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Abstract: Although numerous epidemiological studies have demonstrated a relationship between
environmental factors and chronic diseases, there is a lack of comprehensive population health vul-
nerability assessment studies from the perspective of environmental exposure, population sensitivity
and adaptation on a regional scale. To address this gap, this study focused on six high-mortality
chronic diseases in China and constructed an exposure–sensitivity–adaptability framework-based
index system using multivariate data. The constructed system effectively estimated health vulnerabil-
ity for the chronic diseases. The R-square between vulnerability and mortality rates for respiratory
diseases and malignant tumors exceeded 0.7 and was around 0.6 for the other four chronic diseases.
In 2020, Chongqing exhibited the highest vulnerability to respiratory diseases. For heart diseases,
vulnerability values exceeding 0.5 were observed mainly in northern and northeastern provinces.
Vulnerability values above 0.5 were observed in Jiangsu, Shanghai, Tianjin, Shandong and Liaoning
for cerebrovascular diseases and malignant tumors. Shanghai had the highest vulnerability to endoge-
nous metabolic diseases, and Tibet exhibited the highest vulnerability to digestive system diseases.
The main related factor analysis results show that high temperature and humidity, severe temperature
fluctuations, serious air pollution, high proportion of middle-aged and elderly population, as well
as high consumption of aquatic products, red meat and eggs increased health vulnerability, while
increasing per capita educational resources helped reduce vulnerability.

Keywords: exposure-sensitivity-adaptability framework; population health vulnerability assessment;
remote sensing; chronic diseases; China

1. Introduction

China has undergone rapid urbanization in recent years, with the urbanization rate
of the resident population increasing from 36.09% in 2000 to 49.68% in 2010 to 63.89% in
2020. However, this growth has come at a cost. The environmental impact of this rapid
urbanization has led to fragmentation of natural habitat, reduction in biodiversity, water
pollution, urban heat islands and frequent haze. These issues have negatively affected the
physical and mental health, as well as the quality of life of urban residents [1–7]. Addi-
tionally, compared with developed countries, the health of residents living in developing
countries seems to be more vulnerable to the deterioration of urban environmental quality.

Chronic diseases mainly include malignant tumors, cardiovascular and cerebrovas-
cular diseases, heart diseases, hypertension, diabetes, mental illnesses and a series of
non-infectious diseases which cannot be recovered by the patients themselves. With the de-
velopment of the social economy and changes in people’s lifestyle, the disease spectrum of
Chinese people has undergone tremendous changes, and the prevalence of chronic diseases
closely related to environmental factors and unhealthy lifestyles has become increasingly
serious. Chronic diseases have accounted for 87% of total deaths and 70% of the total dis-
ease burden in China, posing severe challenges for prevention and treatment [8]. The 2011
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World Economic Risk Report warned that five major chronic diseases, mainly including
cardiovascular diseases, tumors, diabetes, respiratory diseases and mental diseases, would
have a profound impact on the country’s medical system and economic system in the next
two decades. Studying the factors related to the risk of chronic disease deaths is crucial
due to the significant threat that chronic diseases pose to public health and the overall
well-being of the country.

Numerous epidemiological studies have demonstrated the impact of meteorological
factors and air pollution on the occurrence and development of chronic diseases. For
example, the impact of high temperatures on the respiratory system and cardiovascular
system will lead to an increase in thermal mortality [9,10]. Severe temperature changes,
such as large daily temperature ranges, have significant adverse effects on human health
and are a risk factor for acute stroke deaths [11–13]. Urbanization has been linked to air
pollution [14–16], which was identified as the most substantial risk factor for increasing
disease burden in 2013 and accounts for approximately 4 million deaths annually [17]. The
association between exposure to multiple mixtures in the air including PM, O3, NO2 and
premature death has become the focal point of many epidemiological studies [18–31].

On the one hand, these studies that focus on a single factor can only reflect one
aspect of the environment, which does not allow for a comprehensive assessment of the
vulnerability of people exposed to environmental factors. On the other hand, the description
of environmental factors in most studies is not sufficiently detailed. For instance, the data
collected from meteorological stations and air quality monitoring stations in many studies
only represent a single location and its surrounding areas. Since the distribution of stations
in most areas is not uniform, interpolation methods used to generate spatial data may result
in uneven distribution pattern, particularly in areas where stations are sparse. Moreover,
the cohort and sampling survey methods adopted by most epidemiological studies are time-
consuming and laborious. Due to the high threshold of data acquisition, the research scope
is limited [32], and there is a lack of research on the relationship between environmental
factors and population health at a regional scale.

In this study, six types of chronic diseases with high mortality in China were taken as
the research object and the evaluation indicators were selected based on the framework
of exposure–sensitivity–adaptability. To address the issue of insufficient detail regarding
environmental elements in previous studies, remote sensing products with high spatial
and temporal resolution were applied to the exposure indexes calculation. In previous
studies, literature review was primarily used to identify indicators for constructing the
population health vulnerability assessment indicator system. However, there was limited
analysis conducted on whether these indicators were correlated with population health
and with each other. This limitation could potentially reduce the effectiveness of indica-
tor selection and result in the portrayal of similar characteristics by multiple indicators
in one aspect. Therefore, in this study, taking the mortality of the six types of chronic
diseases in some provinces from 2010 to 2019 as response variables, the indicators were
screened by geographic detector and correlation analysis, and the weights of the indicators
were determined based on quantile regression to build provincial-scale population health
vulnerability evaluation index systems for the six kinds of chronic diseases. The health
vulnerability values in each province in 2020 were estimated by using the constructed index
systems. To address the lack of verification of vulnerability assessment results in relevant
vulnerability studies, this study verified the effectiveness of the constructed evaluation
index systems by calculating the determination coefficient between vulnerability values
and corresponding chronic disease mortality.

