Profiling Public Transit Passenger Mobility Using Adversarial Learning
Abstract
:1. Introduction
- We propose to profile public transit mobility considering both the personalized and group characteristics. We extend Apriori algorithm [20] with spatio-temporal constraints to extract passenger’s frequent transit mobility, which representing personalized characteristics. And the group characteristics are represented by identifying similar transit group mobility. Additionally, because of the sparsity of public transit trajectory [21], we design a unified grid-based method to construct transit mobility vectors.
- We propose a novel data-driven method for profiling public transit mobility using an adversarial learning network that integrates personal and group characteristics. The generator of the network consists of a pre-trained sub-generator and an auto-encoder, both of which are composed of multiple GRU layers and fully connected layers. We pre-train sub-generator using similar transit group vectors as labels to add group characteristics into the network. The discriminator, on the other hand, is composed of multiple fully connected layers. Within the framework of GAN, frequent transit mobility vectors are used as the real value to be jointly trained with the fake value of the generator. Through this adversarial process, a specific public transportation passenger’s transit mobility embedding can be obtained;
- The proposed method was evaluated with real SCD in Shenzhen, China. The experimental results show that the proposed approach has the applicability to characterize transit mobility and assist in understanding passengers’ transit behavior and mobility patterns.
2. Related Work
2.1. Transit Mobility Pattern Mining
2.2. Data-Driven Transit Mobility Analysis
3. Methodology
3.1. Problem Formulation
3.2. Methodology Overview
3.3. Constructing Transit Mobility Vector
3.3.1. Representing Personal Trips as Raw Features
3.3.2. Extracting Frequent Transit Mobility
Algorithm 1: Extracting Frequent Mobility Pattern. |
Input: Trip datasets of all passengers in M days: totalTripDatasets = {P1, P2, P3, …, Pm−1, Pm}; trip time threshold: σ; support threshold:
; minimum frequent pattern length: γ; frequent pattern count threshold:
Output: Collection of frequent trips for all passenger in M days: ETrips = {ET1, ET2, ET3,…, ETn−1, ETn} 1: Initialize Q← , Lall← , k←1, j←1 2: for each tripDataset in totalTripDatasets do//Initializing data 3: Rj.append(tripDataset.places) 4: Q←UpdateQ(tripDataset) 5: end for 6: Lj←ExtractFrequentPattern(Rj, θ)//Extracting L1 pattern 7: while len(Lk) > γ do//Loop for expanding patterns 8: Lall.append(Lk) 9: k←k + 1 10: Rk←ExpandRSet(Lj, Lk, Q, σ) 11: Lk←ExtractFrequentPattern(Rk, θ) 12: End while 13: ETrips = ReconstructTripDataset(Lall, totalTripDatasets) |
3.3.3. Identifying Similar Transit Groups
3.3.4. Generating Grid-Based Transit Mobility Vectors
Algorithm 2: Constructing grids based on trip popularity. |
Input: Area scope: G = [lowerLeftLng, lowerLeftLat, upperRightLng, upperRightLat]; minimum grid length: γ; maximum flow: θ Output: A regular grid: FG={fgrid1, fgrid2,…, fgridn} 1: Initialize FG← , SG←G//SG means the collection of split grids 2: for each sg in SG do 3: CalculateTransitPopularity(sg)//Calculating transit popularity for each grid 4: if sg.flow > θ and sg.width > γ and sg.height > γ then 5: gTmp = SplitGrid(sg)//Quad-dividing grids 6: FilterByQuatree(gTmp)//Recursive function 7: else then 8: FG.append(sg)//Appending grids that meet the requirements 9: end if 10: end for |
