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Abstract: Traffic prediction plays a significant part in creating intelligent cities such as traffic man-
agement, urban computing, and public safety. Nevertheless, the complex spatio-temporal linkages
and dynamically shifting patterns make it somewhat challenging. Existing mainstream traffic pre-
diction approaches heavily rely on graph convolutional networks and sequence prediction methods
to extract complicated spatio-temporal patterns statically. However, they neglect to account for
dynamic underlying correlations and thus fail to produce satisfactory prediction results. Therefore,
we propose a novel Self-Adaptive Spatio-Temporal Graph Convolutional Network (SASTGCN) for
traffic prediction. A self-adaptive calibrator, a spatio-temporal feature extractor, and a predictor
comprise the bulk of the framework. To extract the distribution bias of the input in the self-adaptive
calibrator, we employ a self-supervisor made of an encoder–decoder structure. The concatenation of
the bias and the original characteristics are provided as input to the spatio-temporal feature extractor,
which leverages a transformer and graph convolution structures to learn the spatio-temporal pattern,
and then applies a predictor to produce the final prediction. Extensive trials on two public traffic
prediction datasets (METR-LA and PEMS-BAY) demonstrate that SASTGCN surpasses the most
recent techniques in several metrics.
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1. Introduction

Traffic prediction issues have become a crucial element of the Intelligent Traffic System
(ITS) in recent years [1]. As seen in Figure 1, it has been extensively utilized in numerous dis-
ciplines, including traffic speed forecasting [2], flow prediction [3], trip time estimation [4],
bike-sharing allocation [5], and taxi order response (pick-up and drop-off) [6]. Reliable
forecasts are increasingly essential to develop sensible travel and transportation strategies.
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1. Introduction 
Traffic prediction issues have become a crucial element of the Intelligent Traffic Sys-

tem (ITS) in recent years [1]. As seen in Figure 1, it has been extensively utilized in numer-
ous disciplines, including traffic speed forecasting [2], flow prediction [3], trip time esti-
mation [4], bike-sharing allocation [5], and taxi order response (pick-up and drop-off) [6]. 
Reliable forecasts are increasingly essential to develop sensible travel and transportation 
strategies. 
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As a typical spatio-temporal forecasting task, traffic prediction is quite intractable,
mostly as a result of the intricate spatio-temporal dependencies and dynamic changes in
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spatio-temporal distribution. On the one hand, a high correlation exists between the spatial
and temporal characteristics of traffic data, which conduces that they ought to be captured
simultaneously. On the other hand, the temporal distribution of the data is susceptible to
all kinds of external influences. For instance, road construction, new subway stations, and
sudden weather changes are among the factors that could impact statistical values, such as
mean and variance in traffic data.

Conventional techniques commonly employ recurrent neural networks, including
long short-term memory (LSTM) [7], gated recurrent unit (GRU) [8], and their derivatives to
capture temporal dependencies in traffic data. Furthermore, convolutional neural networks
(CNN) [9] are utilized to model spatial correlations between regions in grid-based traffic
data, whereas graph neural networks (GNN) [10] are applied to graph-based traffic data.
More recently, transformer-based architectures have been introduced to facilitate long-term
traffic prediction.

However, these approaches neglect the fact that the statistical information of traffic
data distributions (such as mean and variance) varies over time, thus leading to unsatisfac-
tory prediction performance and poor generalization ability. Passalis et al. [11] introduced a
deep adaptive neural network that is capable of dynamically learning temporal distribution
shifts, thereby allowing the model to comprehensively predict both future sequences and
anticipated mean and variance. Arik et al. [12] proposed a self-adaptive forecasting model
that can adaptively encode the evolving distributions. Nonetheless, they failed to tackle
the issue of concurrent distribution shifts across multiple correlated time series, and the
dynamic shifts in the temporal distribution of traffic data cannot yet be modeled.