2. Materials and Methods
2.1. Study Area

The study area contains 31 provinces (including autonomous regions and municipali-
ties) in the Chinese mainland region (Figure 1), including Heilongjiang, Jilin and Liaoning
in northeast China; Beijing, Tianjin, Hebei, Shanxi and Inner Mongolia Autonomous Re-
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gion in north China; Shaanxi, Gansu, Qinghai, Ningxia Hui Autonomous Region and
Xinjiang Uygur Autonomous Region in northwest China; Shandong, Shanghai, Jiangsu,
Zhejiang, Anhui, Fujian and Jiangxi in east China; Henan, Hubei and Hunan in central
China; Guangdong, Guangxi Zhuang Autonomous Region and Hainan in south China; as
well as Chongqing, Sichuan, Guizhou, Yunnan and Tibet Autonomous Region in southwest
China. The 31 provinces have a wide geographical range, with latitudes of about 50◦

between north and south and longitude of nearly 62◦ between east and west. There are
significant differences in climatic conditions and economic development among regions.
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2.2. Exposure–Sensitivity–Adaptability Framework

According to the definition of vulnerability in the Third Assessment Report of IPCC,
vulnerability is a comprehensive evaluation standard for the system’s susceptibility to the
adverse effects of climate change, and a function of climate risk exposure level, system
sensitivity and adaptability. This study extended the exposure to climate change to the
exposure to environmental risk factors in this definition and sorted out the corresponding
evaluation indicators from three aspects: exposure, sensitivity and adaptability (Table 1).

Exposure mainly refers to the characteristics and extent of systematic exposure to
environmental risk factors, which determine the potential harm that environmental risk
factors may cause to the population [33,34]. This study selected indicators to characterize
exposure from two aspects of meteorology and air quality. Sensitivity mainly refers to the
degree to which the system is affected by environmental risk factors. Due to variations
in physical and economic conditions, different groups of people can withstand different
impacts of environmental exposure. In this study, we selected indicators to characterize
sensitivity mainly from five aspects: age and gender composition, education level, occupa-
tion, food consumption and land use. Adaptability mainly refers to the ability of the system
to adapt to environmental risks, to reduce potential losses or to deal with the consequences
of such risks [35]. This study focused on indicators to characterize adaptability from the
perspective of regional economic foundation and infrastructure construction.
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Table 1. Population health vulnerability evaluation indexes table.

Indicator
Dimensions Indicator Meaning Indicator Representation

Exposure
(36)

nth percentile of daily average temperature (population weighted) WLST_nth (n = 1,3,10,25,50,75,90,97,99)

Daily temperature standard deviation (population weighted) WTSD

Daily temperature difference nth percentile (population weighted) WDTD_nth (n = 10,25,50,75,90)

Intraday–interday temperature variability nth percentile
(population weighted) WIITV_nth (n = 10,25,50,75,90)

Annual average PM2.5/PM10 concentration (population weighted) WPM25_YM, WPM10_YM

Days when the PM2.5/PM10 concentrations did not reach the
guideline values for the three transitional periods formulated by

WHO (population weighted)

WPM25_ITn (n = 1,2,3)
WPM10_ITn (n = 1,2,3)

Annual average SO2 concentration SO2_YM

Annual average NO2 concentration NO2_YM

Annual average CO 24-h mean 95th percentile concentration CO_YM

Annual average O3 daily maximum 8 h moving average 90th
percentile concentration O3_YM

Percentage of days with AQI not in good condition in a year AQI

Annual average relative humidity, wind speed, and surface
pressure (population weighted) WRH, WSP, WWS10 m

Sensitivity
(24)

Proportion of population aged 0–4, 5–14, 15–19, 20–39, 40–59, 60–79
and over 80

Age_0_4, Age_5_14, Age_15_19,
Age_20_39, Age_40_59,

Age_60_79, Age_80

Male/female sex ratio MF_Ratio

Percentage of population with less than high school education BHigh_Ratio

Proportion of population in the primary, secondary, tertiary
industry

PriInd_Ratio, SecInd_Ratio,
TerInd_Ratio

Unemployment rate Unemp_Rate

Per capita road area Road_PC

Proportion of residential, industrial land Res_Ratio, Ind_Ratio

Per capita edible oil, vegetable, red meat, fruit, edible sugar, aquatic
products, egg, milk consumption

Oil, Veg, Meat, Fruit, Sugar,
AquaProducts, Egg, Milk

Adaptability
(15)

GDP per capita GDP_PC

Proportion of people participating in basic medical insurance BMI_Rate

Per capita disposable income of urban/rural residents PDI_Urban, PDI_Rural

Number of health technicians per thousand people NHT_PTP

Number of beds in health institutions per thousand people NB_PTP

General public budget expenditure GPBE

Number of general institutions of higher learning/high schools/all
schools per thousand people Uni_PTP, High_PTP, School_PTP

Per capita park area ParkArea_PC

Proportion of green space Green_Ratio

The number of attractions/supermarkets and markets/sports
venues per 100,000 people

Attractions_Ratio
FreshFood_Ratio

Sport_Ratio
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2.3. Calculation of Exposure Indexes

The land surface temperature (LST) was obtained by using a reconstruction method
that combined MODIS LST with simulated temperature from the Climate Forecast System
version 2 (CFSv2) [36]. The method was applied to the GEE (Google Earth Engine) platform
to generate national daily kilometer grid surface temperature data for the period 2010–2020.
The accuracy of the method was verified, with results showing Pearson correlation coeffi-
cients above 0.9 between the reconstructed temperature data and MODIS LST, and root
mean square error and mean absolute error of about 3 ◦C (Table S1).

