A Weighted k-Nearest-Neighbors-Based Spatial Framework of Flood Inundation Risk for Coastal Tourism—A Case Study in Zhejiang, China
Abstract
:1. Introduction
- We improved the performance of the kNN algorithm with a distance-weighted method and demonstrated that the Weighed kNN (WkNN) can gain a higher accuracy prediction than kNN;
- We developed and applied the WkNN-based framework with spatial technologies into flood risk assessment for tourism in coastal areas;
- Due to the limitation of the spatially gridded data, the World Environment Situation Room (WESR) was first used to validate the flood risk for coastal areas, and it was demonstrated that the WESR can be successfully used in flood risk evaluation.
2. Framework Development
2.1. Basic Principle of kNN
- Calculate the pairwise distance between the examined objects in the testing datasets and the nearest sample neighbors in the training datasets;
- Vote the categories of the nearest samples to confirm the classifications of the examined objects.
2.2. Weighted kNN (WkNN)
2.3. Framework Conceptualization
3. Case Study
3.1. Study Area
3.2. Flood-Derived Spatial Data Collection and Processing
3.2.1. Rainfall
3.2.2. Topographic Features
3.2.3. Soil Water Retention (SWR)
3.2.4. Drainage System
3.2.5. Soil Erosion
3.2.6. Detection of Maximum Inundation Extent
3.2.7. Criteria Standardization
4. Results and Discussion
4.1. Result Verification
4.2. Sensitivity Analysis
4.2.1. Sensitivity Analysis in Relation to Sampling Times
4.2.2. Sensitivity Analysis in Relation to Values
4.3. Comparison of WkNN with kNN
4.4. Risk Distribution Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papageorgiou, M. Coastal and marine tourism: A challenging factor in Marine Spatial Planning. Ocean Coast. Manag. 2016, 129, 44–48. [Google Scholar] [CrossRef]
- Chen, Y.H.; Kim, J.; Mueller, N. Estimating the economic impact of natural hazards on shared accommodation in coastal tourism destinations. J. Destin. Mark. Manag. 2021, 21, 100634. [Google Scholar] [CrossRef]
- Lithgow, D.; Martínez, M.L.; Gallego-Fernández, J.B.; Silva, R.; Ramírez-Vargas, D.L. Exploring the co-occurrence between coastal squeeze and coastal tourism in a changing climate and its consequences. Tour. Manag. 2019, 74, 43–54. [Google Scholar] [CrossRef]
- Perles-Ribes, J.F.; Ramón-Rodríguez, A.B.; Moreno-Izquierdo, L.; Such-Devesa, M.J. Machine learning techniques as a tool for predicting overtourism: The case of Spain. Int. J. Tour. Res. 2020, 22, 825–838. [Google Scholar] [CrossRef]
- Junqing, H.; Han, T.; Jiawei, H.; Yanting, M.; Xinxiang, J. Impacts of risk perception, disaster knowledge and emotional attachment on tourists’ behavioral intentions in Qinling Mountain, China. Front. Earth Sci. 2022, 10, 880912. [Google Scholar]
- Morsy, M.; Sayad, T.; Khamees, A.S. Towards instability index development for heavy rainfall events over Egypt and the Eastern Mediterranean. Meteorol. Atmos. Phys. 2019, 132, 255–272. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Chen, Y.; Xu, Y.; Zhang, G.; Lin, Q.; Luo, R. Projection of changes in flash flood occurrence under climate change at tourist attractions. J. Hydrol. 2021, 595, 126039. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Fletcher, C.H.; Frazer, N.; Erikson, L.; Storlazzi, C.D. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 2017, 7, 1399. [Google Scholar] [CrossRef]