To fix the previously mentioned issues, we developed a hybrid deep learning frame-
work named Self-Adaptive Spatio-Temporal Graph Convolutional Network (SASTGCN).
The framework mainly comprises three components: a self-adaptive calibrator, a spatio-
temporal feature extractor, and a predictor. In the self-adaptive calibrator, we exploit a
self-supervisor composed of an encoder–decoder module to derive the distribution bias of
the input, and both the encoder and decoder consist of two layers of recurrent units. Taking
the concatenation of the bias and the original features as input, the spatio-temporal feature
extractor utilizes graph convolution structures as well as a transformer [13] layer to learn
the spatio-temporal pattern. Moreover, a predictor, which consists of a fully connected
layer, is applied to produce the final forecast. As far as our knowledge extends, this is the
primary attempt to analyze the temporal distribution shift in spatio-temporal prediction
issues using an autoencoder. The principal contribution of this work can be succinctly
summarized in the following manner:

• We construct a novel self-adaptive calibrator, which can obtain the temporal distribu-
tion of traffic data. The calibrator exploits a self-supervised encoder–decoder structure,
where the encoder and decoder are both constructed using recurrent layers to better
capture the temporal dynamic properties.

• We propose a spatio-temporal feature extractor to discover both spatial and temporal
dependencies simultaneously by stacking ST blocks with residual connections. The ST
blocks consist of graph convolution layers for spatial correlations and a transformer
layer for temporal characteristics.

• Our model surpasses the state-of-the-art methods, as evidenced by a comprehensive
range of experimental outcomes on two real-world benchmark datasets: METR-LA
and PEMS-BAY.

2. Related Work

As a quintessential problem in spatio-temporal sequence prediction, traffic predic-
tion plays a fundamental role in the advancement of smart cities. Consequently, it has
attracted considerable attention from scholars and practitioners alike, leading to its rapid
development as a research discipline. There are now two broad groups of traffic forecast
methods: statistical techniques and data-driven techniques. Owing to a shortage of trans-
portation data and processing resources, statistical methods dominated the early stages
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of traffic prediction. Representative techniques in this category include support vector
regression (SVR) [14], auto-regressive integrated moving average (ARIMA) [15], logistic
regression (LR) [16], localized extended Kalman filter (L-EKF) [17], and gradient boosting
decision tree (GBDT) [18]. They overlook the long-term temporal relations and consider
the spatio-temporal sequence individually, which is far from satisfactory.

As data acquisition and deep learning methods advance swiftly [19], data-driven
approaches become mainstream. Compared to statistical models, data-driven models are
better equipped to capture the highly non-linear complex features in large-scale spatio-
temporal data. Several neural network (NN) approaches, including artificial NN [20] and
deep belief networks (DBNs) [21], are adopted in traffic prediction during the preliminary
stage. To mine the temporal correlations, researchers introduced recurrent neural networks
such as LSTM into traffic prediction and showed promising performance [22]. Liu et al.
introduced a prediction framework that utilizes LSTM with feature partitioning and feature
selection, which successfully enhanced prediction performance by incorporating feature
engineering techniques [23]. The traffic state in a region is probably impacted by its
surrounding regions as well as distant regions (for instance, there exists a subway between
two regions or the functionality of two regions is relevant). To fully employ the node-to-
node spatial correlations, a novel model called ST-ResNet [24] was put forth by Zhang et al.
in which the entire city is segmented into a regular grid map and the traffic data is projected
as a series of images. By this means, a convolution neural network is exploited to obtain the
spatial correlations. To further capture the temporal dependencies, Yao et al. introduced a
model DMVST-Net [25] that combines CNN, graph embeddings, and LSTM to extract the
spatio-temporal feature.

Nevertheless, the approaches mentioned above are only suitable for regular traffic,
while, in reality, the majority of traffic data are irregular non-Euclidean data, and project-
ing into the grid-like sequence would be quite harmful to the prediction accuracy. The
GCN is a kind of network structure that is suitable for dealing with non-Euclidean data.
Yu et al. originally applied graph convolutional networks to traffic prediction areas. They
proposed a model ST-GCN that captures the spatial and temporal features using gated
1D convolution and graph convolution, respectively. Owing to replacing the recurrent
layers with 1D convolution, the computational cost is reduced considerably, and thus the
model became faster. However, the adjacency matrix in ST-GCN is pre-defined and static,
while the spatial dependency between regions changes over time. Graph WaveNet [26] was
invented by Wu et al.; in it, a novel flexible dependency matrix is developed and learned
through node embedding. Combining a stacked dilated 1D convolution, Graph WaveNet
can handle very long sequences as well as dynamic spatial correlations. A single graph
could only represent one perspective of the relationship among different regions, while
the correlation between regions is manifold. Li et al. proposed a spatio-temporal fusion
graph neural network (STFGNN) [27] that, by combining different spatial and temporal
graphs, could efficiently discover hidden spatio-temporal dependencies. As reported in [28],
Cai et al. combined GCN with a transformer to model the spatio-temporal correlations
and periodicity present in traffic data. However, none of these methods have successfully
addressed the issue of data distribution shifts in spatio-temporal sequences.

