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Abstract: Collapses are one of the most common geological disasters in mountainous areas, which
easily damage buildings and infrastructures and bring huge property losses to people’s production
and life. This paper uses Huinan County as the study area, and with the help of a geographic
information system (GIS) based on the formation principle of natural disaster risk, the informa-
tion content method (ICM), the analytical hierarchy process (AHP), and the analytical hierarchy
process–information content method (AHP-ICM) model are applied to hazard mapping, and the
analytical hierarchy process-entropy weight method (AHP-EWM) model is applied to exposure,
vulnerability and emergency responses, and recovery capability mapping. A risk mapping model
for collapse disasters was also constructed using these four elements. Firstly, an inventory map of
52 landslides was compiled using remote sensing interpretation, field verification, and comprehen-
sive previous survey data. Then, the study area mapping units were delineated using the curvature
watershed method in the slope unit, and 21 indicators were used to draw the collapse disaster risk
zoning map by considering the four elements of geological disaster risk. The prediction accuracy
of the three hazard mapping models was verified using the receiver operating characteristic (ROC)
curve, and the area under the curve (AUC) results of the AHP, ICM, and AHP-ICM models were 80%,
85.7%, and 87.4%, respectively. After a comprehensive comparison, the AHP-ICM model is the best
of the three models in terms of collapse hazard mapping, and it was applied to collapse risk mapping
with the AHP-EWM model to produce a reasonable and reliable collapse risk zoning map, which
provides a basis for collapse management and decision making.

Keywords: risk mapping; GIS; analytical hierarchy process; information content method; spatial analysis

1. Introduction

Geological hazards such as collapses and landslides often occur in mountainous areas
and can pose a major threat to the safety of life, property, and transport infrastructure in ar-
eas of intense human activity [1,2]. A collapse is a phenomenon in which a mountain, earth
or rock deposit, or building loses its stable balance and collapses partially or completely
due to geological action or external forces, mostly among steep-angled mountains [3],
and may be caused by factors such as heavy rainfall [4], seismic activity [5], and human
engineering activities [6] (mining, slope excavation, etc.). To better identify areas where
collapse disasters may occur and to take effective prevention and control measures, risk
mapping of collapse disasters is essential [7–9].

In recent years, driven by the development of mountainous cities, many road con-
struction projects require collapse hazard and risk evaluation to protect people’s lives and
properties [10–12]. According to statistics, in 2017 alone, more than 2800 geological disasters
occurred in China, resulting in hundreds of deaths and economic losses of more than CNY
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1 billion. Among them, repeated collapse disasters occurred in some mountainous areas,
destroying a large amount of infrastructure and farmland and causing a large number of
rural people to lose their production and livelihood. Although the size of rock masses is
relatively small, these rock falls can instantly cause huge losses and hazards due to their
suddenness and the huge impact they contain, especially along roads [13].

At present, great progress has been made in the work of collapse disaster risk evalu-
ation, which mainly consists of three major categories: qualitative analysis, quantitative
analysis, and a combination of both [14–19]. The analytical hierarchy process (AHP)
is a more widely used method for qualitative analysis of collapse disaster risk evalua-
tion [18,20,21], which is a multi-objective decision-making method with a high degree of
subjectivity for determining the degree of contribution of each collapse indicator to collapse
risk. Quantitative analysis is a method of analysing problems using mathematical models,
which takes objective data as input and applies tools such as mathematical and statistical
analysis to calculate the results and analyse them, such as the information content method
(ICM) [22], frequency ratio method (FRM) [17,23], entropy weight method (EWM) [24],
and logistic regression (LR) [25,26]. Using only one method is too subjective or relies too
much on mathematical models and yields somewhat one-sided weight values. However,
combining the two types of weight-defining methods can make up for the single deficiency
and achieve the integration of subjective and objective and qualitative and quantitative. In
this study, AHP is combined with ICM and EWM, respectively, based on the advantages
of different methods and ArcGIS 10.8.1 to investigate the riskiness of collapse disasters in
Huinan County.

In collapse risk mapping, the selection of a suitable mapping unit is a key step.
At present, more and more scholars choose slope units based on the characteristics of
collapses [22,27], while the hydrological analysis method is more cumbersome in GIS
extraction, and the method cannot identify the horizontal plane correctly. To give a more
complete picture of the slope where the collapse site is located and thus be able to carry out
a more practical and reasonable division and improve the model prediction accuracy, the
curvature watershed method [25] was chosen for the unit division of the mapping unit in
this study.

The purpose of this study is to provide a basis for the establishment of the riski-
ness model of collapse in Huinan County, Tonghua City, Jilin Province. Based on the
1:50,000 geological hazard survey in Huinan County, a total of 52 collapse disaster sites in
the study area were counted. The curvature watershed method was used to divide the en-
tire study area into units and then apply the formation principle of natural disaster risk [28].
Evaluation indexes were selected from four standard layers: disaster hazard, exposure,
vulnerability, and emergency response and recovery capability of the disaster bearers, and
correlation analysis was performed on the selected indicators. Then, the AHP, ICM, and
integrated AHP and ICM methods were used to establish the hazard mapping models, and
the AHP-EWM method was used to establish the exposure, vulnerability, and emergency
response and recovery capability mapping models. Finally, the predictive ability of the
three hazard mapping models was verified by using the receiver operating characteristic
(ROC) curve, and the optimal model was selected and plotted with the AHP-EWM model.
The risk map of Huinan County was created, and risk mapping of collapse disasters in
Huinan County was performed. The results of the study will provide guidance for risk
management and disaster prevention and mitigation in Huinan County and provide a
reference for policymakers.

2. Data and Methodology
2.1. Overview of the Study Area

The research area is in Huinan County, Tonghua City, Jilin Province (Figure 1), with
a total area of about 2277 km2 and geographical coordinates at 125◦58′–126◦45′ E and
42◦16′–42◦54′ N. The terrain is characterised by high southeast and low northwest points,
with the highest point at 1222 m and the lowest point at 187 m above sea level. The
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climate of the study area is a north temperate continental monsoon, with an average annual
precipitation of 696.3 mm according to meteorological statistics from 1998 to 2014, with
precipitation mainly concentrated in the period of June to August. Field investigations
show that the landslides are mainly located along the Huinan–Jingyu highway and railway,
as well as in the mining areas of Chaoyang Town, Huinan Town, Fumin Town, etc. The
types of slopes forming the landslides are mainly artificial rocky slopes, followed by natural
rocky slopes. The geotechnical types are more complex, mainly basalt (β), granite (γ), hard
clastic rock (Q + Z), softer clastic rock (K + J), limestone (∈ + O + Z), metamorphic rock (As)
and clay and gravel double-layered soil (Q). Possible destabilising factors are rainfall, frost
heave, and human damage, with collapse mostly occurring during the rainfall process.
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Figure 1. Location map of the study area.

2.2. Collapse Evaluation Indicators
2.2.1. Establishment of the Indicator System

This study is based on the evaluation indicators selected from the formation principle
of natural disaster risk. For disaster hazards, in addition to reviewing the relevant literature,
we also combined the geological characteristics of the study area and the mechanism
of the occurrence of collapse hazards and filtered out the high-correlation evaluation
indicators with the occurrence of collapses after comparison. For the exposure, vulnerability,
emergency response, and recovery capability of the disaster acceptor, indicators related
to population, economy, and education, as well as infrastructure, were considered from
the perspective of human society and according to the population, economic, and social
situation of the study area.

