-
tiotemporal distribution of infection populations in 218 township-level divisions (as shown
in the following formula) using nine independent variables. The global model assumed
that the relationship between the response and explanatory variables did not vary spatially
across the study area. To account for spatial nonstationarity, we utilized GWR, which
associates explanatory variables with geographic locations but cannot handle temporal
nonstationarity [47,76]. This can be viewed as an extension of OLS models by associating ex-
planatory variables with geographical locations, which takes the following form [66,71,72]:

Yi = β0(ui, vi) +
k

∑
k=1

βk(ui, vi)Xik + εi (12)

where i (i = 1, 2, . . ., n) denotes a subdistrict or a town, Yi is the dependent variable
(the infected population), (ui, vi) denotes the coordinates of point i in space, β0(ui, vi)
represents the intercept value (constant), and βk(ui, vi) is the local regression coefficient
of k-th explanatory variable in the location (ui, vi). Xik is the value of the k-th explanatory
variable, and εi is the error term. Unlike the ‘fixed’ coefficient estimates over space in
the global model, this model allows the parameter estimates to vary across space and is,
therefore, likely to capture local effects [72,77].

To explore the relationship between the infected population and its influential variables
while considering both spatial and temporal heterogeneity [46,78,79], we adopted the
GTWR model proposed by Huang et al. [77]. A typical GTWR model can be written as
follows:

Yi = β0(ui, vi, ti) +
k

∑
k=1

βk(ui, vi ti) Xik + εi (13)

For each observation i (i = 1, 2, . . ., n), Yi is the dependent variable, whereas Xik is the k
-th explanatory variable. (ui, vi, ti) represents the space-time coordinates of observation i; ui
and vi are the projected spatial coordinates, whereas ti is the projected temporal coordinate.
β0(ui, vi, ti) is the intercept value, and βk(ui, vi, ti) denotes the regression coefficient, which
is a parameter measuring the influence of explanatory variable Xik on dependent variable
Yi, and εi denotes the error term for observation i [46,80,81].

The GWR-based technique enables visual analysis by generating local parameter
estimates that can be displayed on maps [78]. In the case of the GTWR model, each
township-level division is associated with a set of coefficients for different variables, in-
cluding coefficients for each time step. These coefficients can be categorized into intervals
and represented using various colors, allowing for visualizing spatial variations in the
impacts of BE variables on infections. Additionally, the GWR-based spatial autoregressive
modeling incorporates both conditional and unconditional local spatial autocorrelation
measures [82], which unveil hidden local patterns in the distribution of variables.
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Figure 4. Spatial distribution of selected variables.
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Spatial autocorrelation refers to the extent to which a specific sub-region is similar to or
different from its neighboring sub-regions regarding a given indicator. This autocorrelation
can be assessed on a global and local scale. Global measures provide an overall summary
of spatial autocorrelation, while local measures evaluate autocorrelation within specific
areas of interest [83,84].

In this study, we computed Moran’s I, along with Moran scatter plots and the local
indicator of spatial association (LISA). The Moran Index offers a comprehensive assess-
ment of spatial autocorrelation [85], while Moran scatter plots visually represent spatial
relationships and facilitate the examination of potential local clusters [86]. By utilizing
LISA, we can consider the localized impacts of the phenomenon [87,88]. The LISA clusters
are categorized as high–high (HH), low–low (LL), low–high (LH), and high–low (HL). HH
and LL clusters indicate significant spatial clusters surrounded by neighboring clusters
with either high or low values, respectively [14].