3. Preliminaries
3.1. Traffic Prediction

Traffic prediction is a typical spatio-temporal sequence prediction task. We formulate
the road network for traffic as a graph G =< V, E, A >, where V denotes a finite set of
nodes (|V|= N , N represents the total count of nodes, and each node corresponds to a
specific region on the road network); E contains a set of edges between the nodes described
above and A denotes the spatial adjacency matrix representing the similarity of nodes. If
Vi, Vj ∈ V and (Vi, Vj) ∈ E, then Aij equals 1; otherwise, Aij takes the value of 0. A common
traffic prediction problem is shown in Figure 2 and can be succinctly described as follows:



ISPRS Int. J. Geo-Inf. 2023, 12, 346 4 of 16

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 4 of 17 
 

 

specific region on the road network); E  contains a set of edges between the nodes de-
scribed above and A  denotes the spatial adjacency matrix representing the similarity of 
nodes. If ,i jV V V∈  and ( , )i jV V E∈ , then ijA  equals 1; otherwise, ijA  takes the value of 
0. A common traffic prediction problem is shown in Figure 2 and can be succinctly de-
scribed as follows: 

Given the previous H  traffic observations, it aims to forecast the traffic observations 
(speed, demand, flow, and so on) in the next L  time steps, which can be defined as fol-
lows: 

1: 1:
f

t H t t t LX X− + + +⎯⎯→ , (1) 

where 1:
H N d

t H tX R × ×
− + ∈  represents the traffic observations from time step 1t H− +  to t  

(the value of d  corresponds to the dimension of the observation). f  denotes the model 
function to be learned and it estimates the most likely traffic observations 1:

L N d
t t LX R × ×
+ + ∈  

in the next L  time steps. 

 
Figure 2. Graph-structured traffic data prediction. 

3.2. Graph Convolutional Network 
The standard convolution for regular grids is not suitable to handle graph-structured 

data, i.e., graphs, whereas the graph convolutional network has demonstrated its superior 
performance in handling them. Graph convolution is a process employed to derive char-
acteristics via aggregating information from neighborhood nodes on the graph, which is 
similar to what normal convolution operations do on images. Nodes in the graph con-
stantly change their state under the influence of nearby and distant points until reaching 
a final equilibrium, with closer neighbors exerting stronger influence. Spectral-based and 
spatial-based approaches are two common categories of GCN. The former approaches ap-
ply convolutional filters in the spectral domain with graph Fourier transforms [29,30] and 
the latter combines the representation of the node with that of its neighbors to obtain a 
novel representation for the node [31,32]. Based on the theory mentioned above, given a 
defined graph , ,G V E A=< > , a common paradigm of graph convolutional operation can 
be defined as follows: 

( 1) ( )( , )i iS f S A+ = , (2) 

where ( )iS  and ( +1)iS  is the graph signal (feature) in the i  and 1i +  layer, respectively, 
and (0)S  is the initial input of the graph. A  denotes the adjacency matrix of the graph, 
and f  is the aggregation function. Specifically, Equation (2) can be written as follows: 

1 1
( 1) ( )2 2

*G
ˆˆ ˆ( )i iS D AD Sσ

− −+Θ = Θ , (3) 

where “ *G ” is the convolution operator, Θ  denotes the kernel, σ  represents a non-lin-

ear transformation function, ˆ= NA A I+  denotes the self-looping adjacency matrix, and D̂  
indicates the diagonal degree matrix of Â . 
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Given the previous H traffic observations, it aims to forecast the traffic observations
(speed, demand, flow, and so on) in the next L time steps, which can be defined as follows:

Xt−H+1:t
f→ Xt+1:t+L, (1)

where Xt−H+1:t ∈ RH×N×d represents the traffic observations from time step t− H + 1 to t
(the value of d corresponds to the dimension of the observation). f denotes the model func-
tion to be learned and it estimates the most likely traffic observations Xt+1:t+L ∈ RL×N×d

in the next L time steps.