In summary, 21 evaluation indicators were selected for the study to apply to the
collapse risk mapping, as follows:

Selection of Hazard Indicators

The hazard contains 11 indicators, namely slope angle, slope aspect, multi-year average
precipitation, distance from the fault, distance from the river, distance from the road,
landform type, vegetation type, NDVI, lithology, and mining point density. Slope angle
is a crucial factor when examining the potential for collapses in an area, and where the
slope angle is large, the risk of collapses is higher due to the increased gravitational effect
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of the mountain and reduced resistance [29]. The slope aspect is one of the topographic
factors, and differences in the slope aspect can result in differences in the direction of
light exposure, light intensity, and hours of light on the slope [30]. Rainfall is a primary
external factor of geological disasters in the region. Both surface water and groundwater’s
perennial scouring and erosion effects on geotechnical bodies will reduce the mechanical
properties of geotechnical bodies [31], providing conditions for the formation of disasters
such as collapse and landslides. The severity, distribution, and type of geological disasters
are closely related to lithology, and lithology is an intrinsic factor in the development or
occurrence of geological disasters [32]. The distance from the fault reflects the influence of
geological formations on the formation and development of collapse disasters in many ways.
The development of faults reduces the overall joint strength of the rock mass, resulting in a
reduction in shear strength, which makes the rock mass vulnerable to destabilisation and
damage under the action of external factors [18]. Distance from the river reflects the gradient
relationship between rivers and the possible occurrence of collapses, with hills close to rivers
being more prone to collapse disasters [25,33]. Distance from the road and mining point
density [33] represent the intensity of human engineering activities, which can cause the
movement of geotechnical bodies and groundwater transport under the influence of human
activities and often cause geological disasters when beyond a stable state. Topography
is the main controlling factor in determining the extent of geological disasters, and the
presence of certain topographical conditions must be accompanied by a corresponding type
of geological disaster. To a certain extent, a certain topography necessarily corresponds
to a certain type of geological disaster. Lush vegetation can effectively reduce the degree
of influence of the external environment on geological disasters [34,35], and geological
disasters are less likely to be caused in low human activity areas with lots of vegetation.
The spatial distribution of the 11 hazard indicators is shown in Figure 2.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 4 of 31 
 

 

Selection of Hazard Indicators 
The hazard contains 11 indicators, namely slope angle, slope aspect, multi-year aver-

age precipitation, distance from the fault, distance from the river, distance from the road, 
landform type, vegetation type, NDVI, lithology, and mining point density. Slope angle 
is a crucial factor when examining the potential for collapses in an area, and where the 
slope angle is large, the risk of collapses is higher due to the increased gravitational effect 
of the mountain and reduced resistance [29]. The slope aspect is one of the topographic 
factors, and differences in the slope aspect can result in differences in the direction of light 
exposure, light intensity, and hours of light on the slope [30]. Rainfall is a primary external 
factor of geological disasters in the region. Both surface water and groundwater’s peren-
nial scouring and erosion effects on geotechnical bodies will reduce the mechanical prop-
erties of geotechnical bodies [31], providing conditions for the formation of disasters such 
as collapse and landslides. The severity, distribution, and type of geological disasters are 
closely related to lithology, and lithology is an intrinsic factor in the development or oc-
currence of geological disasters [32]. The distance from the fault reflects the influence of 
geological formations on the formation and development of collapse disasters in many 
ways. The development of faults reduces the overall joint strength of the rock mass, re-
sulting in a reduction in shear strength, which makes the rock mass vulnerable to desta-
bilisation and damage under the action of external factors [18]. Distance from the river 
reflects the gradient relationship between rivers and the possible occurrence of collapses, 
with hills close to rivers being more prone to collapse disasters [25,33]. Distance from the 
road and mining point density [33] represent the intensity of human engineering activi-
ties, which can cause the movement of geotechnical bodies and groundwater transport 
under the influence of human activities and often cause geological disasters when beyond 
a stable state. Topography is the main controlling factor in determining the extent of geo-
logical disasters, and the presence of certain topographical conditions must be accompa-
nied by a corresponding type of geological disaster. To a certain extent, a certain topogra-
phy necessarily corresponds to a certain type of geological disaster. Lush vegetation can 
effectively reduce the degree of influence of the external environment on geological dis-
asters [34,35], and geological disasters are less likely to be caused in low human activity 
areas with lots of vegetation. The spatial distribution of the 11 hazard indicators is shown 
in Figure 2. 

  

Figure 2. Cont.



ISPRS Int. J. Geo-Inf. 2023, 12, 395 5 of 30ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 5 of 31 
 

 

  

  

  

Figure 2. Cont.



ISPRS Int. J. Geo-Inf. 2023, 12, 395 6 of 30ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 6 of 31 
 

 

  

 
 

Figure 2. Hazard indicator maps: (a) slope angle; (b) slope aspect; (c) lithology; (d) landform type; 
(e) NDVI; (f) distance from road; (g) distance from fault; (h) distance from river; (i) multi-year aver-
age precipitation; (j) vegetation type; and (k) mining point density. 

Selection of Exposure Indicators 
Exposure refers to the economic, social, and natural environmental systems that are 

vulnerable to geological disasters, including agriculture, human living conditions, and the 
ecological environment. In this study, exposure mapping selected indicators such as pop-
ulation density, road density, housing density, and GDP are used. Population density is 
calculated by dividing the population of a township by its area. Areas with high popula-
tion density have greater pressure on the living environment, leading to higher corre-
sponding exposure [36], which is more severely affected by collapses. GDP is a measure 
of economic development [37], which is taken from a kilometre grid dataset of the spatial 
distribution of GDP in China, and the higher the GDP of the study area, the higher its 
exposure. Housing density and road density, which are key indicators of the urban devel-
opment scale [38], are important factors regarding exposure, whereby dense housing and 
roads reflect greater exposure. The spatial distribution of the four exposure indicators is 
shown in Figure 3. 

Figure 2. Hazard indicator maps: (a) slope angle; (b) slope aspect; (c) lithology; (d) landform type;
(e) NDVI; (f) distance from road; (g) distance from fault; (h) distance from river; (i) multi-year average
precipitation; (j) vegetation type; and (k) mining point density.

Selection of Exposure Indicators

Exposure refers to the economic, social, and natural environmental systems that are
vulnerable to geological disasters, including agriculture, human living conditions, and
the ecological environment. In this study, exposure mapping selected indicators such as
population density, road density, housing density, and GDP are used. Population density is
calculated by dividing the population of a township by its area. Areas with high population
density have greater pressure on the living environment, leading to higher corresponding
exposure [36], which is more severely affected by collapses. GDP is a measure of economic
development [37], which is taken from a kilometre grid dataset of the spatial distribution of
GDP in China, and the higher the GDP of the study area, the higher its exposure. Housing
density and road density, which are key indicators of the urban development scale [38], are
important factors regarding exposure, whereby dense housing and roads reflect greater
exposure. The spatial distribution of the four exposure indicators is shown in Figure 3.
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(d) GDP.

Selection of Vulnerability Indicators

Vulnerability refers to the degree of damage and loss to the disaster bearers in Huinan
County due to potential disaster factors, including population, property, and ecosystems.
The level of human vulnerability depends on factors such as age and awareness of disaster
preparedness [28]. The selected vulnerability indicators in this study include the proportion
of vulnerable populations, education status, and residential buildings. The vulnerable
population includes people aged 0–17 and over 60 years old, as well as those with poor
health who are more susceptible to disasters [28,38]. Education increases awareness of
disaster preparedness, leading to reduced vulnerability. Residential buildings are human
property and are more prone to collapse disasters when located in close proximity to
mountainous areas [37]. The spatial distribution of these three vulnerability indicators is
displayed in Figure 4.
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Selection of Emergency Response and Recovery Capability Indicators

Emergency response and recovery capability refer to a series of disaster prevention
measures taken to reduce the damage caused when a disaster bearer is affected by a collapse
disaster. The level of local economic development and the number of emergency response
agencies reflect the level of emergency response and recovery capability. In this study,
education investment, local financial revenue, and the capacity of relief agencies are selected
as indicators of emergency response and recovery capability. The spatial distribution of
these three indicators is presented in Figure 5.
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2.2.2. Multicollinearity Analysis of Evaluation Indicators and Results

There may be statistical covariance between the initially selected collapse evaluation
indicators, which can lead to the vulnerability model not being able to accurately analyse
the true relationship between the evaluation indicators and collapses. Before building the
model, this paper uses tolerance (TOL) and variance inflation factor (VIF) to test for factor
covariance to ensure that the indicators are independent of each other [39]. The VIF is
calculated as follows:

VIF =
1

1− R2
i

(1)

where Ri is the negative correlation coefficient of an evaluation indicator to other evaluation
indicators. It is generally accepted that when the VIF value is greater than 10, there is strong
co-collinearity between the factors, and the variable should be removed from the model.