3. Results
3.1. Spatial Patterns: Cluster Analysis

In our exploratory spatial data analysis, we examined the spatial distribution of
infected populations at the township-level division. We aimed to identify patterns of
aggregation or anomalies. To assess spatial autocorrelation, we generated an empirical dis-
tribution by simulating 999 random maps using the infected case numbers and calculating
Moran’s I for each map. The left panel displays the grey empirical distribution, while the
blue line represents the mean. In contrast, the red line represents Moran’s I calculated for
the variable based on the observed dataset’s geography. Figure 5a indicates significant
autocorrelation (Moran’s I = 0.48, p < 0.001), highlighting the high spatial correlation of
COVID-19 cases between township-level divisions. The observed pattern’s value is sig-
nificantly higher than that under randomness. This insight is further confirmed in the
right panel, which presents a Moran scatter plot illustrating the relationship between the
attribute values at each location and the average value of the same attribute in neighboring
locations. Figure 5b depicts the scatter plot, with the horizontal axis representing the obser-
vation values (response axis) and the vertical Y axis representing the weighted average or
spatial lag of the corresponding observation. Positive spatial autocorrelation is observed in
the upper-right quadrant, where the attribute’s value and local average value are higher
than the overall average. Similarly, the lower-left quadrant indicates negative spatial
autocorrelation. These findings support the presence of spatial autocorrelation [88,89].
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To analyze the significance of spatial clusters, we employed the LISA in addition to
the Moran scatter plot. The LISA cluster map visually represents hot spots, indicating areas
with significant clustering. The LISA cluster map of the number of infected cases reveals hot
spots in the downtown area of Pudong New Area and along the Huangpu River. In these
regions, the HH category (red) represents areas with a high number of confirmed cases,
exceeding the average, surrounded by neighboring regions with similarly high numbers.
Conversely, the LL category (blue) denotes regions with a low number of confirmed cases,
below the average, surrounded by neighboring regions with similarly low values. The LL
category is primarily observed in the outskirts of Shanghai, with a few instances of the
LH category distributed along the Huangpu River (Figure 6). These findings shed light
on the spatial distribution and clustering patterns of infected populations in Shanghai,
providing valuable insights for targeted interventions to control and prevent the spread of
infectious diseases.
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3.2. Regression Results and Comparison

To evaluate a model, it is necessary to conduct a test for the serial correlation of residu-
als [90]. Spatial autocorrelation analysis is commonly used to test the serial correlation of
residuals in spatial analysis [91]. Moran’s index, a generalization of Pearson’s correlation
coefficient, is often employed to evaluate spatial clustering effects not captured by the
model. A value close to 1 indicates cluster patterns in the residuals, suggesting model
inaccuracies and the influence of unaccounted spatial variables. Conversely, a value close to
-1 suggests discrete patterns, indicating missing variables contributing to observed spatial
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patterns. A value close to or equal to 0 indicates a random pattern, implying a better
model fit [92,93].

Spatial effects, encompassing spatial autocorrelation and heterogeneity, are integral
in modeling. Neglecting these effects during the modeling process leads to misleading
significance tests and suboptimal model predictions [94]. In our study, the residuals
from three models (OLS, GWR, and GTWR) demonstrated an improvement in model
effectiveness, as evidenced by the transition from strong spatial autocorrelation to a random
pattern (Table 2). Due to the low adjusted R2 value observed in the OLS model, the inclusion
of an appropriate spatial model is necessary. Although the GWR model demonstrated
relatively higher R2 values for spatial variables, the residuals exhibited dispersed spatial
autocorrelation, suggesting the existence of unaccounted variables [14,95]. In contrast, the
GTWR model, which incorporates temporal effects in addition to spatial nonstationarity,
resulted in a better fit and demonstrated a random pattern in the residuals.

Table 2. Spatial autocorrelation results of OLS, GWR, and GTWR models.