- Lyu, H.M.; Wang, G.F.; Cheng, W.C.; Shen, S.L. Tornado hazards on June 23 in Jiangsu Province, China: Preliminary investigation and analysis. Nat. Hazards 2016, 85, 597–604. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Su, B.; Wang, Y.; Wang, G.; Wang, G.; Huang, J.; Jiang, T. Flood risk in a range of spatial perspectives—From global to local scales. Nat. Hazards Earth Syst. Sci. 2019, 19, 1319–1328. [Google Scholar] [CrossRef]
- Sun, S.; Zhai, J.; Li, Y.; Huang, D.; Wang, G. Urban waterlogging risk assessment in well-developed region of Eastern China. Phys. Chem. Earth Parts A/B/C 2020, 115, 102824. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, C.; Fang, J.; Liu, M.; Luan, Y. Increasing exposure to floods in China revealed by nighttime light data and flood susceptibility mapping. Environ. Res. Lett. 2021, 16, 104044. [Google Scholar] [CrossRef]
- Kumar, M.D.; Tandon, S.; Bassi, N.; Mohanty, P.K.; Kumar, S.; Mohandas, M. A framework for risk-based assessment of urban floods in coastal cities. Nat. Hazards 2021, 110, 2035–2057. [Google Scholar] [CrossRef]
- Lu, Y.; Ren, F.; Zhu, W. Risk zoning of typhoon disasters in Zhejiang Province, China. Nat. Hazards Earth Syst. Sci. 2018, 18, 2921–2932. [Google Scholar] [CrossRef]
- Liang, H.; Zhou, X. Impact of tides and surges on fluvial floods in coastal regions. Remote Sens. 2022, 14, 5779. [Google Scholar] [CrossRef]
- Thaler, T.; Seebauer, S. Bottom-up citizen initiatives in natural hazard management: Why they appear and what they can do? Environ. Sci. Policy 2019, 94, 101–111. [Google Scholar] [CrossRef]
- Cronin, S.J.; Gaylord, D.R.; Charley, D.; Alloway, B.V.; Wallez, S.; Esau, J.W. Participatory methods of incorporating scientific with traditional knowledge for volcanic hazard management on Ambae Island, Vanuatu. Bull. Volcanol. 2004, 66, 652–668. [Google Scholar] [CrossRef]
- Lai, X.; Wen, J.; Shan, X.; Shen, L.; Wan, C.; Shao, L.; Wu, Y.; Chen, B.; Li, W. Cost-benefit analysis of local knowledge-based flood adaptation measures: A case study of Datian community in Zhejiang Province, China. Int. J. Disaster Risk Reduct. 2023, 87, 103573. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Emanuel, K.; Chonabayashi, S.; Bakkensen, L. The impact of climate change on global tropical cyclone damage. Nat. Clim. Chang. 2012, 2, 205–209. [Google Scholar] [CrossRef]
- Baade, R.A.; Baumann, R.; Matheson, V. Estimating the economic impact of natural and social disasters, with an application to hurricane katrina. Urban Stud. 2016, 44, 2061–2076. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, R.; Barrett, D.; Gao, L.; Zhou, M.; Renzullo, L.; Emelyanova, I. A spatial assessment framework for evaluating flood risk under extreme climates. Sci. Total Environ. 2015, 538, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.H.; Chen, C.W. Development of a mechanism for typhoon- and flood-risk assessment and disaster management in the hotel industry—A case study of the hualien area. Scand. J. Hosp. Tour. 2011, 11, 324–341. [Google Scholar] [CrossRef]
- Sealy, K.S.; Strobl, E. A hurricane loss risk assessment of coastal properties in the caribbean: Evidence from the Bahamas. Ocean Coast. Manag. 2017, 149, 42–51. [Google Scholar] [CrossRef]
- Shi, Y.; Wen, J.; Xi, J.; Xu, H.; Shan, X.; Yao, Q.; Xia, J. A study on spatial accessibility of the urban tourism attraction emergency response under the flood disaster scenario. Complexity 2020, 2020, 9031751. [Google Scholar] [CrossRef]
- Erena, S.H.; Worku, H.; De Paola, F. Flood hazard mapping using FLO-2D and local management strategies of Dire Dawa city, Ethiopia. J. Hydrol. Reg. Stud. 2018, 19, 224–239. [Google Scholar] [CrossRef]