Multiple covariance analysis was performed on the evaluation indicators by VIF and
TOL to ensure that each evaluation indicator was independent of the other, and if the VIF
of an evaluation indicator was greater than 10, it was excluded. As can be seen from the
results in Table 1, the VIF values of all indicators were less than 10, indicating that each
indicator was independent of the other and did not need to be excluded.
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Table 1. Variance inflation factor (VIF) values and tolerance (TOL) for evaluation indicators.

Indicator TOL VIF

Local financial revenue 0.16 6.248
Distance from road 0.179 5.602

Multi-year average precipitation 0.266 3.755
Vegetation type 0.34 2.942

Education investment 0.351 2.849
Slope aspect 0.369 2.707

Lithology 0.369 2.712
Education status 0.432 2.312

Population density 0.477 2.095
Landform type 0.56 1.787
Road density 0.578 1.731

Distance from river 0.606 1.65
Proportion of vulnerable population 0.627 1.595

Housing density 0.75 1.333
GDP 0.796 1.256

Relief agencies’ capacity 0.8 1.251
NDVI 0.846 1.182

Slope angle 0.898 1.114
Distance from fault 0.906 1.104

Mining point density 0.913 1.095
Residential buildings 0.947 1.055

2.3. Data Collection

This study constructs a collapse risk mapping indicator system for Huinan County
from four elements: hazard, exposure, vulnerability, and emergency response and recovery
capability. The data mainly include vector and raster data from remote sensing, meteo-
rology, and basic geographic information, as well as attribute data related to population
and economy. The data for lithology, distance from fault, landform type, mining point
density, housing density, road density, and residential buildings were obtained from the
Report on Geological Disaster Investigation and Mapping in Huinan County, Jilin Province,
where the distance from fault was processed using the Euclidean Distance, the mining
point density and residential buildings were processed using the Kernel Density, and the
housing density and road density were processed through the Calculate Geometry of the
Attribute Table. The slope angle and slope aspect are derived from DEM digital elevation
data (ASTER GDEM 30 M) from the Geospatial Data Cloud, which can be extracted directly
by ArcGIS 10.8.1. The data on distance from the river and distance from the road were
obtained from the National Catalogue Service for Geographic Information and then pro-
cessed using Euclidean Distance. Multi-year average precipitation was obtained directly
from the Resource and Environment Science and Data Center of the Chinese Academy of
Science. Vegetation type was obtained from the databox, and NDVI data were obtained
from Landsat 8 OLI_TIRS in the Geospatial Data Cloud, then processed and converted
to raster data using ENVI 5.3 software. Population density and proportion of vulnerable
populations are available directly from the Worldpop Hub, with a resolution of 100 m
selected. GDP data are available directly from the National Earth System Science Data
Center, with a resolution of 1 km. Data on education status, education investment, local
financial revenue, and relief agencies’ capacity were obtained from POI from Planning
Cloud (http://guihuayun.com/ (accessed on 15 February 2023)) for point extraction, and
then Kernel Density was processed using ArcGIS 10.8.1, while the data used for analysing
these evaluative indicators were obtained from the Tonghua Statistical Yearbook. Table 2
shows the selection of each indicator and its source, and Figure 6 shows the technical route
and methodology.

http://guihuayun.com/
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Table 2. Indicators selected for the collapse risk model and their sources.

Sl. No. Indicator Data Types Resolution/Year Data Source

Hazard indicators

1 Lithology Raster data 1:50,000 Report on Geological Disaster Investigation and
Mapping in Huinan County, Jilin Province

2 Distance from fault Vector data 1:50,000 Report on Geological Disaster Investigation and
Mapping in Huinan County, Jilin Province

3 Slope angle Raster data 30 m https://www.gscloud.cn (accessed on
30 February 2023)

4 Slope aspect Raster data 30 m https://www.gscloud.cn (accessed on
30 February 2023)

5 Landform type Vector data 1:50,000 Report on Geological Disaster Investigation and
Mapping in Huinan County, Jilin Province

6 Distance from river Vector data 1:1,000,000 https://www.webmap.cn/ (accessed on
9 March 2023)

7 Multi-year average
annual precipitation Raster data 1 km https://www.resdc.cn/ (accessed on

15 March 2023)

8 Vegetation type Vector data 1:1,000,000 https://www.databox.store (accessed on
11 February 2023)

9 NDVI Raster data 30 m Landsat 8 OIL_TIRS

10 Distance from road Vector data 1:1,000,000 https://www.webmap.cn/ (accessed on
9 March 2023)

11 Mining point density Vector data 1:50,000 Report on Geological Disaster Investigation and
Mapping in Huinan County, Jilin Province

Exposure indicators

1 Population density Raster data 100 m https://www.worldpop.org/ (accessed on
14 February 2023)

2 Housing density Vector data 1:50,000 Report on Geological Disaster Investigation and
Mapping in Huinan County, Jilin Province

3 Road density Vector data 1:50,000 Report on Geological Disaster Investigation and
Mapping in Huinan County, Jilin Province

4 GDP Raster data 1 km http://www.geodata.cn/ (accessed on
16 March 2023)

Vulnerability indicators

1 Proportion of
vulnerable population Raster data 100 m https://www.worldpop.org/ (accessed on

14 February 2023)
2 Education status Attribute data 2015–2019 Tonghua Statistical Yearbook

3 Residential buildings Vector data 1:50,000 Report on Geological Disaster Investigation and
Mapping in Huinan County, Jilin Province

Emergency response and recovery
capability indicators

1 Education investment Attribute data 2015–2019 Tonghua Statistical Yearbook
2 Local financial revenue Attribute data 2015–2019 Tonghua Statistical Yearbook

3 Relief agencies’
capacity Attribute data 2015–2019 Tonghua Statistical Yearbook

All data for this study were processed in ArcGIS 10.8.1, and the geographical coordi-
nates were GCS_WGS_1984. The data analysis was carried out in the projection coordinates
of WGS 1984 UTM Zone 52 N, and the cell size of all indicators was adjusted to 100 m when
doing the analysis, so the total number of cells for each indicator map was 227,121.

2.4. Mapping Unit

The division of mapping units is the first and most important basis for the evaluation
of the susceptibility, hazard, and risk of disasters in large-scale areas [40]. Its purpose is
to extract the actual area into the unit, which in turn makes the results of the collapse risk
mapping more accurate. Before doing the analysis, the data of all evaluation indicators are
extracted into the mapping unit, and then GIS technology is used to conduct spatial overlay
analysis of all evaluation indicators and visualise the data so that the results obtained will

https://www.gscloud.cn
https://www.gscloud.cn
https://www.webmap.cn/
https://www.resdc.cn/
https://www.databox.store
https://www.webmap.cn/
https://www.worldpop.org/
http://www.geodata.cn/
https://www.worldpop.org/
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be more representative of the corresponding regions in reality. There are five main types of
mapping units: grid unit, regional unit, watershed unit, uniform condition unit, and slope
unit [41,42].

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 12 of 31 
 

 

3 
Relief agencies’ 

capacity Attribute data 2015–2019 Tonghua Statistical Yearbook 

 
Figure 6. Flow chart of collapse risk mapping. 