OLS GWR GTWR

Moran’s Index: 0.050 −0.022 −0.001
Expected Index: −0.005 −0.005 −0.001

Variance: 0.000 0.000 0.000
z-score: 4.112 −1.924 0.160
p-value: 0.000 0.054 0.873
Pattern: Clustered Dispersed Random

The global OLS regression model acts as a reference by which to evaluate the efficacy
of local modeling techniques, revealing connections between COVID-19 outbreaks and
other BE variables. Table 3 presents the estimated results of the OLS model, indicating an
adjusted R2 value of 0.688, which explains 68.8% of the overall variability in the cumulative
case counts. The VIF values of independent variables were all less than 5, indicating no
significant multicollinearity among independent variables. Walk accessibility, population,
length of metro lines, and density of hotels and inns were strongly positively correlated
with COVID-19 cases (p-value < 0.001), while density of metro lines, number of scenic spots,
density of shopping services, and accessibility to healthcare services showed a negative
correlation with COVID-19 infection. Additionally, work commuting accessibility and the
mixability of land use positively influenced the spread of COVID-19 based on coefficient
and t-probability.

Table 3. Selected variables and results of stepwise OLS regression.

Unstandardized
Coefficients

Standardized
Coefficients

Variable B SE Beta t Sig. Tolerance VIF

(Constant) −0.139 0.053 −2.630 0.009 **
Walking accessibility 0.463 0.075 0.510 6.166 0.000 *** 0.220 4.542
Population of subdistrict 0.444 0.062 0.469 7.114 0.000 *** 0.348 2.876
Healthcare accessibility −0.083 0.038 −0.129 −2.183 0.300 * 0.430 2.327
Length of metro lines 0.265 0.063 0.263 4.236 0.000 *** 0.392 2.554
Density of hotel and inn 0.434 0.103 0.326 4.217 0.000 *** 0.253 3.954
Density of metro lines −0.172 0.056 −0.243 −3.046 0.003 ** 0.237 4.216
Number of scenic spots −0.137 0.045 −0.154 −3.060 0.003 ** 0.596 1.677
Land use mix 0.138 0.052 0.127 2.649 0.009 ** 0.657 1.522
Commuting accessibility 0.100 0.045 0.109 2.217 0.028 * 0.624 1.603

Dependent variable: infected population. Note. * p < 0.05, ** p < 0.01, *** p < 0.001.

In the empirical comparison of the OLS, GWR, and GTWR models using a reference
case area, the results presented in Table 4 demonstrate that the GTWR model has a superior
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model fit compared to OLS and GWR. The R2 value increased from 0.688 in OLS and
0.787 in GWR to 0.854 in GTWR, indicating that the non-stationary GTWR model better
fits the data compared to the static OLS model. Additionally, AIC was computed for each
model, and the one with the smallest value was selected as the best model, reflecting the
least information loss compared to the true model [96,97]. In our study, the AIC value
decreased from −391.54 and −392.81 in OLS and GWR, respectively, to −3610.16 in GTWR,
suggesting that the inclusion of spatial and temporal information in the GTWR model
significantly improved the explanatory power.

Table 4. Comparison results of OLS, GWR, and GTWR models.

OLS GWR GTWR

R2 0.688 0.787 0.854
Adjusted R2 0.673 0.776 0.853
RSS 1.915 1.314 1.714
AICc 1 −391.54 −392.81 −3610.16

1 The Akaike information criterion (AIC) is an estimator of prediction error.

3.3. Spatial Variation of Estimated Coefficients
3.3.1. Spatial Distribution by Environmental Variables

We used the GTWR model to obtain average coefficients for selected variables and
analyze their spatial variation among subdistricts or towns (Figure 7). Results were grouped
into five categories based on natural breaks in the average coefficients. Metro line length
had higher coefficients in the city-center area than other variables, while the density of
Shanghai’s metro lines had a negative impact on the central area and a transitional influence
from negative to positive in the suburbs (Figure 7a,b). The quantity of scenic spots had a
negative effect on infection cases, with decreasing coefficients towards the surrounding
areas (Figure 7c). Hotel and inn density coefficients were mainly concentrated in distant
suburbs adjacent to neighboring cities (Figure 7d). Healthcare facility accessibility positively
impacted infected cases in the central area but had a negative impact outside the outer
ring road. As accessibility decreased, the number of infected individuals increased in
the central area while it decreased outside the outer ring road. (Figure 7e). Commuting
accessibility negatively affected infected cases in the city center but positively affected them
in the suburban areas (Figure 7f). Walking accessibility positively impacted the suburb ring,
decreasing towards the suburbs and becoming negative in the distant suburbs (Figure 7g).
Land use mixability and population had the strongest positive effects in downtown areas
along the Huangpu River (Figure 7h,i).