Based on the reconstructed daily land surface temperature data, the nth percentile
of daily average temperature, the standard deviation of daily temperature, and the nth
percentile of daily temperature difference were calculated. The nth percentile of daily mean
temperature was obtained by calculating the 1st, 3rd, 10th, 25th, 50th, 75th, 90th, 97th
and 99th percentile of the daily temperature series for each year. The standard deviation
of daily temperatures was obtained by calculating the standard deviation of the daily
surface temperature series for each year. The nth percentile of the daily temperature
difference was obtained by calculating the temperature difference every two adjacent days
and then calculating the 10th, 25th, 50th, 75th and 90th percentile of the annual temperature
difference series.

The nth percentile of intraday–interday temperature variability (IITV) was calculated
using the hourly 2 m temperature data from ECMWF ERA-5 dataset. This dataset has a
spatial resolution of 0.25◦ × 0.25◦ and was resampled to a kilometer grid using the nearest
neighbor sampling method. The intraday–interday temperature variability was calculated
by the standard deviation of the daily minimum and maximum temperatures (Tmin and
Tmax, respectively) during the exposure day. The IITV of every two days was calculated by
Formula (1) [37], and then determined the 10th, 25th, 50th and 75th percentile of the annual
IITV series.

IITV = SD(Tminlag0, Tmaxlag0, Tminlag1, Tmaxlag1) (1)

According to Formula (2), the above temperature exposure indicators were population-
weighted by WorldPop 1 km× 1 km population grid data and the grid data were aggregated
to the provincial scale. In the formula, k represents the kth indicator; j represents the region,
N represents the number of grids in region j; i represents the ith grid; Populationj,i repre-
sents the number of population in grid i of region j; and NT j,i

k represents the kth indicator
in grid i of region j. Calculate the product of population number and corresponding
indicators of all grids in region j and add them together, then divide them by the total
population number of the region to obtain PNT j

k which represents the population weighted
indicator in region j.

PNT j
k =

∑N
i Populationj,i × NT j,i

k

∑N
i Populationj,i

(2)

Three meteorological exposure indexes, annual relative humidity, annual surface air
pressure and annual 10 m wind speed, were obtained and calculated from ECMWF ERA-5
datasets. The nearest neighbor sampling method was used to resample them to a kilometer
grid and Formula (2) was used for population weighting.

PM data were obtained from China’s 1 km high-resolution and high-quality daily
PM2.5/PM10 dataset of National Earth System Science Data Center. This dataset was
produced from big data (ground-based observation, satellite remote sensing products,
atmospheric reanalysis data, etc.) by using artificial intelligence technology and combining
the spatio-temporal heterogeneity of air pollution [38–40]. Based on this dataset, the average
annual PM2.5/PM10 concentration and the number of days per year when PM2.5/PM10
concentration did not reach the WHO guidelines for the three transitional periods were
calculated. The provincial level PM exposure indicators were obtained by population
weighting and spatial aggregation according to Formula (2).
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As high-quality ground observation products for measuring SO2, NO2, O3 and CO
are scarce, only tropospheric column concentrations of these pollutants can be obtained
through available remote sensing data. Therefore, we obtained the following annual
average air pollutant concentrations from eco-environmental bulletins issued by ecological
environment departments of each province: SO2, NO2, CO 24 h mean 95th percentile, and
O3 daily maximum 8 h moving average 90th percentile concentrations. Additionally, we
determined the percentage of days in a year when the Air Quality Index (AQI) was not in
good condition.

2.4. Calculation of Sensitivity and Adaptability Indexes

The age structure and gender ratio indicators were calculated by using WorldPop
resident population age and gender structure 100 m × 100 m grid dataset. The population
proportion of each age group was obtained by spatial aggregation method and age re-
division. The number of attractions, supermarkets and markets per 100,000 people, and the
number of sports venues per 100,000 people can be calculated by using the POI of Goldman
Maps. Other indicators were obtained from corresponding data from China Statistical
Yearbook, provincial statistical yearbooks and provincial statistical bulletins on national
economic and social development.

2.5. Evaluation Method of Population Health Vulnerability

The process of population health vulnerability evaluation is illustrated in Figure 2.
First, the factor detection method of geographic detector was used to analyze the correlation
between each index and six kinds of chronic diseases [41]. The indexes that showed no
significant correlation with the chronic disease mortality were excluded (p > 0.05). Then,
the Pearson correlation coefficients for the remaining indicators were calculated. For the
indicators with correlation coefficients exceeding 0.8, only those with the highest q-values
in the factor detection were retained, while the others were excluded.