2.4. Mapping Unit 
The division of mapping units is the first and most important basis for the evaluation 

of the susceptibility, hazard, and risk of disasters in large-scale areas [40]. Its purpose is 
to extract the actual area into the unit, which in turn makes the results of the collapse risk 
mapping more accurate. Before doing the analysis, the data of all evaluation indicators 
are extracted into the mapping unit, and then GIS technology is used to conduct spatial 
overlay analysis of all evaluation indicators and visualise the data so that the results ob-
tained will be more representative of the corresponding regions in reality. There are five 
main types of mapping units: grid unit, regional unit, watershed unit, uniform condition 
unit, and slope unit [41,42]. 

Figure 6. Flow chart of collapse risk mapping.

The accuracy of the mapping unit delineation reflects the fact that the study area
is delineated as accurately as possible on ArcGIS so that a more accurate analysis of the
study area can be carried out. Therefore, the correct choice of mapping unit delineation
is essential for collapse risk evaluation. Previously, grid units were chosen as mapping
units for collapse disaster evaluation [43]; however, the disadvantage of this approach is
that it does not reflect the geological characteristics of the study area, which is divided into
a certain number of regular grids, and after extracting information about the study area
onto grid units, the unit is almost completely irrelevant to information about the spatial
topography of the study area. Therefore, the slope unit was selected as the mapping unit in
this paper, and it was divided into slope units using the hydrological analysis module in
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ArcGIS 10.8.1 for the 90 m resolution DEM data of the study area. Currently, slope units
include the hydrological analysis method and the curvature watershed method [18,44]. The
hydrological analysis method uses DEM data with inverted DEM data to extract ridge lines
and valley lines in the study area. The disadvantages of this method are the complexity
of the operation, the need to control the appropriate flow thresholds and the resolution
of the DEM, and the difficulty of distinguishing between horizontal and sloping terrain.
The curvature watershed method is through the plane curvature and profile curvature of
great and small values, reflecting the changes in slope and slope direction, and thus can
identify the ridge line and valley line well, including the horizontal terrain and inclined
terrain between the boundary; the method is not only simple to operate, but in the later
stages of manual modification of the unreasonable units, greatly reduces the amount of
work. The delineation accuracy is only related to the resolution of the DEM [25]. In
this paper, the curvature watershed method is chosen to divide the study area into slope
units. Figure 7 shows the detailed slope unit division process, and Figure 8 shows the
slope unit delineation results of the study area. After comparing the results based on the
slope unit division with the real terrain, the study area was divided into 10,096 units, and
the geometric calculations yielded an area of 1.37 km2 for the largest unit divided and
0.005 km2 for the smallest unit.
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2.5. Collapse Inventory

The precise location and extent of the collapse are crucial in the process of collapse risk
mapping [45]. For any collapse risk mapping, one of the important processes is collapse
inventory, which relates to the location, number, extent of impact, and intensity of activity
of collapses in an area. In this paper, remote sensing interpretation, field investigation,
and synthesis of previous survey information are used to create a collapse inventory map.
Information on collapses in the study area was obtained from the geological disaster survey
and mapping report of Huinan County, Jilin Province. A total of 52 collapses were identified
in this study using available information (Figure 8). According to statistics, nearly half of
the collapse disaster potential sites (20) in the study area have formed multiple mountain-
cut slopes due to the construction of roads and the intense folk mining activities in and
around the chert and limestone quarries.
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2.6. Collapse Mapping Model
2.6.1. Hazard Mapping Model
Information Content Model (ICM)

The ICM is one of the basic concepts of information theory, which was proposed by
Claude E. Shannon. According to the information theory, the amount of information can
be measured by probability. ICM is a statistical analysis and prediction method that has
been widely used in geohazard risk assessment [17,18,46]. The method calculates the ICM
value of each indicator based on known information about the collapse and its evaluation
indicators; the smaller the ICM value, the less likely it is to cause collapse disasters. The
formula is calculated as follows:

I(Xi, H) = ln
Ni/N
Si/S

(2)

where Xi is the evaluation indicator, I(Xi, H) is the information value of each evaluation
indicator Xi affecting the occurrence of collapse, N is the total number of collapse disasters
in the study area, Ni is the number of collapses contained in each evaluation indicator
Xi, S is the total number of rasters in the study area, and Si is the total number of rasters
in each evaluation indicator Xi. Then, the ICM values were assigned to each evaluation
indicator map to reclassify them. Finally, the collapse hazard index (CHI) was obtained by
superimposing each evaluation indicator map. The calculation formula is as follows:

CHI ICM = ∑ ICMi (3)

where ICM refers to the evaluation indicator map reclassified by the informative values,
and i denotes hazard indicators from the 1st to the 11th.
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Analytical Hierarchy Process (AHP)

AHP is a multi-criteria decision-making method proposed by Thomas L. Saaty [47].
The weights of the indicators are determined by building a hierarchical model, decomposing
them into a series of levels and criteria, and then determining the relative importance
between the elements of each level by comparing them two by two. The relative importance
of these indicators is assessed on a scale of 1–9 from low to high. The AHP method consists
of three steps: firstly, constructing an affiliation model for the highest level of decision
making (target level), the middle level (criterion level), and the bottom level (indicator
level); secondly, establishing the corresponding judgement matrix; and thirdly, calculating
the weights of each factor and testing the random consistency of each factor [20,48,49].

Establishing a system hierarchy: According to the specific performance and causes
of collapse disasters in Huinan County, reasonable evaluation indicators were selected
after combining the relevant situations in the study area with the analysis of the research
results of Huinan County, analysing the main influencing elements of collapse disasters
occurring in the study area, such as the natural environment and geological elements, etc.
The hierarchy model and specific factors were built in the process of the study (Figure 9).
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Establishing a judgement matrix: The structural model of the collapse disaster an-
alytical hierarchy process constructed in Figure 9 allows for the analysis of factors and
the accurate representation of the affiliation problem of factors. In accordance with the
1~9 scale method and other relevant contents, there will be differences in the hierarchical
aspects between the factors. After specifying their weights, the judgement matrices are
built for the A–B and B–C layers, respectively. The judgement matrix can be expressed
as follows:

X = (xij)n×n =


x11 x12
x21 x22

. . . x1n

. . . x2n
. . . . . .
xn1 xn2

. . . . . .

. . . xnn

 (4)

where X is the judgement matrix; xij is the result of the comparison of the importance of
factor i and factor j, and has the following property:

aij =
1
aji

(5)

Relative weights and consistency test: In order to check the reasonableness of the
weight determination method, a consistency test is required. The maximum eigenvalue



ISPRS Int. J. Geo-Inf. 2023, 12, 395 16 of 30

λmax of the matrix is utilised while the corresponding eigenvectors are obtained, and the
consistency of the judgment matrix is verified according to Equations (6) and (7).

CI =
λmax − n

n− 1
(6)

CR =
CI
RI

(7)

where CI is the consistency indicator, and the smaller the value, the lower the degree of
inconsistency; λmax is the maximum eigenvalue of the judgment matrix; n is the order; CR
is the consistency ratio; and RI is the random consistency indicator.

Based on the principles of AHP, the relative weights of each hazard indicator are
calculated, and the collapse hazard index (CHI) is calculated as follows:

CHIAHP =
n

∑
i=1

(Wi ×Wij) (8)

where Wi is the weight of evaluation index i, Wij is the i-th evaluation indicator and the
j-th sub-class weight, and n is the number of hazard evaluation indicators, with n = 11 in
this study.

AHP-ICM Model

AHP-ICM is a combination of subjective and objective methods, which avoids the
limitations of a single method and improves the comprehensiveness and accuracy of
collapse hazard evaluation. This method has been widely used in the risk evaluation of
geologic disasters [18,19,24,50]. After determining the sub-classes to which the hazard
evaluation indicators belong, the information value of each sub-class is calculated using
the ICM, and the weights of each evaluation indicator are obtained using the AHP, and
the two are coupled for calculation. In this study, the AHP-ICM model is used for collapse
hazard calculation, and the specific formula is

CIij = Wi × Iij (9)

where CIij is the combined information value of the sub-class j in evaluation indicator i, Wi
is the weight of each evaluation indicator obtained by AHP, and Iij is the information value
of the ith evaluation indicator and the jth sub-class.