3.3.2. Spatial Distribution by Temporal Scale

To examine differences in influence between March and July, we analyzed the co-
efficients of the nine most relevant factors identified in the stepwise regression over all
five months, and the results are shown in Figures 8–11. In March, the township-level
division population had the greatest influence on infected cases in the southeast part of
Pudong and the east of Fengxian district, with declining impacts along the diagonal to
the northwest. From April to June, the population coefficients for subdistricts or towns
fluctuated significantly, with high and sub-high values traveling anti-clockwise to Pudong
New Area and districts surrounding the Huangpu River, before shifting to the north in
May with a decreasing influence from north to south (Figure 8). The impacts of metro line
length varied regionally and temporally, with high positive values primarily in the northern
riverside areas of Shanghai and central Chongming Island, but gradually shifting to central
and then southern Shanghai, with the impact diminishing as the distance from high-value
areas increased. The effect of metro line length on infected cases became negative after July,
indicating a decreasing trend from south to north (Figure 9).
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The effect of hotel and inn density on infected cases was positive during the
first four months but largely negative by July, with the highest values in areas B (in-
cluding some industrial zones in Jiading and Baoshan), C (including some industrial
towns in Qingpu and Songjiang), and E (including some industrial towns and chemical
industrial zones in Jinshan) from March to June, and in areas A (most of Chongming
Island) and D (Lingang Special Area of Pudong New Area) in July (Figure 10). Figure 11
displays diverse geographical distribution patterns of walking accessibility coefficients
over the five time periods. Positive coefficients were observed in April and May, partially
negative coefficients were observed in March and July, and negative coefficients were
observed in June. Negative impacts were primarily observed in some towns close to the
provinces and a few towns in the north part of Chongming Island in March and July,
while the rest of the area continued to demonstrate positive impacts. The highest values
occurred mainly in the Puxi area in March and then throughout the Pudong New Area in
July. In April and May, positive impacts and the highest values occurred in the center of
Shanghai, decreasing in all directions, while in June, walking accessibility had a negative
influence on infection rates throughout the city, with the highest and second-highest
values seen in the southeast of Shanghai and values decreasing diagonally towards
the northwest.

The findings depicted in Figures 8–11 illuminate the key BE factors associated with
COVID-19 cases before, during, and after the lockdown in Shanghai. The significance
of public transport connectivity, pedestrian accessibility, and population density aligns
with Shanghai’s aspiration to become a global economic center supported by a robust
transportation network and activity centers. However, these urban development patterns
may also facilitate disease transmission. The results emphasize the necessity for coordinated
planning that integrates connectivity, density, and public health considerations.

3.3.3. Temporal Variation in Estimated Coefficients

The coefficients exhibit temporal and spatial variability, and we assessed their spatial
patterns and magnitude of influence using eigenvalues, as presented in Table 5. Walk
accessibility, land use mixability, hotel and inn density, and metro line length are positively
associated with infected populations, while metro line density, shopping service density,
work commuting accessibility, healthcare service accessibility, and scenic spot quantity are
negatively associated. The township-level division population consistently shows a positive
association. The effect of hotel and inn density, walking accessibility, and subdistrict or
town population varies considerably over time, with a higher standard deviation of their
average coefficients.

Table 5. Estimates of the GTWR model.