The response turning points of the selected indicators to the mortality of six kinds
of diseases were determined by piecewise regression method, and the indicators were
standardized on this basis. For indicators with no turning point in the positive direction,
Formula (3) was used for standardization. For indicators with turning points in the positive
direction, Formula (4) was used for standardization. For indicators with no turning point
in the negative direction, Formula (5) was used for standardization. For indicators with
turning points in the negative direction, Formula (6) was used for standardization. In
the formulas, x1, x2, . . . , xn is the original data sequence, y1, y2, . . . , yn ∈ [0, 1] is the
standardized data sequence, and threshold is the turning point in the correlation between
indicators and corresponding diseases. The disease mortality was taken as the health result
to verify the performance of the weight determination method based on quantile regression,
the weight determination method combining factor detection and AHP (FAHP), and the
entropy weight method in the population health vulnerability assessment. Finally, the
quantile regression weight determination method with highest precision was used to assess
the health vulnerability of all provinces in 2020. The vulnerability value was calculated
according to Formula (7), in which V is the vulnerability value, E is the exposure score, S is
the sensitivity score and A is the adaptability score.

yi =

xi − min
1≤j≤n

{
xj
}

max
1≤j≤n

{
xj
}
− min

1≤j≤n

{
xj
} (3)

yi =


xi−threshold

max
1≤j≤n
{xj}−threshold

, xi ≥ threshold

threshold−xi
threshold− min

1≤j≤n
{xj} , xi < threshold

(4)
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yi =

max
1≤j≤n

{
xj
}
− xi

max
1≤j≤n

{
xj
}
− min

1≤j≤n

{
xj
} (5)

yi =


1− xi−threshold

max
1≤j≤n
{xj}−threshold

, xi ≥ threshold

1− threshold−xi
threshold− min

1≤j≤n
{xj} , xi < threshold

(6)

V = E + S− A (7)

To determine the weight of each index, quantile regression was used to obtain the
regression coefficient of the selected indexes at the 0.05th, 0.25th, 0.5th, 0.75th, and 0.95th
quantiles of the corresponding chronic diseases’ mortality levels. The average regression
coefficient of adjacent quantiles was calculated after excluding non-significant coefficients.
The coefficients for mortality levels <0.25, 0.25–0.5, 0.5–0.75 and >0.75 were obtained and
the proportion of each index coefficient in each interval was calculated as the weight for
each index at that mortality level. The vulnerability values of different regions for the four
mortality levels were calculated and used as features, with different mortality levels as
categories. Next, a random forest model was trained and optimized using the ten-fold
cross-validation method for predicting the category to which the new input data belong.
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3. Results
3.1. Factor Detection Results of Exposure Indexes

Figure 3 shows that the low quantile temperature exposure indexes have a greater
explanatory power for mortality related to respiratory diseases, heart diseases and cere-
brovascular diseases than the other three types of diseases. The mortality of respiratory
diseases and heart diseases can be explained by long-term temperature changes by over
60%, and the mortality of cerebrovascular diseases and malignant tumors by about 40%.
Short-term temperature changes are strongly correlated with respiratory diseases, heart
diseases, cerebrovascular diseases and endocrine nutrition metabolic diseases. Apart from
a relative strong correlation between CO_YM and mortality related to endocrine nutrition
metabolic diseases, other air pollution exposure indicators have weaker explanatory power
for chronic disease mortality, with q-values around 0.2 to 0.3. Humidity exposure exhibits
a strong correlation with mortality of respiratory diseases, heart diseases and endocrine
nutrition metabolic diseases. Air pressure is strongly correlated with mortality of cere-
brovascular diseases and digestive system diseases. Wind speed is only strongly correlated
with the mortality of endocrine nutrition metabolic diseases.
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3.2. The Correlation between the Filtered Indicators and Chronic Diseases

Figure 4 demonstrates that temperature exposure is associated with mortality of each
type of disease, but different temperature exposure indicators were selected for population
vulnerability evaluation of different diseases. For respiratory diseases, WLST_1th and
WLST_75th were selected as temperature exposure indexes, both of which are positive
indicators (Table S2), indicating that high temperature exposure is positively correlated
with respiratory diseases mortality. For heart and cerebrovascular diseases, long-term and
short-term temperature changes were selected, indicating that the long-term and short-term
temperature changes of high frequency are positively correlated with the disease mortality.
Humidity is positively correlated with respiratory and digestive system disease mortality
after exceeding a certain threshold (Tables S2 and S7).
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There is a correlation between age composition and mortality of chronic diseases. An
increase in the proportion of infants and children is positively associated with mortality
from respiratory diseases and heart diseases in some intervals (Tables S2 and S3), which
may be related to the high prevalence of lower respiratory tract infectious diseases due to
imperfect immune function and congenital heart defects in some infants. There is a negative
correlation between the proportion of juvenile children and disease mortality, while the
proportion of elderly population shows the opposite trend. In addition to respiratory
diseases, the proportion of the middle-age population is positively correlated with the
mortality of the other five types of disease (Tables S2–S7).

The mortality of specific diseases is related to the consumption of various foods. Per
capita consumption of red meat is positively correlated with mortality from respiratory
and digestive diseases, and consumption of sugar and oil is positively correlated with
mortality from respiratory diseases (Tables S2 and S7). Per capita egg consumption is
positively correlated with mortality from heart diseases, cerebrovascular diseases and
malignant tumors (Tables S3–S5). Per capita consumption of aquatic products is positively
correlated with mortality from malignant tumors, endocrine nutrition metabolic diseases
and digestive system diseases (Tables S5–S7).