2.6.2. Exposure, Vulnerability, and Emergency Responses and Recovery Capability
Mapping Model
Entropy Weighting Method (EWM)

The entropy weighting method is an objective weight-defining method that is used
to characterise the relative intensity of each indicator in the evaluation system of a target
system. The entropy method does not have any subjective analysis for the calculation
of individual indicator weights, relying only on objective indicator data to calculate the
magnitude of the indicator weights [24,51]. The specific steps are as follows:

With m objects, each with n evaluation indicators, a judgment matrix is constructed.

A = (aij)m∗n(i = 1, 2, . . . , m; j = 1, 2, . . . , n) (10)

where aij is the value of the jth indicator for the i-th object.
The judgment matrix is normalised to obtain the normalised judgment matrix

D = (dij)mn.

dij =
rij − rmin

rmax − rmin
(11)
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dij =
rmax − rij

rmax − rmin
(12)

where rmax is the highest indicator value under different objects for the same indicator and
rmin is the lowest indicator value under different objects for the same indicator.

For a situation with m objects and n indicators, the entropy of the evaluation indicator
can be determined as

Sj = −

m
∑

i=1
fij ln fij

ln m
(i = 1, 2, . . . , m; j = 1, 2, . . . , n) (13)

where fij =
1+dij

m
∑

i=1
(1+dij)

.

The entropy weight vector W of the evaluation indicators is

W = (ωj)1×n (14)

where ωj is the entropy weight of the jth evaluation indicator, and ωj =
1−Sj

n−
n
∑

j=1
Sj

.

AHP-EWM Model

Firstly, the sub-classes of exposure, vulnerability, and emergency response and recov-
ery capability evaluation factors are determined; their weights are calculated using the
AHP, then the weights of the evaluation factors are calculated using the EWM, and finally,
the two are coupled to derive the combined weights of each sub-class in each evaluation
factor. In this study, the method is used for the calculation of exposure, vulnerability, and
emergency response and recovery capability. The specific formulae are as follows:

Sij = Wij ×We (15)

where Sij is the combined weight value of sub-class j in evaluation indicator i. o is the i-th
evaluation indicator and the weight of the j-th sub-class calculated by hierarchical analysis.
r is the weight of each evaluation indicator calculated by the entropy weight method.

2.6.3. Collapse Risk Mapping Model

In this study, using the formation principle of natural disaster risk, the four elements
of geohazard disaster, the selected index system, and the integrated weighted analysis
method were used to establish the collapse disaster risk index model, whose formula can
be expressed as follows [28]:

RDRI = H × E×V × (1− R) (16)

where RDRI represents the collapse disaster risk index; a higher value means a higher level
of collapse disaster risk. H, E, V, and R represent the collapse disaster hazard, exposure,
vulnerability, and emergency response and recovery capability indicator indices, respectively.

3. Results and Analysis of the Hazard Mapping Model
3.1. Results of the Model
3.1.1. Results of the Information Content Model (ICM)

There is a close relationship between the collapse disaster and the information content
(IC) value; when IC > 0, the probability of collapse is greater than the average value, i.e., the
probability of collapse is high; conversely, the probability of collapse is low in the reverse
case; if IC = 0, the probability of occurrence is of an average value. The results are shown in
Table 3.
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Table 3. Spatial relationship between each collapse evaluation indicator and collapse.

Indicator Class Collapse Count Total Count ICM

Slope angle

0–5 5 32,898 −0.4099
5–10 12 68,537 −0.2682
10–15 20 51,643 0.5256
15–20 12 38,386 0.3115
>20 3 35,653 −1.0010

Slope aspect

North 0 1296 0.0000
Northeast 1 12,326 −1.0375

East 2 25,050 −1.0535
Southeast 14 48„583 0.2300

South 12 51519 0.0172
Southwest 19 46,038 0.5892

West 3 30,587 −0.8477
Northwest 1 11,718 −0.9869

Multi-year average precipitation

<720 5 39,165 −0.5841
720–730 11 35,490 0.3029
730–740 21 44,830 0.7159
740–750 10 48,315 −0.1009

>750 5 59,321 −0.9993

Lithology

Q 6 62,666 −0.8718
γ 11 10,226 1.5472

K + J 3 12,000 0.0879
Ar 10 90,418 −0.7276

Q + Z 2 10,027 −0.1379
β 5 23,725 −0.0829

∈ + O + Z 15 18,059 1.2886

Distance from fault

0–500 18 56,250 0.3348
500–1000 10 27,686 0.4559

1000–2000 7 44,551 −0.3765
2000–3000 11 28,746 0.5136

>3000 6 69,888 −0.9809

Landform type

Fluvial terrace 6 34,499 −0.2749
Undulating terrace 5 30,078 −0.3201

Denudation of eroded hill 9 23,872 0.4988
Tectonic low hill 22 49,696 0.6594

Tectonic moderate hill 6 61,991 −0.8610
Lava low terrace 2 10,751 −0.2076

Lava plateau 2 16,234 −0.6197

Distance from river

0–100 32 33,744 1.4212
100–300 3 10,748 0.1981
300–600 7 17,049 0.5841

600–1000 6 19,992 0.2707
>1000 4 145,588 −2.1202

Distance from road

0–100 33 44,349 1.1787
100–300 3 15,005 −0.1355
300–600 4 19,397 −0.1046

600–1200 7 33,720 −0.0979
>1200 5 114,650 −1.6582

Vegetation type

Hemerophyte 18 42,454 0.6162
Broadleaf forest 15 69,491 −0.0589

Meadow 7 21,029 0.3742
Mixed forest 12 94,147 −0.5857

NDVI

0–0.3 20 32,809 0.9793
0.3–0.55 4 24,824 −0.3513

0.55–0.65 21 50,226 0.6022
0.65–0.75 4 38,058 −0.7786

0.75–1 3 81,204 −1.8241
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Table 3. Cont.

Indicator Class Collapse Count Total Count ICM

Mining point density

0–5 14 104,598 −0.5369
5–9 15 66,194 −0.0103

9–13 14 35,987 0.5301
13–21 7 14,501 0.7459
21–31 2 5830 0.4044

Total area 52 227,121

As can be seen from Table 3, the ICM values for slope angles of 10–15◦ and 15–20◦

are 0.5256 and 0.3115, respectively, and according to previous studies, the higher the slope
angle, the greater the probability of collapse occurring [29]. According to field surveys,
within these two gradations, collapse is more likely to occur because of the steep cliffs
or steep slopes within a small area formed by road cutting and engineering construction.
The ICM values are 0.23 and 0.5892 for southeast- and southwest-facing slopes, respec-
tively. For the multi-year average precipitation, the ICM values are 0.3029 and 0.7159 for
720–730 mm and 730–740 mm, respectively, with the higher precipitation concentrated in
areas of the study area with less human activity, where the geotechnical structure is intact,
the vegetation cover is larger and subject to precipitation erosion, and the erosion effect is
less. For lithology, the ICM values for the granite rock group (γ) and the hard limestone
rock group (∈ + O + Z) are 1.5472 and 1.2886, respectively. As both γ weathering fissures
and primary fissures are more developed, the upper part is strongly weathered and the
rock integrity is poor, while ∈ + O + Z consists of medium-thick laminated pure limestone,
sandstone and siltstone, with weakly developed karst, generally dominated by solution
gaps and small caves, and in micro-landscapes of mostly steep cliffs and steep slopes, so
these two rock groups are most prone to collapse. The degree of development of collapse
disasters in Huinan County is obviously influenced by faults. Fractures are developed
in the area, with more structural surfaces and locally weak surfaces or weak zones, with
low rock strength and easy weathering and stripping. For landform type, the ICM values
for denudation of eroded hill and tectonic low hill landform areas are 0.4988 and 0.6594,
respectively. These two areas are more prone to collapse due to more residential settlements,
developed transportation and strong human activities such as road cutting, deforestation,
and mining. In mountainous areas close to rivers, the occurrence of collapses is mainly
located within 100 m of the river due to the erosive action of the river. In this study area, as
the construction of the road required extensive slope cutting, the collapse occurred mainly
within 100 m of the road. The ICM values for hemerophyte and meadow were 0.6162 and
0.3742, respectively, with higher ICM values for NDVI within 0.65, indicating that areas
with low vegetation cover are prone to collapse. Where the mining point density is high,
collapse is more likely to occur due to the long-term disturbance of the geotechnical body.
The results are shown in Figure 10a.