Variable AVG MIN MAX LQ MED UQ SD

Intercept −0.032 −0.197 0.011 −0.030 −0.015 0.000 0.049
Length of metro lines 0.065 −0.008 0.295 −0.001 0.021 0.065 0.097
Density of metro lines −0.041 −0.162 0.007 −0.050 −0.018 0.000 0.056
Number of scenic spots −0.032 −0.168 0.000 −0.053 −0.018 0.000 0.039
Hotel and inn density 0.107 −0.007 0.671 0.000 0.021 0.126 0.152
Healthcare facilities accessibility −0.024 −0.181 0.002 −0.024 −0.002 −0.001 0.037
Commuting accessibility −0.022 −0.005 0.149 0.000 0.005 0.018 0.036
Walking accessibility 0.111 −0.026 0.141 0.000 0.032 0.141 0.150
Land use mix 0.033 −0.014 0.203 −0.000 0.020 0.031 0.048
Population of Subdistrict or Town 0.114 0.001 0.487 0.003 0.070 0.100 0.153
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We computed the monthly average coefficient values of selected variables during the
lockdown period, and these are presented in Figure 12 for different time periods, revealing
two scenarios of coefficient growth trajectories from March to April. The coefficients
of both scenarios continued to decline in their respective directions from April to May
and from May through June, with coefficients stabilizing close to zero by June and July.
We conclude that coefficient values increased in the first stage, decreased in the second
stage, and finally stabilized in the third stage due to the influence of BE, which resulted in
variables contributing to the spread of COVID-19 varying over time [19,62].
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4. Discussion

We found that the association between BE variables and Omicron transmission varied
spatially and temporally in Shanghai, with township-level division-based population,
urban density, and destination accessibility identified as the most significant indicators.

4.1. Spatial Variability

This section focuses on spatial variations, using the average values for each township-
level division with respect to time (Figure 7); temporal variations will be discussed in the
following section.

4.1.1. Population, Transmission, and COVID-19 Policies

The influence of demographic characteristics on the transmission of COVID-19 is a
significant research topic. Our findings support previous research on the positive corre-
lation between population and COVID-19 prevalence [12,23,48]. However, contrasting
findings have been reported for population density in previous studies conducted in Asia,
such as Hong Kong [21] and cross-city studies in China [18,19], which may be attributed
to the implementation of quarantine measures and regional restrictions in the studied
areas. China’s major cities, including Shenzhen, Guangzhou, Beijing, and Xi’an, experi-
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enced recurrent COVID-19 outbreaks in 2022, similar to Shanghai. Currently, it seems that
the regional government’s adherence to the widely endorsed Dynamic Zero COVID-19
Strategy, implemented since January 2020, has yielded more favorable outcomes in pre-
venting COVID-19 transmission [98,99]. These governments implemented strict lockdown
measures and extensive testing promptly following the reoccurrence of outbreaks [100],
in contrast to Shanghai’s looser strategies, such as community-based contact tracing and
quarantine [101]. The rapid expansion of the Omicron variant outbreak in Shanghai can
be attributed to the high transmissibility and potential immune-escape properties of Omi-
cron BA.2.26, distinguishing it from previous localized SARS-CoV-2 outbreaks in China
post-initial COVID-19 waves [102].

4.1.2. Mobility and Urban Transport System

Transportation is the most influential aspect of BE on the spread of infectious diseases,
considering the mobility of humans across countries and cities and within cities. Shanghai
is a globally connected city, with 30 to 40% of all international flights arriving in China
since 2020 landing in the city, making infected tourists from other countries the origin
of practically all cases before the city-wide lockdown [102,103]. As one of the primary
modes of public transportation, the metro has been associated with high infection rates
in districts where high patronage of metro stations was observed [11,24]. In our study,
regions with more metro lines (e.g., Pudong New Area) and high-traffic interchange stations
(e.g., Century Avenue, Longyang Road) had a higher risk of infection due to the denser
metro network, which provides more intra-regional transportation interchanges and route
alternatives, leading to additional opportunities for interpersonal interaction and the spread
of disease in surrounding and peripheral regions.