The mortality of different diseases is related to the proportion of population in differ-
ent industries. The proportion of the population in the secondary industry is positively
correlated with the mortality of respiratory diseases, cerebrovascular diseases and ma-
lignant tumors (Tables S2, S4 and S5). The proportion of the population in the primary
industry has a negative correlation with the mortality of heart diseases and malignant
tumors (Tables S3 and S5). Additionally, there is a positive correlation between the pro-
portion of the population in the tertiary industry and the mortality of endocrine nutrition
metabolic diseases (Table S6).

The mortality of chronic diseases is related to the proportion of different land use
types and per capita educational resources. The increase in the proportion of industrial
land is positively associated with mortality due to cerebrovascular diseases, malignant
tumors, and endocrine nutrition metabolic diseases (Tables S4–S6). Conversely, the increase
in the proportion of green space is associated with a decrease in mortality of respiratory
diseases, endocrine metabolic diseases and digestive system diseases (Tables S2, S6 and S7).
Per capita educational resources are negatively correlated with the mortality of chronic
diseases, except for digestive system diseases.

3.3. Comparison of Different Weight Determination Methods

Table 2 shows the determination coefficients between vulnerability scores calculated
by the three weight determination methods and the corresponding disease mortality. The
quantile regression method shows the highest coefficients of determination, with R2 values
exceeding 0.7 for respiratory system diseases and malignant tumors. For chronic diseases
excluding digestive system diseases, FAHP method obtains the second highest R2 after the
quantile regression method, which are very close to those of quantile regression method
in cerebrovascular diseases, malignant tumors and endogenous metabolic diseases. The
entropy weight method consistently shows the lowest determination coefficients, only
reaching those of the other two methods in cerebrovascular diseases, malignant tumors
and digestive system diseases. By comparing the index weight distribution of population
vulnerability evaluation index system of various diseases in Figures 4, S1 and S2, it can
be seen that the index weight distribution obtained by the quantile regression method is
similar to that of the FAHP method, while the index weight distribution obtained by the
entropy weight method is only comparable to the other two methods in cerebrovascular
diseases, malignant tumors and digestive diseases.
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Table 2. Determination coefficients between vulnerability calculated by different weight determina-
tion methods and corresponding disease mortality.

Quantile Regression FAHP Entropy Weight

Respiratory diseases 0.78 0.55 0.30
Heart diseases 0.65 0.57 0.28

Cerebrovascular diseases 0.58 0.58 0.41
Malignant tumors 0.73 0.72 0.42

Endocrine nutrition metabolic diseases 0.68 0.62 0.03
Digestive system diseases 0.66 0.44 0.51

3.4. Analysis of the Results of Health Vulnerability Assessment and Main Related Factors in
Different Provinces

Figure 5 illustrates the regional vulnerability to chronic diseases in 2020. Southwest
provinces showed the highest vulnerability to respiratory diseases in 2020. For heart
diseases, vulnerability values exceeding 0.5 were observed in Shanghai, Shandong, north-
eastern provinces, and northern provinces except Shanxi. For cerebrovascular diseases,
vulnerability values exceeding 0.5 were observed in Jiangsu, Shanghai, Tianjin, Shandong,
and northeastern provinces. For malignant tumors, vulnerability values exceeding 0.5 were
observed in Beijing, Hebei, Jiangsu, Liaoning, Shandong, Shanghai, Tianjin, Zhejiang and
Chongqing. Shanghai had the highest vulnerability to endogenous metabolic diseases,
whereas the western region had the lowest. The highest vulnerability to digestive system
diseases was observed in Tibet, followed by Guangdong and Hainan.

Figure 6 illustrates the standardized values of meteorological exposure indexes, re-
vealing that provinces in southwestern and southeastern China experienced more high
temperatures and humid weather, increasing the vulnerability of people at risk of respira-
tory disease. The provinces in northeast China, north China and northwest China exhibited
sharper long-term and short-term temperature changes, increasing the health vulnerability
of people at risk of heart disease, cerebrovascular diseases, malignant tumors and endocrine
nutrition metabolic diseases. With the exception of Gansu, Guizhou, Heilongjiang, Jilin,
Liaoning, Inner Mongolia and Yunnan, all other provinces had higher WLST_75th scores,
which exacerbated the health vulnerability of people at risk of malignant tumors and
endocrine nutrition metabolic diseases.

In terms of air pollution exposure indicators, PM exposure in Xinjiang, Hebei, Henan,
Shandong and Shanxi was severe, increasing the population’s health vulnerability in these
provinces. The exposure values of NO2 and O3 were relatively large in Hebei, Henan, Tian-
jin, Shanxi, Shandong, Jiangsu, Shanghai and Chongqing, which increased the population’s
vulnerability to heart diseases, cerebrovascular diseases, and malignant tumors. Severe CO
exposure in Hebei, Shanxi, Tianjin and Liaoning increased the population’s vulnerability to
heart diseases, endocrine nutrition metabolic diseases and digestive system diseases.