3.1.2. Results of the Analytical Hierarchy Process (AHP)

The degree of merit of the model was judged by CR based on the comparison be-
tween variables and indicators, and the consistency of the judgment matrix was accepted if
CR < 0.1 [20,52–54]. Then, the weights Wi normalised by the criterion layer to the indica-
tor layer (B–C) were obtained, and the weights of the target layer to the indicator layer
(A–C) were obtained after normalising them again under the target layer (A), and since all
CRs were less than 0.1, all judgment matrices met the consistency requirements and were
considered to be reasonably weighted. The specific data content is shown in Tables 4 and 5.
Based on the results, the multi-year average precipitation has the highest weighting of
0.4119, followed by distance from road and lithology at 0.1924 and 0.1118, respectively. This
indicates that the multi-year average precipitation and distance from road and lithology
are the main factors contributing to collapse in the study area. Based on Equation (8), the
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AHP-generated collapse hazard map was derived by combining Tables 4 and 5 to calculate
CHI, as shown in Figure 10b.
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Table 4. Judgement matrix of evaluation indicators and their weights.

Target
Layer (A)

Criterion
Layer (B)

A–B Judgement
Matrix

A–B
Weight Indicator Layer (C) B–C Judgement Matrix B–C

Weight
A–C Weight

(Wi)

Collapse
hazard
(1.0000)

Geography 1 1/3 1/7 0.081

Slope angle 1 3 3 1/2 0.2947 0.0239
Slope aspect 1/3 1 1/3 1/5 0.0781 0.0063

Vegetation type 1/3 3 1 1/3 0.1537 0.0124
NDVI 2 5 3 1 0.1537 0.0383

Geology 3 1 1/5 0.1884
Lithology 1 3 3 0.5936 0.1118

Distance from fault 1/3 1 1/2 0.1571 0.0296
Landform type 1/3 2 1 0.2493 0.047

Disaster-
causing
factors

7 5 1 0.7306

Multi-year average
precipitation 1 5 3 7 0.5638 0.4119

Distance from river 1/5 1 1/3 3 0.1178 0.0861
Distance from road 1/3 3 1 5 0.2634 0.1924

Mining point density 1/7 1/3 0.2 1 0.0550 0.0402

Table 5. Judgement matrix for evaluation indicators’ sub-classes and their weights.

Indicator Class Judgement Matrix Weight
(Wij)

Slope angle

0–5 1 1/3 1/3 1/4 1/3 0.06386
5–10 3 1 1/3 1/3 1/3 0.10497
10–15 3 3 1 1/3 3 0.25278
15–20 4 3 3 1 3 0.41551
>20 3 3 1/3 1/3 1 0.16289



ISPRS Int. J. Geo-Inf. 2023, 12, 395 21 of 30

Table 5. Cont.

Indicator Class Judgement Matrix Weight
(Wij)

Slope aspect

North 1 1 1/5 1/7 1/8 1/9 1/3 1/2 0.02632
Northeast 1 1 1/3 1/5 1/7 1/6 1/2 1 0.03591

East 5 3 1 1/3 1/4 1/4 2 2 0.09014
Southeast 7 5 3 1 1/2 2 4 4 0.22180

South 8 7 4 2 1 3 5 7 0.33640
Southwest 9 6 4 1/2 1/3 1 2 3 0.17164

West 3 2 1/2 1/4 1/5 1/2 1 4 0.07541
Northwest 2 1 1/2 1/4 1/7 1/3 1/4 1 0.04237

Vegetation type

Hemerophyte 1 4 1/2 5 0.37499
Broadleaf forest 1/4 1 1/2 1 0.12538

Meadow 2 2 1 3 0.39248
Mixed forest 1/5 1 1/3 1 0.10715

NDVI

0–0.3 1 1 1/3 1/3 1/4 0.08391
0.55–0.65 1 1 1/3 1/2 2 0.13792
0.3–0.55 3 3 1 1 4 0.35182

0.65–0.75 3 2 1 1 3 0.30628
0.75–1 4 1/2 1/4 1/3 1 0.12007

Lithology

Q 1 1/2 4 1 2 3 1/5 0.12901
γ 2 1 7 1 3 4 1/2 0.21439

K + J 1/4 1/7 1 1/3 1/2 3 1/5 0.05090
Ar 1 1 3 1 2 4 1/4 0.14705

Q + Z 1/2 1/3 2 1/2 1 2 1/3 0.08317
β 1/3 1/4 1/3 1/4 1/2 1 1/3 0.04333

∈ + O + Z 5 2 5 4 3 3 1 0.33215

Distance from fault

0–500 1 3 1/2 1/2 2 0.19789
500–1000 1/3 1 1/3 1/2 1/2 0.08911
1000–2000 2 3 1 2 2 0.34454
2000–3000 2 2 1/2 1 1 0.20961

>3000 1/2 2 1/2 1 1 0.15885

Landform type

Fluvial terrace 1 1/3 1/5 1/4 1/2 3 4 0.08124
Undulating terrace 3 1 1/2 1 2 4 3 0.18835

Denudation of eroded hill 5 2 1 3 5 4 4 0.34318
Tectonic low hill 4 1 1/3 1 3 2 5 0.19120

Tectonic moderate hill 2 1/2 1/5 1/3 1 3 2 0.09903
Lava low terrace 1/3 1/4 1/4 1/2 1/3 1 1 0.05027

Lava plateau 1/4 1/3 1/4 1/5 1/2 1 1 0.04673

Multi-year average
precipitation

<720 1 3 4 3 4 0.44926
720–730 1/3 1 2 1 1/2 0.13347
730–740 1/4 1/2 1 1/2 1/3 0.07666
740–750 1/3 1 2 1 1/2 0.13347

>750 1/4 2 3 2 1 0.20713

Distance from river

0–100 1 3 2 2 4 0.37497
100–300 1/3 1 1/2 1/2 2 0.12081
300–600 1/2 2 1 1 3 0.21536

600–1000 1/2 2 1 1 3 0.21536
>1000 1/4 1/2 1/3 1/3 1 0.07350

Distance from road

0–100 1 3 2 1/2 4 0.28286
100–300 1/3 1 1/2 1/4 2 0.10469
300–600 1/2 2 1 1 3 0.21437

600–1200 2 4 1 1 3 0.32492
>1200 1/4 1/2 1/3 1/3 1 0.07316

Mining point density

0–5 1 3 2 3 0.5 0.27758
5–9 1/3 1 1/2 1/2 1/2 0.09473

9–13 1/2 2 1 1/3 1/2 0.12500
13–21 1/3 2 3 1 1/3 0.16494
21–31 2 2 2 3 1 0.33774

3.1.3. Results of the AHP-ICM Model

Based on the results of the actual survey in the study area, a combination of subjective
and objective methods was used to determine the hazard of collapse in Huinan County,
taking into account the geographic and geological environment and external factors that
contribute to the disaster. The comprehensive information content (Table 6) amount of each
sub-class in each hazard evaluation indicator was calculated using Equation (9), and then
the sub-class of each evaluation indicator was assigned a value using a raster calculator,



ISPRS Int. J. Geo-Inf. 2023, 12, 395 22 of 30

finally superimposed, and the natural breaks classification method was used to divide it
into five hazard classes: very low, low, medium, high, and very high, to obtain a hazard
zoning map, and the results are shown in Figure 10c. As can be seen from Table 6, the
CIs for multi-year average precipitation (730–743 mm), distance from road (0–100 m), and
lithology (γ) are the largest at 0.29487, 0.22677, and 0.17298, respectively, which causes
the very high hazard zones to be mainly located in the central part, in the northwestern
part, along the northeastern road, and in the west-southwestern part of the study area,
which makes the collapse disaster prone to occur in this part of the area. The main reason
is that these areas are located in the middle and low mountainous belt and are affected by
the long-term frequent economic activities of human beings. According to the statistics of
the number of disaster points, it is concluded by comparison that the collapse disasters in
Huinan County are mainly distributed in the tectonic low hill geomorphic area and hilly
area, and the lithology is mostly limestone, granite, and metamorphic rock groups, which
have low vegetation coverage, and the human activities are the strongest in these areas. In
tectonic mesas and high terraces, human activity is less, elevation is greater, vegetation
cover is greater, and collapse disasters are least developed.