3.4. Transit Mobility Embedding
3.4.1. Pre-Training Sub-Generator
3.4.2. Embedding Mobility Using Adversarial Learning
4. Results and Discussion
4.1. Study Area and Data
4.2. Transit Mobility Cluster Analysis
4.3. Estimate Top K Transit Destinations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luca, M.; Barlacchi, G.; Lepri, B.; Pappalardo, L. A survey on deep learning for human mobility. ACM Comput. Surv. 2021, 55, 1–44. [Google Scholar] [CrossRef]
- Wang, R.; Li, N.; Wang, Y. Does the returners and explorers dichotomy in urban human mobility depend on the observation duration? An empirical study in Guangzhou, China. Sustain. Cities Soc. 2021, 69, 102862. [Google Scholar] [CrossRef]
- Barbosa, H.; Barthelemy, M.; Ghoshal, G.; James, C.R.; Lenormand, M.; Louail, T.; Menezes, R.; Ramasco, J.J.; Simini, F.; Tomasini, M. Human mobility: Models and applications. Phys. Rep. 2018, 734, 2018. [Google Scholar] [CrossRef]
- Feng, J.; Yang, Z.; Xu, F.; Yu, H.; Wang, M.; Li, Y. Learning to simulate human mobility. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, CA, USA, 6–10 July 2020; pp. 3426–3433. [Google Scholar]
- Sáenz, F.T.; Arcas-Tunez, F.; Muñoz, A. Nation-wide touristic flow prediction with Graph Neural Networks and heterogeneous open data. Inf. Fusion 2023, 91, 582. [Google Scholar] [CrossRef]
- Zipf, G.K. The P1P2/D hypothesis: On the intercity movement of persons. Am. Sociol. Rev. 1946, 11, 677–686. [Google Scholar] [CrossRef]
- Simini, F.; González, M.C.; Maritan, A.; Barabási, A.L. A universal model for mobility and migration patterns. Nature 2012, 484, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Masucci, A.P.; Serras, J.; Johansson, A.; Batty, M. Gravity versus radiation models: On the importance of scale and heterogeneity in commuting flows. Phys. Rev. E 2013, 88, 22812. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Voutharoja, B.P.; Salim, F.D. Leveraging language foundation models for human mobility forecasting. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 1–4 November 2022; Volume 90, pp. 1–9. [Google Scholar]
- McKenzie, G.; Romm, D. Measuring urban regional similarity through mobility signatures. Comput. Environ. Urban Syst. 2021, 89, 101684. [Google Scholar] [CrossRef]
- Wu, J.; Qu, Y.; Sun, H.; Yin, H.; Yan, X.; Zhao, J. Data-driven model for passenger route choice in urban metro network. Phys. A-Stat. Mech. Its Appl. 2019, 524, 787–798. [Google Scholar] [CrossRef]
- Ma, X.; Liu, C.; Wen, H.; Wang, Y.; Wu, Y.J. Understanding commuting patterns using transit smart card data. J. Transp. Geogr. 2017, 58, 135–145. [Google Scholar] [CrossRef]
- Rosa, L.; Silva, F.; Analide, C. Explainable Artificial Intelligence on Smart Human Mobility: A Comparative Study Approach. In Distributed Computing and Artificial Intelligence, Special Sessions, 19th International Conference; Springer: Berlin/Heidelberg, Germany, 2023; pp. 93–103. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. In Proceedings of the International Conference on Learning Representations, Scottsdale, AZ, USA, 2–4 May 2013. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Process. Syst. 2013, 26, 3111–3119. [Google Scholar]