- Yildirim, E.; Demir, I. An integrated web framework for HAZUS-MH flood loss estimation analysis. Nat. Hazards 2019, 99, 275–286. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Zhang, Y.; Luan, Q.; Chen, X. Flash floods, land-use change, and risk dynamics in mountainous tourist areas: A case study of the Yesanpo Scenic Area, Beijing, China. Int. J. Disaster Risk Reduct. 2020, 50, 101873. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Y.; Wu, J.; Gao, L.; Barrett, D.; Xu, T.; Li, X.; Li, L.; Huang, C.; Yu, J. Integrating entropy-based naive Bayes and GIS for spatial evaluation of flood hazard. Risk Anal. 2017, 37, 756–773. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Y.; Wu, J.; Gao, L.; Barrett, D.; Xu, T.; Li, L.; Huang, C.; Yu, J. Assessing spatial likelihood of flooding hazard using naïve Bayes and GIS: A case study in Bowen Basin, Australia. Stoch. Environ. Res. Risk Assess. 2015, 30, 1575–1590. [Google Scholar] [CrossRef]
- Stefanidis, S.; Stathis, D. Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Nat. Hazards 2013, 68, 569–585. [Google Scholar] [CrossRef]
- Liu, S.; Liu, R.; Tan, N. A spatial improved-kNN-based flood inundation risk framework for urban tourism under two rainfall scenarios. Sustainability 2021, 13, 2859. [Google Scholar] [CrossRef]
- Liu, K.; Yao, C.; Chen, J.; Li, Z.; Li, Q.; Sun, L. Comparison of three updating models for real time forecasting: A case study of flood forecasting at the middle reaches of the Huai River in East China. Stoch. Environ. Res. Risk Assess. 2016, 31, 1471–1484. [Google Scholar] [CrossRef]
- Liu, K.; Li, Z.; Yao, C.; Chen, J.; Zhang, K.; Saifullah, M. Coupling the k-nearest neighbor procedure with the Kalman filter for real-time updating of the hydraulic model in flood forecasting. Int. J. Sediment Res. 2016, 31, 149–158. [Google Scholar] [CrossRef]
- Cassalho, F.; Beskow, S.; Mello, C.R.; Moura, M.M.; Oliveira, L.F.; Aguiar, M.S. Artificial intelligence for identifying hydrologically homogeneous regions: A state-of-the-art regional flood frequency analysis. Hydrol. Process. 2019, 33, 1101–1116. [Google Scholar] [CrossRef]
- Aryal, S.; Ting, K.M.; Washio, T.; Haffari, G. A comparative study of data-dependent approaches without learning in measuring similarities of data objects. Data Min. Knowl. Discov. 2019, 34, 124–162. [Google Scholar] [CrossRef]
- Rodrigues, É.O. Combining Minkowski and Chebyshev: New distance proposal and survey of distance metrics using k-nearest neighbours classifier. Pattern Recognit. Lett. 2018, 110, 66–71. [Google Scholar] [CrossRef]
- Kutyłowska, M. K-Nearest Neighbours method as a tool for failure rate prediction. Period. Polytech. Civ. Eng. 2017, 62, 318–322. [Google Scholar] [CrossRef]
- Lantz, B. Machine Learning with R: Expert Techniques for Predictive Modeling; Packt publishing Ltd.: Birmingham, UK, 2019. [Google Scholar]
- Malekinezhad, H.; Sepehri, M.; Pham, Q.B.; Hosseini, S.Z.; Meshram, S.G.; Vojtek, M.; Vojteková, J. Application of entropy weighting method for urban flood hazard mapping. Acta Geophys. 2021, 69, 841–854. [Google Scholar] [CrossRef]
- Rahman, A.S.; Rahman, A. Application of principal component analysis and cluster analysis in regional flood frequency analysis: A case study in New South Wales, Australia. Water 2020, 12, 781. [Google Scholar] [CrossRef]
- Batchuluun, G.; Nam, S.H.; Park, K.R. Deep learning-based plant-image classification using a small training dataset. Mathematics 2022, 10, 3091. [Google Scholar] [CrossRef]