Table 6. Combined information content for each collapse evaluation indicator’s sub-classes.

Indicator Class CI Indicator Class CI

Slope angle

0–5 −0.00980

Distance from river

0–100 0.12236
5–10 −0.00641 100–300 0.01706
10–15 0.01256 300–600 0.05029
15–20 0.00744 600–1000 0.02330
>20 −0.02392 >1000 −0.18255

Slope aspect

North 0.00000

Distance from road

0–100 −0.31904
Northeast −0.00654 100–300 −0.01884

East −0.00664 300–600 −0.02012
Southeast 0.00145 600–1200 −0.02608

South 0.00011 >1200 0.22677

Southwest 0.00371

Vegetation type

Hemerophyte 0.00764
West −0.00534 Broadleaf forest −0.00073

Northwest −0.00628 Meadow 0.00464

Multi-year average
precipitation

<720 −0.24059 Mixed forest −0.00726

720–730 0.12476

NDVI

0–0.3 0.03751
730–740 0.29487 0.3–0.55 0.02307
740–750 −0.04157 0.55–0.65 −0.01345

>750 −0.41161 0.65–0.75 −0.02982

Lithology

Q −0.09747 0.75–1 −0.06986

γ 0.17298

Mining point density

0–5 −0.02159
K + J 0.00983 5–9 −0.00041
Ar −0.08135 9–13 0.02131

Q + Z −0.01542 13–21 0.02999
β −0.00926 21–31 0.01626

∈ + O + Z 0.14407

Distance from fault
Distance from fault

0–500 0.00991

Landform type

Fluvial terrace −0.01292 500–1000 0.01350
Undulating terrace −0.01505 1000–2000 −0.01114

Denudation of eroded hill 0.02344 2000–3000 0.01520
Tectonic low hill 0.03099 >3000 −0.02904

Tectonic moderate hill −0.04047 0–500 0.00991

Lava low terrace −0.00976
Lava plateau −0.02913
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3.2. Validation of the Hazard Mapping Model

The results obtained from the ICM, AHP, and AHP-ICM models were validated to
guarantee the accuracy of the collapse hazard mapping model, and then the optimal model
was selected for the study area collapse risk mapping. In this study, the three models
were validated by applying the receiver operating characteristic (ROC) curve in Origin
2022 software. The curve is a two-dimensional plot and is widely used in the validation
of two-dimensional classification models [18,19,25], and the evaluation process is simple
and easy to operate. The ROC uses the area under the curve (AUC) to directly determine
the accuracy of the model. The results are intuitive, with AUC values between 0.5 and 1;
the closer the result is to 1, the more accurate the model and the better the performance.
In this study, ROC curves were plotted based on the principle of ROC curves with an
equal number of randomly selected collapse and non-collapse points. The ROC results in
Figure 11 show that the AHP-ICM model has the highest accuracy (AUC = 87.4%), followed
by the ICM model (AUC = 85.6%) and the AHP (AUC = 80%).
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3.3. Comparison of Hazard Mapping Models

Three models were used to compare the hazard mapping in this study: the ICM model,
the AHP model, and the AHP-ICM model. The accuracy of the three models was verified
by ROC curves, and the results in Figure 11 show that the AHP-ICM model has the highest
accuracy. In addition, the results of the mapping of the three models are compared in more
detail according to the five hazard classes, and the statistical results are shown in Figure 12.

The collapse hazard map produced by the natural breaks classification method should
meet the following requirements: (1) The areas classified as high and very high hazard
should cover as small an area of the study area as possible. (2) The areas with high and
very high hazards should contain as many known collapse points as possible. The results
show that the AHP model has the smallest total proportion of very high and high hazard
classes (28.03%), but it contains the fewest known collapse points (37). It is followed by
the AHP-ICM model with a total proportion of 28.88% of very high and high classes and
44 known collapse points, and then the ICM model with a total proportion of 32.51% of very
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high and high classes and 48 known collapse points. The last model is the ICM model, with
a total of 32.51% of very high and high grades and 48 known collapse points. Although
the ICM model contains the highest number of collapse points in areas with very high and
high hazard classes, their total percentage is the highest of the three models, while the
AHP-ICM model contains seven more known collapse points than the AHP model with a
total percentage of very high and high hazard classes of only 0.85% more than the AHP
model. In terms of disaster point density, the highest density in areas with very high and
high hazard classes is found in the AHP-ICM model (6.69 per 100 km2), followed by the
ICM model (6.48 per 100 km2) and the AHP model (5.8 per 100 km2).
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By comprehensively analysing the ROC curves, the percentage of high and very high
hazard classes of the models, and the disaster point density, this study determines the
degree of superiority of the three hazard mapping models, of which the optimal model is
the AHP-ICM model, which is used in the study of collapse risk mapping (see Section 5).

4. Results of Exposure, Vulnerability, and Emergency Response and Recovery
Capability Mapping

This study also used a combination of subjective and objective methods to analyse
the exposure, vulnerability, and emergency response and recovery capability mappings.
Weighting of the 10 evaluation indicators in the exposure, vulnerability, and emergency
response and recovery capability indicator evaluation system was performed using EWM
using Excel 2021 software; then, using AHP, judgment matrices were constructed to calcu-
late the subjective weights of each of the five sub-classes in the evaluation indicators, and a
total of 10 judgment matrices were constructed to derive the weight values of each sub-class;
finally, the weights (We) of the evaluation indicators are coupled with the sub-class weights
(Wij) in the evaluation indicators using Formula (15) to obtain the sub-class comprehensive
weights S. The results of the overlay are shown in Figure 13. The results show that the
high and very high exposure areas are mostly concentrated in densely populated and
built-up areas, the reason being that these areas have increased the scale of engineering
and construction activities due to economic development and farming and reclamation,
increasing the potential for collapse disasters to occur and threaten nearby areas. High
and very high vulnerability areas are mainly located in rural and township areas close to
the mountains, the reason being that the vulnerable population and dwellings are more
numerous in this area and are most vulnerable to collapse disasters, and they are less likely
to recognise the approaching danger or move slowly when a collapse disaster occurs. The
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closer to urban and rural areas, the more relief agencies are available, and the more money
is invested in disaster management, the better their ability to prevent and mitigate disasters.
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5. Results of Risk Mapping

Based on the above analysis, the optimal model for collapse hazard mapping is the
AHP-ICM model. The final four elements of overlay maps are as follows: hazard mapping
based on the AHP-ICM model, exposure overlay, vulnerability overlay, and emergency
response and recovery capability mapping based on the AHP-EWM model.