Regarding age composition indicators, the proportion of teenagers was relatively small
in northeastern provinces, Beijing, Tianjin, Inner Mongolia, Hunan, Shandong, Shanghai
and Zhejiang, increasing the health vulnerability in respiratory diseases, heart diseases,
cerebrovascular diseases and endocrine nutrition metabolic diseases. The higher proportion
of the population aged 40–59 in the northeastern provinces, Hubei, Inner Mongolia, Shang-
hai and Tianjin increased the health vulnerability values in heart diseases, cerebrovascular
diseases, endocrine nutrition metabolic diseases and digestive system diseases. Addition-
ally, Jiangsu, Liaoning and Shanghai had higher Age_80 indicator scores compared to other
provinces, increasing health vulnerability values in respiratory diseases, cerebrovascular
diseases and endocrine nutrition metabolic diseases (Figure 7).
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Figure 5. Provincial assessment results of the population health vulnerability for the six types of
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In terms of food consumption indicators, high per capita meat consumption in Inner
Mongolia, Sichuan, Tibet and Yunnan increased the health vulnerability of people to
respiratory diseases, endocrine nutrition metabolic diseases and digestive system diseases.
Higher per capita egg consumption in Henan, Shandong, northeastern and northern
provinces increased the health vulnerability of people to heart diseases, cerebrovascular
diseases and malignant tumors. Coastal provinces including Zhejiang, Shanghai, Fujian,
Hainan and Guangdong had high index values of aquatic products consumption, which
increased the health vulnerability of people to cerebrovascular diseases, malignant tumors,
endocrine nutrition metabolic diseases and digestive system diseases (Figure 7).

Provinces with strong economic development, such as Beijing, Tianjin, Zhejiang,
Shanghai and Guangdong had a low proportion of population engaged in the primary
industry, which increased the health vulnerability of the population to heart diseases and
malignant tumors. Guangdong, Jiangsu and Zhejiang had high SecInd_Ratio index scores
due to the high proportion of population engaged in secondary industries, increasing the
health vulnerability of the population to respiratory diseases, cerebrovascular diseases and
malignant tumors (Figure 7).

Regarding land use indicators, the proportion of industrial land was high in Tianjin,
Hubei, Shanghai, Guangdong and northeastern provinces (Figure 7), resulting in increased
sensitivity scores for cerebrovascular diseases, malignant tumors, endocrine nutrition
metabolic diseases and digestive system diseases. The proportion of green space was high
in Hebei, Henan, Ningxia, Shanxi, Qinghai, Tibet and Guangxi (Figure 8), which increased
the adaptability to respiratory system diseases, endocrine nutrition metabolic diseases and
digestive system diseases. However, Beijing, Hubei, Shanghai and Guangdong had lower
proportions of green space compared to other provinces.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 8. Distribution map of standardized values of main adaptability indicators for each province. 

Per capita education resources play an important role in increasing adaptability to 
chronic diseases. Beijing and Tianjin had a much higher number of general higher educa-
tion schools per thousand people compared to other provinces, while densely populated 
provinces such as Zhejiang, Shanghai, Jiangsu, Chongqing and Guangdong had lower 
numbers of secondary schools and schools per thousand people (Figure 8). This indicates 
a potential reduction in adaptability to chronic diseases in these densely populated prov-
inces. 

4. Discussion 
4.1. Estimation Error of Air Pollution Exposure 

The results of factor detection show that there is not a strong correlation between air 
pollution exposure indicators and mortality rate for various diseases. However, numerous 
studies have shown significant impacts of air pollution on respiratory, cardiovascular and 
cerebrovascular diseases [26,30,31,42–48]. This may be due to errors in air pollution expo-
sure estimation caused by rapid changes in air quality and population mobility. Although 
the daily PM distribution data with high temporal resolution were used in this study, 
some heavily polluted areas (e.g., Beijing, Tianjin, Hebei) may experience abrupt spikes in PMଶ.ହ  concentrations [49]. Although this study utilized high spatial resolution annual 
population distribution data for air pollution exposure indicator calculations, the limita-
tion of data acquisition may result in errors due to cross-regional population movement 
at different times not being accounted for. Some studies have shown that using mobile 
phone location data rather than fixed population data to estimate air pollution exposure 
will provide more accurate results [50]. 

In addition, failure to obtain indoor air pollution data can also lead to errors in esti-
mation. Studies on human exposure to indoor pollution have shown that indoor environ-
ment is at least twice as polluted as the outdoor environment. A recent report concluded 

Figure 8. Distribution map of standardized values of main adaptability indicators for each province.



ISPRS Int. J. Geo-Inf. 2023, 12, 155 16 of 22

Per capita education resources play an important role in increasing adaptability to
chronic diseases. Beijing and Tianjin had a much higher number of general higher educa-
tion schools per thousand people compared to other provinces, while densely populated
provinces such as Zhejiang, Shanghai, Jiangsu, Chongqing and Guangdong had lower
numbers of secondary schools and schools per thousand people (Figure 8). This indicates a
potential reduction in adaptability to chronic diseases in these densely populated provinces.

4. Discussion
4.1. Estimation Error of Air Pollution Exposure

The results of factor detection show that there is not a strong correlation between air
pollution exposure indicators and mortality rate for various diseases. However, numerous
studies have shown significant impacts of air pollution on respiratory, cardiovascular and
cerebrovascular diseases [26,30,31,42–48]. This may be due to errors in air pollution expo-
sure estimation caused by rapid changes in air quality and population mobility. Although
the daily PM distribution data with high temporal resolution were used in this study, some
heavily polluted areas (e.g., Beijing, Tianjin, Hebei) may experience abrupt spikes in PM2.5
concentrations [49]. Although this study utilized high spatial resolution annual population
distribution data for air pollution exposure indicator calculations, the limitation of data
acquisition may result in errors due to cross-regional population movement at different
times not being accounted for. Some studies have shown that using mobile phone location
data rather than fixed population data to estimate air pollution exposure will provide more
accurate results [50].