- Fang, Y.; Yin, J.; Wu, B. Flooding risk assessment of coastal tourist attractions affected by sea level rise and storm surge: A case study in Zhejiang Province, China. Nat. Hazards 2016, 84, 611–624. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; He, Z.; Yu, Z.; Ren, Y. Investigation of storm tides induced by super typhoon in Macro-Tidal Hangzhou Bay. Front. Mar. Sci. 2022, 9, 890285. [Google Scholar] [CrossRef]
- Cui, Y.-l.; Hu, J.-h.; Xu, C.; Zheng, J.; Wei, J.-b. A catastrophic natural disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding in Zhejiang Province, China. J. Mt. Sci. 2021, 18, 2108–2119. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, W.; Lin, J.; Zhang, Y.; Shang, X.; Wang, X.; Huang, M.; Liu, S.; Ma, W. Perception, knowledge and behaviors related to typhoon: A cross sectional study among rural residents in Zhejiang, China. Int. J. Environ. Res. Public Health 2017, 14, 492. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Xu, W.; Zhang, J.; Qiao, Y.; Meng, C. Analysis of affected population vulnerability to rainstorms and its induced floods at county level: A case study of Zhejiang Province, China. Int. J. Disaster Risk Reduct. 2022, 75, 102976. [Google Scholar] [CrossRef]
- Cao, F.; Xu, X.; Zhang, C.; Kong, W. Evaluation of urban flood resilience and its space-time evolution: A case study of Zhejiang Province, China. Ecol. Indic. 2023, 154, 110643. [Google Scholar] [CrossRef]
- Papaioannou, G.; Vasiliades, L.; Loukas, A. Multi-criteria analysis framework for potential flood prone areas mapping. Water Resour. Manag. 2015, 29, 399–418. [Google Scholar] [CrossRef]
- Xiao, Y.; Yi, S.; Tang, Z. Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference. Sci. Total Environ. 2017, 599–600, 1034–1046. [Google Scholar] [CrossRef]
- Bezak, N.; Horvat, A.; Šraj, M. Analysis of flood events in Slovenian streams. J. Hydrol. Hydromech. 2015, 63, 134–144. [Google Scholar] [CrossRef]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a long-term daily gridded precipitation dataset for asia based on a dense network of rain gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Tao, G.; Lian, X. Study on progress of the trends and physical causes of extreme precipitation in China during the last 50 years. Adv. Earth Sci. 2014, 29, 577. [Google Scholar]
- Feng, L.; Hong, W. Characteristics of drought and flood in Zhejiang Province, East China: Past and future. Chin. Geogr. Sci. 2007, 17, 257–264. [Google Scholar] [CrossRef]
- Ouma, Y.; Tateishi, R. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water 2014, 6, 1515–1545. [Google Scholar] [CrossRef]
- Lyu, H.M.; Sun, W.J.; Shen, S.L.; Arulrajah, A. Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Sci. Total Environ. 2018, 626, 1012–1025. [Google Scholar] [CrossRef] [PubMed]
- McCuen, R.H. A Guide to Hydrologic Analysis Using SCS Methods; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1982. [Google Scholar]
- Viji, R.; Rajesh Prasanna, P.; Ilangovan, R. Gis based SCS-CN method for estimating runoff in Kundahpalam watershed, Nilgries District, Tamilnadu. Earth Sci. Res. J. 2015, 19, 59–64. [Google Scholar]
- Cao, B.; Yu, L.; Naipal, V.; Ciais, P.; Li, W.; Zhao, Y.; Wei, W.; Chen, D.; Liu, Z.; Gong, P. A 30 m terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine. Earth Syst. Sci. Data 2021, 13, 2437–2456. [Google Scholar] [CrossRef]
- SCS. Urban Hydrology for Small Watersheds SCS; Engineering Division, Soil Conservation Service, US Department of Agriculture: Washington, DC, USA, 1986.