Combining the four elements obtained by overlay, the collapse disaster risk index was
calculated according to Equation (16) and classified using the natural breaks classification
method into four classes: very high, high, moderate, and low, to obtain a collapse disaster
risk zoning map, as shown in Figure 14. Of these, the very high-risk area accounts for
6.06% and contains 20 collapse points, mainly in the central, northwestern, southwestern,
and northeastern parts of the study area along the roads. The very high-risk areas are
mainly caused by the construction of the road, which causes many cut slopes, and by
the mining and cultivation of the land, which destroys a lot of vegetation. The high-risk
zone covers 30.07% of the area and contains 28 landslides, which are caused by the low
topography and low vegetation cover in these areas and by the long-term rainfall and the
incompatibility of human engineering construction with the geological environment. The
low- and medium-risk areas, which together account for 63.87% of the study area, contain
four collapse points and are mainly located in areas of high elevation and low elevation
areas where human engineering activities are less frequent.
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6. Discussion
6.1. Importance and Significance of This Study

Huinan County is located in a semi-mountainous area, with large changes in topogra-
phy and geomorphology, various types of rock and soil bodies, and development of local
geological formations, superimposed on the role of strong human engineering activities
such as road building, urban construction, and mineral resource extraction, geological
disasters are very well developed, especially under the influence of extreme abnormal
climate, which triggers or aggravates collapse disasters, so disaster prevention and control
are still facing great pressure. Therefore, risk assessment and mapping of collapse disasters
are of great practical significance. In this study, based on the formation principle of natural
disaster risk, the hazard mapping model of collapse disaster was established using the ICM,
AHP, and AHP-ICM, and the mapping model of exposure, vulnerability, and emergency
response and recovery capability was established using AHP-EWM. The risk mapping
model combines multiple evaluation indicators and comprehensively considers multiple
dimensions of collapse risk, which is scientific and operable. This study provides a compre-
hensive assessment and accurate identification of the risk of collapses in Huinan County,
which provides an important reference for collapse disaster management and decision
making and has far-reaching practical significance for the prevention and mitigation of
geological disasters in mountainous areas. In addition, the methods and models used in
this study have some value and potential for application in risk assessment and mapping
studies in other regions. It is worth mentioning that previous studies have mainly focused
on the evaluation of disaster hazard, exposure, and vulnerability, while few studies have
been conducted on the evaluation of emergency response and recovery capability, and there
are few sources of data and ways to visualise their data. In this study, three socio-economic
indicators, namely education investment, local financial revenue, and relief agencies’ ca-
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pacity, are used as indicators of emergency response and recovery capability, which play a
key role in collapse risk mapping.

6.2. Comprehensive Evaluation of Hazard Mapping Model

The ICM method is a relatively objective evaluation model that establishes a suit-
able evaluation indicator system and its sub-class through the actual survey results of
the study area and then calculates the information value of each indicator’s sub-class,
which reduces the influence of subjectivity [24,44] but ignores the relationship between the
sub-class of evaluation indicators and the occurrence of collapse. The AHP method is a
subjective weighting method [20,54], and the assignment of its weights requires sufficient
experience and level. Because the established hierarchy and calculation of weights are
more complicated, it is easy to calculate improper weights in a certain sub-class, which
is difficult to avoid, so this leads to a lower accuracy of collapse hazard mapping. The
AHP-ICM method, as a combined subjective and objective method [18,19,50], compared
with a single method, can ensure both the risk mapping objective and scientific soundness
but also allows for subjective analysis based on the actual situation in the study area. There
have been researchers using the AHP-ICM method in the landslide sensitivity mapping
study. Wang et al. [18] used the AHP-ICM method to carry out sensitivity analyses of
41 landslides, and more accurate results were obtained, which verified the correctness and
reasonableness of the method. Du et al. [19] used the AHP-ICM method to analyse the
landslide sensitivity mapping of 799 landslides in the Eastern Himalayan zone of Tibet, and
the results showed that the AHP-ICM method has a high prediction accuracy. Ma et al. [24]
compared the AHP-ICM method with other combined methods in landslide sensitivity
mapping and found that the prediction accuracy of the AHP-ICM method was similar to
the other methods. In the same field, although the AHP-ICM method still has a certain
gap compared with existing machine learning methods (Support Vector Machine, Random
Forest, Artificial Neural Networks, etc.), the AHP-ICM method is much easier to compute
and operate and only needs to extract the relevant landslide data of the evaluation indi-
cators in the GIS, and then the corresponding weights of the indicators can be derived by
calculating them directly in the Excel 2021. Machine learning methods, on the other hand,
are more demanding in terms of data quality and feature selection, requiring adequate data
preparation and model training processes, while the models are less explanatory, making it
difficult to explain the key features identified by the models.

6.3. Limitations and Perspectives of This Study

This study considers as comprehensively as possible the evaluation indicators related
to collapse disasters from a four-element perspective; however, the data used are based
on existing datasets and may be incomplete and inaccurate for economic and education-
related data. In future work, more high-quality data can be further collected to improve
the accuracy of the findings. In future collapse risk mapping, more indicators related to
collapse risk should be considered, and earthquakes have a certain impact on it. There
has been no seismic activity in this study area in 40 years, and seismic data are difficult
to obtain, so the impact of earthquakes is not considered in this paper. In areas with high
seismic impacts, it is important to incorporate seismic factors into collapse risk mapping
in order to better predict and mitigate the occurrence of collapse disasters. For the impact
of indicators on collapse, the distance category should be further improved based on the
survey results to narrow the buffer zone and improve the accuracy of collapse risk zoning.
For areas at high risk of collapse, the prevention, monitoring, and emergency rescue of
collapse disasters should be strengthened, and the potential risk of collapse disasters should
be reduced by means of land planning, engineering measures, and warning and education.

7. Conclusions

In this paper, the curvature watershed method is used to make mapping units, which
are used to extract all evaluation indicators. Then, the ICM, AHP, and AHP-ICM models
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are applied to hazard mapping, the accuracy of the three models is verified by the ROC
curve, the optimal model is selected, the zoning of exposure, vulnerability, and emergency
response and recovery capability made by applying the AHP-EWM model is combined,
the collapse disaster risk index model used in the risk index is calculated, and finally, the
collapse risk zoning map was drawn using GIS. This led to the following conclusions.

Based on the evaluation indicator system determined by the four elements of natural
disaster risk theory, TOL and VIF were used to analyse the covariance among the indicators,
and it was verified that there was independence among all 21 indicators, indicating that
the established evaluation indicator system was reasonable.

The ICM model, AHP model, and AHP-ICM model were compared in the collapse
hazard mapping, and they were validated by the ROC curve, yielding AUC values for the
three models: ICM model (85.6%), AHP model (80%), and AHP-ICM model (87.4%). After
a comprehensive comparison, the percentage of the ICM, AHP, and AHP-ICM models with
very high and high hazard ratings are 28.03%, 28.88%, and 32.51%, respectively, and the
number of known collapses they contain are 48, 37, and 44, respectively, with disaster point
densities of 4.48, 5.8, and 6.69 per km2, respectively; the results show that the AHP-ICM
model is the optimal model for collapse hazard mapping in Huinan County.

The AHP-EWM model was used to map the exposure, vulnerability, and emergency
response and recovery capability of the collapse disaster bearers. The results show that
very high exposure and high exposure areas are mostly concentrated in densely populated
and built-up areas, very high vulnerability and high vulnerability areas are mainly located
in rural and township areas close to the mountain, and areas with high emergency response
and recovery capability are mostly concentrated in urban and township areas.

According to the results of the collapse risk mapping, the very high-risk zone accounts
for 6.06% of the study area, containing 20 collapse points and a disaster point density of
14.49 per 100 km2; the high-risk zone covers 30.07% of the area, containing 28 collapse
points and a disaster point density of 4.09 per 100 km2. Very high-risk areas and high-risk
areas are mainly located in (1) Northwestern Huinan County (Chaoyang Township), (2) the
central part (Huinan Town–Sansonggang Town–Fumin Town), (3) the southwest (look-alike
whistle town), and (4) the northeast (Shidaohe Town). When preventing and controlling
collapse disaster sites or sections, decision makers should consider these four areas first in
order to reduce disaster losses and casualties.
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