In addition, failure to obtain indoor air pollution data can also lead to errors in
estimation. Studies on human exposure to indoor pollution have shown that indoor
environment is at least twice as polluted as the outdoor environment. A recent report
concluded that household air pollution is a major contributor to global morbidity and
mortality, with significant effects on the respiratory and cardiovascular systems [51].

4.2. Explanation of the Influence of Main Sensitivity and Adaptability Indexes on the Health
Vulnerability of People

The screening results of the indexes reveal a significant correlation between per capita
consumption of various food and chronic diseases. Among them, the consumption of
aquatic products, red meat and eggs has been linked to increased population health vulner-
ability. In the case of aquatic products, it may because heavy metal contamination in water
bodies has gradually become a serious problem since China’s rapid industrialization and
urbanization [52,53]. Aquatic products will accumulate heavy metals from the environment,
which move up the food chain, and consumption of contaminated products poses a poten-
tial risk to human health [54]. Wang et al. analyzed the spatial distribution of heavy metals
in four types of aquatic products from 32 provinces during 2015–2017. The results show
that the cancer risk caused by cadmium or chromium cannot be ignored [55]. For red meat,
some studies report that the risk of dying from cancer, heart disease, respiratory disease,
stroke, diabetes, infection, kidney disease or liver disease increases with the consumption
of red meat [56]. In addition, the effect of nitrites make processed meat associated with
increased cardiovascular and respiratory mortality [57]. Many provinces in southern China
have the habit of making and eating bacon. Increased egg intake may lead to an increased
risk of cardiovascular disease and cancer death [58]. In addition, studies have shown that
egg intake is a risk factor for colon, rectal and prostate cancer [59].

In addition to food consumption, food processing methods can also have an impact
on human health. For example, high sodium and low potassium diets can increase blood
pressure and ultimately cardiovascular disease. In China, the average dietary sodium
content is excessively high and potassium content is insufficient. However, there is a lack of
accurate data on sodium and potassium intake. Tan et al. used meta-analysis to summarize
all published 24 h urinary sodium and potassium data to determine provincial sodium
and potassium intake [60]. The study showed higher sodium intake in Tibet, Ningxia,
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Hebei, Henan, Shandong, Jiangsu, Heilongjiang, Liaoning, Beijing and Tianjin, which is
consistent with the conclusion of this study that population in northeastern provinces,
northern provinces and Shandong have higher health vulnerability values to heart diseases.

The proportion of population in different industries is related to the mortality of
different diseases. The proportion of the secondary industry population is positively corre-
lated with the mortality of respiratory diseases, cerebrovascular diseases and malignant
tumors. Secondary industry refers to mining, manufacturing, power (heat, gas and water
production and supply), construction and similar businesses. The working environment of
these industries is mostly accompanied by air pollution and chemicals which are harmful
to population health. The proportion of population in the primary industry has a negative
correlation with the mortality of heart diseases and malignant tumors. The primary in-
dustry mostly encompasses agricultural practices such as forestry, animal husbandry, and
fishing, which typically involve prolonged periods of physical activity. Research has shown
that increasing exercise can decrease the incidence of obesity and high blood pressure,
ultimately reducing the morbidity and mortality associated with cardiovascular disease and
other related conditions [61]. At the same time, production activities associated with the
primary industry are predominantly located in rural areas and are subject to fewer impacts
from human activities. Consequently, air pollution levels in these areas are relatively low,
and the heat island effect is less pronounced than in urban areas. As a result, individuals
engaged in primary industry work may experience relatively limited environmental expo-
sure. There is a positive correlation between the proportion of population in the tertiary
industry and endocrine nutrition metabolic diseases mortality, which may be due to less
physical activity and higher stress levels associated with this sector, which can increase the
risk of developing endocrine and metabolic diseases such as obesity and diabetes.

The study results show that the number of public education facilities per capita helps
increase the adaptability to chronic diseases. This could be attributed to the fact that the
number of public education facilities per capita reflects the proportion and education level
of educated people in a certain area to some extent, who possess better health awareness
and knowledge about how to mitigate risk factors, ultimately leading to better adaptability
to environmental exposure.

4.3. Influential Factors of Chronic Diseases Not Considered in This Study

Smoking and drinking are two factors that have been widely proved to have a negative
impact on the occurrence and development of various diseases. Smoking is a risk factor for
cardiovascular diseases, diabetes, cancer and other diseases, and exposure to second-hand
smoke can increase the incidence and mortality rate of cardiovascular diseases [62]. Alcohol
use can increase the risk of cardiovascular disease from different dimensions, and plays a
causal role in the development of oral cavity, pharynx, larynx, esophagus, liver, colon, rectal
and female breast cancers, and may be associated with gastric and pancreatic cancers [63].
This study was unable to include indicators on tobacco and alcohol consumption for each
province due to lack of historical data. If this data can be supplemented in future studies, it
may improve the accuracy of population health vulnerability assessment. Moreover, the
COVID-19 pandemic that emerged in late 2019 has had an impact on the mortality of various
chronic diseases, which may persist for years to come. Therefore, future research should
take into account the impact of such public health emergencies on chronic mortality rates.