- Kazakis, N.; Kougias, I.; Patsialis, T. Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope-Evros region, Greece. Sci. Total Environ. 2015, 538, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Strahler, A.N. Quantitative geomorphology of drainage basin and channel networks. In Handbook of Applied Hydrology; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Andreadis, K.M.; Schumann, G.J.P.; Pavelsky, T. A simple global river bankfull width and depth database. Water Resour. Res. 2013, 49, 7164–7168. [Google Scholar] [CrossRef]
- Li, X.; Wei, X. Analysis of the relationship between soil erosion risk and surplus floodwater during flood season. J. Hydrol. Eng. 2014, 19, 1294–1311. [Google Scholar] [CrossRef]
- Park, S.; Oh, C.; Jeon, S.; Jung, H.; Choi, C. Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation. J. Hydrol. 2011, 399, 263–273. [Google Scholar] [CrossRef]
- Jabbour, J.; Caldas, A.; Peduzzi, P. The world environment situation room: Rethinking environmental assessment. AGU Fall Meet. Abstr. 2018, 2018, GH11D-0932. [Google Scholar]
- Dottori, F.; Salamon, P.; Bianchi, A.; Alfieri, L.; Hirpa, F.A.; Feyen, L. Development and evaluation of a framework for global flood hazard mapping. Adv. Water Resour. 2016, 94, 87–102. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Liu, C.; Frazier, P.; Kumar, L. Comparative assessment of the measures of thematic classification accuracy. Remote Sens. Environ. 2007, 107, 606–616. [Google Scholar] [CrossRef]
Soil Type | A | B | C | D |
---|---|---|---|---|
Farmland | 72 | 82 | 88 | 92 |
Forest | 36 | 60 | 73 | 79 |
Grass | 39 | 61 | 74 | 80 |
Bush | 36 | 60 | 74 | 80 |
Wetland | 32 | 58 | 72 | 79 |
Man-made land | 89 | 92 | 94 | 95 |
Barren | 72 | 82 | 88 | 90 |
Water | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Tan, N.; Liu, R. A Weighted k-Nearest-Neighbors-Based Spatial Framework of Flood Inundation Risk for Coastal Tourism—A Case Study in Zhejiang, China. ISPRS Int. J. Geo-Inf. 2023, 12, 463. https://doi.org/10.3390/ijgi12110463
Liu S, Tan N, Liu R. A Weighted k-Nearest-Neighbors-Based Spatial Framework of Flood Inundation Risk for Coastal Tourism—A Case Study in Zhejiang, China. ISPRS International Journal of Geo-Information. 2023; 12(11):463. https://doi.org/10.3390/ijgi12110463
Chicago/Turabian StyleLiu, Shuang, Nengzhi Tan, and Rui Liu. 2023. "A Weighted k-Nearest-Neighbors-Based Spatial Framework of Flood Inundation Risk for Coastal Tourism—A Case Study in Zhejiang, China" ISPRS International Journal of Geo-Information 12, no. 11: 463. https://doi.org/10.3390/ijgi12110463
APA StyleLiu, S., Tan, N., & Liu, R. (2023). A Weighted k-Nearest-Neighbors-Based Spatial Framework of Flood Inundation Risk for Coastal Tourism—A Case Study in Zhejiang, China. ISPRS International Journal of Geo-Information, 12(11), 463. https://doi.org/10.3390/ijgi12110463