- Wang, P.; Fu, Y.; Xiong, H.; Li, X. Adversarial Substructured Representation Learning for Mobile User Profiling. In Proceedings of the 25th ACM SIGKDD International Conference, Anchorage, AK, USA, 4–8 August 2019; ACM: New York, NY, USA, 2019. [Google Scholar]
- Gao, Q.; Zhou, F.; Zhang, K.; Trajcevski, G.; Luo, X.; Zhang, F. Identifying human mobility via trajectory embeddings. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 1689–1695. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial nets. In Proceedings of the NIPS, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Mauro, G.; Luca, M.; Longa, A.; Lepri, B.; Pappalardo, L. Generating mobility networks with generative adversarial networks. EPJ Data Sci. 2022, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Imielinski, T.; Swami, A. Mining association rules between sets of items in large databases. ACM SIGMOD Rec. 1993, 22, 207–216. [Google Scholar] [CrossRef]
- Yang, D.; Fankhauser, B.; Rosso, P.; Cudre-Mauroux, P. Location prediction over sparse user mobility traces using RNNs: Flashback in hidden states. In Proceedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, Japan, 7–15 January 2021; pp. 2184–2190. [Google Scholar]
- Barabási, A. The origin of bursts and heavy tails in human dynamics. Nature 2005, 435, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Brockmann, D.; Hufnagel, L.; Geisel, T. The scaling laws of human travel. Nature 2006, 439, 462–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, M.; Hidalgo, C.; Barabási, A. Understanding individual human mobility patterns. Nature 2008, 453, 779–782. [Google Scholar] [CrossRef]
- Song, C.; Qu, Z.; Blumm, N.; Barabási, A.L. Limits of Predictability in Human Mobility. Science 2010, 327, 1018–1021. [Google Scholar] [CrossRef] [Green Version]
- Ellis, D.; Sommerlade, E.; Reid, I. Modelling pedestrian trajectory patterns with Gaussian processes. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), Kyoto, Japan, 27 September–4 October 2009; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Schneider, C.M.; Belik, V.; Couronné, T.; Smoreda, Z.; González, M.C. Unravelling daily human mobility motifs. J. R. Soc. Interface 2013, 10, 20130246. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.C.; Peng, W.C.; Lee, W.C. Clustering and aggregating clues of trajectories for mining trajectory patterns and routes. VLDB J. 2015, 24, 169–192. [Google Scholar] [CrossRef]
- Bagchi, M.; White, P.R. The potential of public transport smart card data. Transp. Policy 2005, 12, 464–474. [Google Scholar] [CrossRef]
- Pelletier, M.P.; Martin, T.; Morency, C. Smart card data use in public transit: A literature review. Transp. Res. Part C Emerg. Technol. 2011, 19, 557–568. [Google Scholar] [CrossRef]
- Ochi, M.; Nakashio, Y.; Yamashita, Y.; Sakata, I.; Asatani, K.; Ruttley, M.; Mori, J. Representation learning for geospatial areas using large-scale mobility data from smart card. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, Germany, 12–16 September 2016; pp. 1381–1389. [Google Scholar]
- Kieu, L.M.; Bhaskar, A.; Chung, E. A modified Density-Based Scanning Algorithm with Noise for spatial travel pattern analysis from Smart Card AFC data. Transp. Res. Part C Emerg. Technol. 2015, 58, 193–207. [Google Scholar] [CrossRef]
- Yao, D.; Zhang, C.; Zhu, Z.; Huang, J.; Bi, J. Trajectory clustering via deep representation learning. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Zhou, F.; Gao, Q.; Trajcevski, G.; Zhang, K.; Zhong, T.; Zhang, F. Trajectory-user linking via variational autoencoder. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3212–3218. [Google Scholar]