4.1.3. COVID-19 Distribution and Accessibility Disparity

Accessibility to destinations, including healthcare facilities and workplaces, as well
as overall walking accessibility, has a more substantial impact on the spread of COVID-19
than urban density and design, as shown in our regression results. Our findings indicate
a positive link between walking accessibility in the city center and the risk of infection
transmission, with the opposite result in the suburbs, suggesting that making suburban
areas more accessible to walking may help reduce the spread of infection [104]. The corre-
lation between walking accessibility and scenic spot distribution suggests that suburban
areas with parks and open spaces can reduce stress, improve health, and lower the risk
of infectious disease transmission by reducing public transportation use [61,105,106]. In
contrast, outer suburbs with poor walking infrastructure and lower population densities
may increase the reliance on public transportation and amplify the risk of infectious disease
transmission [107,108]. Access to healthcare and traveling to work had opposing impacts
on the spread of Omicron, with shorter commutes in highly populated locations associated
with greater infection rates [109]. In contrast, lower infection rates in remote areas may be
due to fewer people commuting during peak hours.

4.1.4. Epidemics and Land Mixing

Land use mix, as measured using POI mix, is positively related to the infected population,
consistent with findings from previous studies in North America and Asia [21,30,110,111].
Downtown areas with high land use mixability tend to have a high population density and
increased mobility, which can increase the likelihood of interaction between individuals and
make it more challenging to track and suppress pandemics. However, our results are in
contrast to those of Kan et al., who found that a more significant risk is associated with a
larger proportion of green areas, higher median family income, and lower commercial land
density in the vicinity of confirmed case dwellings [26]. Another study by Wali and Frank
found that more mixed land use and greater pedestrian-oriented street connectivity correlate
with lower COVID-19 hospitalization or fatality rates [112]. In Shanghai, parks with high
levels of greenery have been found to potentially lower COVID-19 case rates, especially in
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densely populated urban areas [113], consistent with previous studies on COVID-19 and
green space [15,106,114].

4.2. Temporal Dynamics

Local adaptive mechanisms and preventive measures are commonly employed to pre-
vent and reduce the spread of infectious diseases [115]. Factors such as spatial attributes (BE
variables) and human behavior (such as mobility, stress management, and adaptation) can
contribute to the spread of COVID-19 and their dynamic and time-dependent nature must
be considered when analyzing the spread of infectious diseases [116]. Previous studies have
examined how different pandemic phases affect the influence of various variables, and the
delay in adopting containment measures can account for regional variations in the number
of COVID-19 cases [117]. However, the current literature lacks a comprehensive analysis of
big data that considers both spatial and temporal factors. This study addresses this gap by
utilizing multi-source big data at a subdistrict or town scale to investigate spatiotemporal
correlations between BE variables and COVID-19 transmission. The findings highlight
the importance of considering spatiotemporal variations when developing prevention
measures and policies, given the variability of these factors over time and across regions.

4.2.1. Overall Temporal Variation in Built Environment Variables

A time series analysis of COVID-19 transmission in Shanghai revealed distinct varia-
tions in coefficients during each stage. The majority of incubation period instances occurred
in the first stage, which preceded the Shanghai lockdown and saw a sharp increase in the
total number of confirmed cases. The impact of individuals’ movement and migration
during their latent period in the second stage rapidly decreased and vanished. During the
third stage, when the outbreak was under control, none of the coefficients changed with
time. Figure 12 shows that the impacts of density were more pronounced during the early
stages of COVID-19, which explains why urban centers and megacities were at the fore-
front of the disease’s dissemination [38]. As the pandemic expanded, variables related to
urban design dimensions, such as walking accessibility, commuter accessibility, and metro
line length, became increasingly significant for the transmission of infection, while the
influence of density-related variables diminished. We found that highly populated places
are more susceptible to pandemic outbreaks, which supports previous research [38,118].
The distribution of confirmed infections in Shanghai followed the allocation of population
density, with some other BE variables and indicators initially contributing to the incidence
of infection and then degrading over time. The decreasing coefficient of the township-level
division-based population from Pudong to the southwest of Puxi was attributed to the large
population base and control measures limiting population mobility in the Pudong area.