5. Conclusions

This study took the advantage of remote sensing data to finely characterize me-
teorological factor exposures and air pollution exposure, and constructed population
health vulnerability evaluation index systems for six types of chronic diseases based on
an exposure–sensitivity–adaptability framework. The validation of the study’s results
through mortality data and previous research demonstrates the effectiveness of the pro-
posed method in assessing population health vulnerability regarding non-communicable
disease mortality risk at the regional level.
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Factor detection results indicate that low quantile temperature exposure indexes
and temperature change indexes exhibit relatively strong explanatory power for chronic
disease mortality. In contrast, most air pollution exposure indicators demonstrate weaker
explanatory power for chronic disease mortality, with q-values ranging from 0.2 to 0.3.

The results of the population health vulnerability assessment for each province in 2020
show that the southwestern provinces had the highest vulnerability values for respiratory
diseases. The northeastern provinces, the northern provinces, Shanghai and Shandong
had high vulnerability values for heart diseases. Jiangsu, Shanghai, Tianjin, Shandong
and the northeastern provinces had high vulnerability values for cerebrovascular diseases.
Beijing, Hebei, Jiangsu, Liaoning, Shandong, Shanghai, Tianjin, Zhejiang and Chongqing
had higher malignant tumor vulnerability values. Shanghai had the highest vulnerability
values for endocrine nutrition metabolic diseases, while the western regions had lower
ones. Tibet had the highest vulnerability value for digestive system diseases, followed by
Guangdong and Hainan.

Temperature exposure, air pollution exposure, age structure, food consumption, pro-
portion of population in different industries, land use and number of public education
facilities per capita are the main factors related to mortality of chronic diseases. The popu-
lation in southern region should pay attention to the exposure of high-temperature and
humid weather, and the population in northeastern, northern and northwestern provinces
should pay attention to the impact of temperature change. The air pollution exposure
in Xinjiang, Hebei, Henan, Shandong and Shanxi is more serious. The population aging
level in Tianjin, Inner Mongolia, Shanghai and the northeastern provinces is relatively
high, so the health support system for the elderly should be improved as soon as possible.
In addition, the results show that not only people over 60 years old are vulnerable to
health, but people aged 40–59 years old also have a strong sensitivity to a variety of chronic
diseases which may be due to the high pressure of upbringing and supporting families.
Therefore, attention should also be paid to disease prevention for middle-aged people.

The mortality rate of chronic diseases is affected by various factors such as natural
environment, population characteristics and regional socio-economic conditions, and the
form of their impact is complex. Currently, there is no unified indicator system for eval-
uating the relevant factors of chronic diseases in existing research. In this study, using
remote sensing and geographic information system technology, we constructed indicator
systems for chronic diseases and analyzed the relevant factors. Based on this, we obtained
preliminary results of the assessment of population health vulnerability nationwide, which
can contribute to the formulation of regional environmental governance and social security
policies. Because the urban environment is highly variable, intervention at the overall level
is more cost-effective than intervention at the individual level. Therefore, studies on how
the environment affects chronic diseases are of great significance to protect residents’ health
and reduce the national financial expenditure on medical care. At the same time, studies
on the environmental exposure and coping ability of the population at a holistic level may
provide a new perspective on prevention and control of chronic diseases. However, there
are still some issues that need further research and exploration.

Firstly, the accuracy of the patterns obtained from exploring the correlation between
various factors and chronic disease mortality is influenced by the completeness of mortality
data. In this study, we analyzed chronic disease mortality data from 2010 to 2020, but some
provinces had missing mortality data in certain years. In future studies, obtaining more
complete and longer-term mortality data for chronic diseases would aid in identifying
more accurate relationships between environmental factors and chronic disease mortality
responses, while improving the precision of the evaluation model. Furthermore, utilizing
the method of this study to conduct more detailed studies at finer scales such as cities,
county-level and communities based on more comprehensive chronic disease mortality
data can help to investigate the scale effect of various factors on chronic disease mortality.

Secondly, a comprehensive and accurate characterization of the factors associated
with chronic disease mortality is essential for assessing the health vulnerability of the
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population. However, there is still room for improvement in both aspects of this study.
With regards to the comprehensiveness of the indicators, as discussed in Sections 4.1 and 4.3,
this study was unable to quantify certain indicators that affect chronic disease mortality,
such as regional tobacco and alcohol consumption and indoor pollution, due to limitations
in data acquisition. In addition, chronic diseases are greatly influenced by genetics, but
there is currently no authoritative and easy-to-implement parameterization method for
this aspect. These are research directions for optimizing the evaluation system. In terms of
the accuracy of indicators, the general public budget expenditure in sensitive indicators
can partially reflect the economic development of a region. However, more specific public
budget expenditure indicators in healthcare, social security and education may provide
stronger insights into the factors that influence chronic disease mortality. The analysis in
Section 4.1 on exposure error in air pollution also suggests that obtaining air pollution
monitoring data with higher temporal resolution and population mobility data can aid
in more accurate estimation of environmental exposure. This, in turn, can lead to more
precise relationships between environmental exposure and chronic disease mortality.

Exploring the factors that impact chronic disease mortality involves knowledge from
various disciplines and fields. It is the correlation between each element and chronic disease
mortality that was explored through the construction of indicators in this study, indicating
that these indicators may not directly affect chronic disease mortality. Therefore, in future
studies, it would be beneficial to integrate knowledge from various fields such as medicine,
to connect the selected indicators in this study with other relevant factors. This would
aid in identifying the factors that have an impact on chronic disease mortality and help in
revealing the mechanisms by which each element affects chronic disease mortality.
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