- Gao, Q.; Zhou, F.; Trajcevski, G.; Zhang, K.; Zhong, T.; Zhang, F. Predicting Human Mobility via Variational Attention. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 2750–2756. [Google Scholar]
- Chen, C.; Liao, C.; Xie, X.; Wang, Y.; Zhao, J. Trip2Vec: A deep embedding approach for clustering and profiling taxi trip purposes. Pers. Ubiquitous Comput. 2018, 23, 5366. [Google Scholar] [CrossRef]
- Cao, H.; Xu, F.; Sankaranarayanan, J.; Li, Y.; Samet, H. Habit2vec: Trajectory Semantic Embedding for Living Pattern Recognition in Population. IEEE Trans. Mob. Comput. 2019, 19, 1096–1108. [Google Scholar] [CrossRef]
- Lin, K.; Chen, J.; Lian, X.; Mai, W.; Guo, Z.; Chen, X.; Hsu, T.Y. Spatial-Temporal Context-Aware Location Prediction Based on Bidirectional Self-Attention Network. In Proceedings of the 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 14–17 October 2022; pp. 701–706. [Google Scholar] [CrossRef]
- Wang, P.; Fu, Y.; Zhang, J.; Li, X.; Lin, D. Learning Urban Community Structures: A Collective Embedding Perspective with Periodic Spatial-temporal Mobility Graphs. ACM Trans. Intell. Syst. Technol. 2018, 9, 1–28. [Google Scholar] [CrossRef]
- Liu, H.; Li, T.; Hu, R.; Fu, Y.; Gu, J.; Xiong, H. Joint Representation Learning for Multi-Modal Transportation Recommendation. Proc. AAAI Conf. Artif. Intell. 2019, 33, 1036–1043. [Google Scholar] [CrossRef] [Green Version]
- Martin, H.; Wiedemann, N.; Reck, D.J.; Raubal, M. Graph-based mobility profiling. Comput. Environ. Urban Syst. 2023, 100, 101910. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, F.; Yao, F.; Li, A.; Mei, L.; Zhou, F. Adversarial Mobility Learning for Human Trajectory Classification. IEEE Access 2020, 8, 20563–20576. [Google Scholar] [CrossRef]
- Mizuno, T.; Fujimoto, S.; Ishikawa, A. Generation of individual daily trajectories by GPT-2. Front. Phys. 2022, 10, 1118. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Yang, H.; Cui, C.; Li, J.; Qiao, Q. Identifying primary public transit corridors using multi-source big transit data. Int. J. Geogr. Inf. Sci. 2020, 34, 1137–1161. [Google Scholar] [CrossRef]
- Zepeda-Mendoza, M.L. Resendis-Antonio, O. Hierarchical Agglomerative Clustering. Encycl. Syst. Biol. 2013, 43, 886–887. [Google Scholar]
- Primerano, F.; Taylor, M.A.; Pitaksringkarn, L.; Tisato, P. Defining and understanding trip chaining behaviour. Transportation 2008, 35, 55–72. [Google Scholar] [CrossRef]
ID | Card Type | Swiping Time | Bus Companies (Subway Lines) | Bus Lines (Subway Stops) | Bus Number (Subway Gate) |
---|---|---|---|---|---|
1000051 | 22 | 17 April 2017 14:31:53 | Subway 2 | Yannan Station | OGT-122 |
200044 | 21 | 17 April 2017 09:01:08 | Subway 6 | Buxin Station | OGT-242 |
2000341 | 31 | 7 April 2017 17:21:12 | East bus company | 203 | BS20001 |
1000976 | 31 | 17 April 2017 11:51:43 | West bus company | M409 | BS30001 |
Sampling Time | Bus Number | Bus Line | Bus Companies | Longitude | Latitude |
---|---|---|---|---|---|
17 April 2017 18:21:56 | BS20008 | M443 | East bus company | 113.825 | 22.749 |
17 April 2017 08:09:08 | BS20005 | M201 | East bus company | 113.997 | 22.778 |
17 April 2017 14:41:43 | BS40005 | 17 | West bus company | 114.002 | 22.801 |
17 April 2017 19:51:53 | BS40014 | 201 | West bus company | 114.103 | 22.765 |
ID | Start Time | Origin Station | Arrival Time | Terminal | Transfer |