4.2.2. Human Behaviors and Public Transportation

Aside from demography, individual mobility is a critical factor in determining the
spread of infectious diseases [119]. Changes in habits and activities during the pandemic
may have influenced the relationship between metro line length and infection rates over
time, particularly in the context of mobility and transportation. Initially, increased public
transportation usage may have led to higher infection rates and a positive association
between the number of confirmed cases and metro line length, as observed in [19] and [108].
However, our findings reveal a subsequent negative correlation between metro line length
and infection rates, likely due to the public’s increased awareness of the dangers of using
public transportation and their preference for private vehicles, walking, or cycling [120,121].
These behavioral changes suggest that the impact of transportation on pandemic transmis-
sion is not constant and may be influenced by various factors, such as public awareness
and behavioral changes [120,122].
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4.2.3. Temporal Variation in Accessibility

Walking accessibility, the most significant feature of the BE outside of sociodemo-
graphic factors, played a crucial role in the early stages of Omicron spread and became the
most influential of all BE characteristics in the later stages of the lockdown. The accessibility
of each township-level division followed the same pattern as the coefficient of pre-blockade
walking accessibility in proportion to the number of infections. During the Shanghai lock-
down, the effect of walking accessibility was most pronounced in the city center, likely due
to higher population density and increased social interactions within residential areas. The
movement restrictions implemented by the Shanghai government made human mobility
within the same subdistrict or town stronger, supporting previous research showing that
highly populated, walkable, and physically degraded areas are particularly susceptible to
spreading COVID-19 [30]. However, in other months, high levels of walking accessibility
were associated with a decreased infection rate, likely due to improved access to healthcare
and public health services, as well as the usage of active transportation modes and the
availability of open spaces and parks for outdoor exercise and recreation while maintaining
social distance [123,124].

4.2.4. Hotel Density and COVID-19 Transmission

Our study highlights the spatial association between hotels and COVID-19 spread,
which was previously ignored in research on isolation facilities for inbound tourists or close
contacts [93]. We found that the configuration of urban industrial structures and the type of
mid- to low-end hotels contributed to higher infection prevalence before, during, and after
the lockdown. The industry concentration in Shanghai’s suburbs has stimulated the growth
of gross industrial output value and GDP, generating favorable benefits for Shanghai and
increasing suburban employment and population [125]. However, the implementation
and administration of pandemic prevention measures in small informal hotels, where
most workers in the manufacturing and processing industries live, may be somewhat lax,
raising the likelihood of disease transmission. In July, most areas within the suburban
ring expressway were negatively impacted, possibly due to increased compliance with
health rules, changes in population density, and fluctuations in the timing and intensity
of the pandemic.

4.3. Limitations and Assumptions

This study has several limitations. Firstly, the asymptomatic infected and confirmed
case data were obtained from the Shanghai Municipal Health Commission’s daily reports.
However, the tracking and estimation of asymptomatic cases were likely based on certain
assumptions by the health authorities, as the full details are not publicly available. We have
relied on the official reported figures in our analysis but caution that these asymptomatic
case numbers may be subject to uncertainty.

Additionally, the BE variables remained stationary, while only the location data for
infected population measurement varied temporally. Future studies should incorporate
temporal details of BE variables, such as the opening hours of shopping venues and
restaurant POIs and accessibility during weekdays, weekends, daytime, and nighttime.
Additionally, contextual factors beyond the POI dataset from Amap, such as temperature,
humidity, topography, policy implementation, and other control measures, should be
considered in further research. Furthermore, population mobility at the community level
and its impact on the spread of COVID-19 require further investigation.

4.4. Implications and Future Perspectives

In the context of the COVID-19 pandemic, our study explored the spatiotemporal
impact of sociodemographic indicators and BE variables on COVID-19 spread. This analysis
underscores the importance of evidence-based approaches in urban planning and public
health policymaking, aligning with the objectives of SDG 3 for good health and well-being
and SDG 11 for sustainable and resilient cities and communities. Our findings highlight
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the necessity for comprehensive public health strategies, including targeted quarantine
measures, restrictions on international travel, and the promotion of active transportation
modes such as walking and cycling. Urban policymakers and planners should prioritize
understanding the spatial and temporal influences of BE variables on viral dissemination
and foster resilience within cities.

The study suggests the significance of optimizing metro lines, improving ventilation
design in metro systems and stations, and creating underground pedestrian routes while
ensuring social equity from a public health perspective. Furthermore, targeted public
health interventions, such as enhanced testing and contact tracing, should be implemented
in areas with high population density and public transportation usage. Future research
should focus on identifying susceptible settings and vulnerable demographics at smaller
regional or individual levels. Policymakers should also consider the temporal dynamics
of BE in disease transmission when formulating preventive measures against infectious
diseases. This includes promoting walkable neighborhoods, efficiently allocating healthcare
facilities, and integrating green spaces into urban design to enhance the resilience of cities.

5. Conclusions

The COVID-19 pandemic has highlighted gaps in understanding how BE factors
influence disease transmission, especially considering spatial and temporal variations.
This study aimed to address these gaps by investigating the spatiotemporal relationships
between BE attributes and COVID-19 cases using multi-source urban data.

To capture localized variations, we focused the analysis at the township level across
Shanghai during different phases of the Omicron outbreak and lockdown. The associations
were analyzed using GTWR models and local coefficient time series clustering while
accounting for spatial and temporal heterogeneity. The results show that the GTWR model
accounted for over 85.4% of the variation and potential associated factors in COVID-19
cases. This novel approach allowed an assessment of how the impacts of BE measures
like population density, transit accessibility, and land use mix evolve over time and space
in the urban context. The results demonstrated significant spatiotemporal variability in
the connections between BE factors and COVID-19 transmission. Regarding space, metro
line length, walking accessibility, hotel density, and population, these showed consistently
positive correlations with infection prevalence. Temporally, the relationships between
accessibility, mobility, density, and COVID-19 cases shifted noticeably across pre-lockdown,
lockdown, and post-lockdown stages.

In conclusion, this study underscores the significance of localized spatiotemporal
analysis in comprehending the impact of the BE on the transmission of infectious diseases.
The findings have practical implications for targeted urban planning and public health
strategies tailored to the distinct spatial and temporal dynamics of various cities. Moreover,
our research closely aligns with the United Nations’ Sustainable Development Goals (SDGs),
specifically SDG 3: Good Health and Well-Being, and SDG 11: Sustainable Cities and
Communities. By investigating the spatiotemporal relationships between BE factors and
COVID-19 transmission, our study contributes to understanding how urban planning and
design interventions can enhance urban resilience against widespread infectious diseases.
Policymakers and urban planners can utilize this knowledge to formulate customized
strategies and interventions to mitigate the impact of future pandemics. Future research
should consider integrating individual-level demographic and behavioral data at finer
resolutions while incorporating additional contextual variables. This approach is essential
for generating more accurate and nuanced insights. Furthermore, there is a need for further
efforts to translate these findings into practical urban planning guidelines and public health
protocols that are specifically tailored to local transmission profiles and community needs.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijgi12100390/s1, Table S1: Recent articles referring to the
impacts of the built environment on COVID-19; Table S2: Descriptive statistics of dependent and
explanatory variables. References [126–131] are cited in the supplementary materials.
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