---|---|---|---|---|---|
20001 | 17 April 2017 10:01:13 | Laojie Station | 17 April 2017 10:31:23 | Luohu Station | Null |
20001 | 17 April 2017 12:21:53 | Hongling Road | 17 April 2017 13:01:11 | Huanggang Station | Null |
20005 | 17 April 2017 17:31:33 | Yannan Station | 17 April 2017 18:24:47 | Meijing Staion | Jingtian Station # |
20011 | 17 April 2017 11:23:44 | Laojie Station | 17 April 2017 12:44:13 | Kanglin Hospital | Museum Station # News Building # |
Cluster ID | Passenger Count | Ave. Time (min) | Ave. Stops | Ave. Tranfer | Proportion of Passenger Type | |||
---|---|---|---|---|---|---|---|---|
Random | Commute | Temporary | Unknown | |||||
1 | 2288 | 40.123 | 9.877 | 0.448 | 0.240 | 0.307 | 0.352 | 0.101 |
2 | 1839 | 42.516 | 11.183 | 0.662 | 0.557 | 0.214 | 0.141 | 0.088 |
3 | 5041 | 33.955 | 9.137 | 0.546 | 0.434 | 0.196 | 0.286 | 0.084 |
4 | 2002 | 34.208 | 9.266 | 0.531 | 0.433 | 0.202 | 0.262 | 0.103 |
5 | 681 | 35.169 | 9.488 | 0.543 | 0.423 | 0.206 | 0.268 | 0.103 |
Total | 11,851 | 36.587 | 9.639 | 0.542 | 0.415 | 0.222 | 0.271 | 0.092 |
Cluster ID | Passenger Count | Ave. Time (min) | Ave. Stops | Ave. Tranfer | Proportion of Passenger Type | |||
---|---|---|---|---|---|---|---|---|
Random | Commute | Temporary | Unknown | |||||
1 | 6001 | 36.395 | 9.568 | 0.523 | 0.414 | 0.233 | 0.263 | 0.089 |
2 | 1787 | 36.945 | 9.722 | 0.562 | 0.432 | 0.206 | 0.268 | 0.094 |
3 | 2277 | 36.917 | 9.773 | 0.561 | 0.416 | 0.196 | 0.286 | 0.102 |
4 | 768 | 35.499 | 9.351 | 0.541 | 0.393 | 0.243 | 0.274 | 0.089 |
5 | 1018 | 37.169 | 9.829 | 0.573 | 0.407 | 0.224 | 0.288 | 0.081 |
Total | 11,851 | 36.587 | 9.639 | 0.542 | 0.415 | 0.222 | 0.271 | 0.092 |
Cluster ID | Passenger Count | Ave. Time (min) | Ave. Stops | Ave. Tranfer | Proportion of Passenger Type | |||
---|---|---|---|---|---|---|---|---|
Random | Commute | Temporary | Unknown | |||||
1 | 3506 | 42.327 | 11.971 | 0.632 | 0.492 | 0.103 | 0.172 | 0.223 |
2 | 4233 | 30.387 | 8.812 | 0.491 | 0.371 | 0.172 | 0.349 | 0.108 |
3 | 3015 | 34.835 | 9.712 | 0.552 | 0.432 | 0.227 | 0.212 | 0.129 |
4 | 857 | 35.208 | 9.466 | 0.551 | 0.411 | 0.213 | 0.258 | 0.118 |
Total | 11,611 | 35.503 | 10.047 | 0.554 | 0.426 | 0.168 | 0.253 | 0.149 |
Model | Count of Transit Destinations | |||
---|---|---|---|---|
K = 3 | K = 5 | |||
AR | AP | AR | AP | |
Raw | 0.626 | 0.553 | 0.595 | 0.527 |
AE | 0.637 | 0.551 | 0.609 | 0.531 |
OursD | 0.707 | 0.594 | 0.674 | 0.562 |
Ours | 0.723 | 0.637 | 0.709 | 0.581 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, T.; Lv, X.; Lu, Y.; Wang, W. Profiling Public Transit Passenger Mobility Using Adversarial Learning. ISPRS Int. J. Geo-Inf. 2023, 12, 338. https://doi.org/10.3390/ijgi12080338
Li Y, Zhang T, Lv X, Lu Y, Wang W. Profiling Public Transit Passenger Mobility Using Adversarial Learning. ISPRS International Journal of Geo-Information. 2023; 12(8):338. https://doi.org/10.3390/ijgi12080338
Chicago/Turabian StyleLi, Yicong, Tong Zhang, Xiaofei Lv, Yingxi Lu, and Wangshu Wang. 2023. "Profiling Public Transit Passenger Mobility Using Adversarial Learning" ISPRS International Journal of Geo-Information 12, no. 8: 338. https://doi.org/10.3390/ijgi12080338
APA StyleLi, Y., Zhang, T., Lv, X., Lu, Y., & Wang, W. (2023). Profiling Public Transit Passenger Mobility Using Adversarial Learning. ISPRS International Journal of Geo-Information, 12(8), 338. https://doi.org/10.3390/ijgi12080338