3.2. Graph Convolutional Network

The standard convolution for regular grids is not suitable to handle graph-structured
data, i.e., graphs, whereas the graph convolutional network has demonstrated its supe-
rior performance in handling them. Graph convolution is a process employed to derive
characteristics via aggregating information from neighborhood nodes on the graph, which
is similar to what normal convolution operations do on images. Nodes in the graph con-
stantly change their state under the influence of nearby and distant points until reaching a
final equilibrium, with closer neighbors exerting stronger influence. Spectral-based and
spatial-based approaches are two common categories of GCN. The former approaches
apply convolutional filters in the spectral domain with graph Fourier transforms [29,30]
and the latter combines the representation of the node with that of its neighbors to obtain a
novel representation for the node [31,32]. Based on the theory mentioned above, given a
defined graph G =< V, E, A >, a common paradigm of graph convolutional operation can
be defined as follows:

S(i+1) = f (S(i), A), (2)

where S(i) and S(i+1) is the graph signal (feature) in the i and i + 1 layer, respectively, and
S(0) is the initial input of the graph. A denotes the adjacency matrix of the graph, and f is
the aggregation function. Specifically, Equation (2) can be written as follows:

Θ∗GS(i+1) = σ(D̂−
1
2 ÂD̂−

1
2 S(i)Θ), (3)

where “∗G” is the convolution operator, Θ denotes the kernel, σ represents a non-linear
transformation function, Â = A + IN denotes the self-looping adjacency matrix, and D̂
indicates the diagonal degree matrix of Â.

4. Methodology

This section commences with an overview of the comprehensive architecture of our
proposed model, SASTGCN. Subsequently, each component of SASTGCN is formally
described. Finally, a detailed explanation is provided on how to optimize the algorithm.

4.1. Overall Architecture

Previous graph-based approaches have primarily concentrated on exploring the dy-
namic changes in spatial correlation by designing various adjacency matrices. Nevertheless,
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these approaches have overlooked the fact that the temporal distribution of data also
changes over time. For instance, the construction of new traffic infrastructure, unexpected
weather changes, or new public policies implemented by the government can exert an
influence on the mobility patterns of individuals, thus instigating modifications in the
temporal distribution of traffic data. Therefore, it is crucial to devise a novel approach
that takes into account spatial as well as temporal variations in the data to acquire a more
holistic comprehension of the underlying patterns and trends. Figure 3 demonstrates the ar-
chitecture of SASTGCN, which is constituted of three parts: (1) the self-adaptive calibrator;
(2) the spatio-temporal feature extractor; and (3) the predictor. The self-adaptive calibrator
constitutes a self-supervised encoder–decoder framework, with each of its encoder and
decoder modules composed of two recurrent layers, which are adept at capturing temporal
relations. The spatio-temporal feature extractor takes as input the merged bias and original
features, and it utilizes graph convolution structures as well as a transformer layer to learn
the spatio-temporal pattern. To resize the feature and produce the final output, a predictor
consisting of a fully connected layer is additionally employed. The detailed implementation
of each component is expounded in the ensuing sub-sections.
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4.2. Self-Adaptive Calibrator

In the self-adaptive calibrator part, we employ a self-supervised encoder–decoder
structure to capture the temporal distribution of data. The encoder and decoder are each
comprised of two recurrent layers. Given the input traffic observations Xin ∈ RH×N×d, we
first utilize an encoder to model it and obtain the hidden feature Xhidden, which could be
represented as follows:

Xhidden = LSTM2(LSTM1(Xin)), (4)

where LSTM(·) denotes a long short-term memory layer as depicted in Appendix A,
and the second LSTM layer ingests the hidden states of the first LSTM layer as input.
The decoder utilizes the same network structure as the encoder to convert the hidden
representation Xhidden into the encoder–decoder output Xout1, which can be formulated
as below:

Xout1 = LSTM4(LSTM3(Xhidden)). (5)

Then the bias of the output and original input is calculated as Xbias = Xin − Xout1,
which denotes the dynamic changes in the spatio-temporal pattern. Finally, we generate the
new feature Xnew by concatenating the model input Xin and the bias Xbias, and it will be sent
to spatio-temporal feature extraction for further processing. The equation is shown below:

Xnew = Xin ⊕ (Xin − Xout1), (6)
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where ⊕ denotes the concatenation operation in dimension and Xnew ∈ R2H×N×d. By
combining the raw data Xin with the biases resulting from distribution shifts Xbias, Xnew is
capable of effectively representing the dynamic changes in traffic data distribution.

We have utilized a joint training framework, which integrates the autoencoder loss and
prediction loss described in Section 4.5, to concurrently optimize both components. This ap-
proach combines the reconstruction ability of the autoencoder with the prediction capability
of the model. As a result, this joint training framework leads to enhanced performance.

4.3. Spatio-Temporal Feature Extractor

Taking the preprocessed feature Xnew as input, the spatio-temporal feature extractor is
utilized to dig out the sophisticated spatio-temporal correlations hidden behind the data.
The basic component of this module is a block, which is composed of two graph convo-
lutional layers used to explore spatial characteristics, and it is followed by a transformer
structure designed to extract temporal dependencies. To enhance the information-capturing
ability and global view of the spatio-temporal feature extractor, we sequentially arrange a
series of ST block and employ residual connections to mitigate gradient vanishing while
simultaneously accelerating the training procedure of the model (we set the number of
ST block p = 3). The whole process of this module is shown in Algorithm 1, and the
implementation details are described below.

Algorithm 1: Implementation of Spatio-temporal Feature Extractor (STFE)

Input: Processed feature Xnew ∈ R2H×N×d, ST block number p, GCN layer number q.
Output: spatio-temporal feature Xst ∈ R2H×N×d.

1. Set Xtemp = Xnew, Xst = Xnew //initialized as the feature extractor input

2. for i = 1, 2, . . . , p do //stack p ST blocks with residual connection

3. for j = 1, 2, . . . , q do //used to implement a single ST block

4. Xst = GCN(Xst) //a graph convolutional layer

5. end for

6. Xst = Transformer(Xst) //a transformer structure to learn temporal patterns

7. Xst = Xtemp + Xst //implement the residual connection function

8. end for

9. return Xout

Figure 3c shows the inner structure of one single spatio-temporal block ST block. It
takes the calibrated features X ∈ R2H×N×d as the input. Firstly, the feature is sent to a
two-layer GCN structure, and the adjacent matrix is calculated via SVD decomposing. We
reshape the input 3D tensor X ∈ R2H×N×d as a 2D tensor Xa shaped (2H · d×N). To obtain
the inner correlations between distinct regions, we apply the single value decomposition
algorithm (SVD) to perform matrix factorization on Xa, resulting in the transformation of
Xa into two new matrices:

Xa = Xt(Xr)
T , (7)

where Xr and Xt respectively symbolize the region-wise and the time-wise matrices. The
matrix Xr ∈ RN×λ comprehensively contains spatial correlations amongst all regions,
where λ indicates the region dimension. To compute the resemblance between the i-th and
j-th region, we utilize a Gaussian kernel-based method to estimate their similarity. The
similarity between stations can be reckoned as follows:

Aij = exp(−||Xs(i)− Xs(j)||2

ε2 ), (8)

where ε denotes the standard deviation and Aij is used as the adjacency matrix. On top of
this, we construct two graph convolutional layers GCN1 and GCN2, which share the same
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structure except for the parameter. After obtaining spatial features Xsp = GCN2(GCN1(X)),
we employ a transformer structure to extract the temporal pattern from Xsp and eventually
get the spatio-temporal feature Xst as shown below:

Xst = Trans f ormer(Xsp), (9)

where Transformer(·) denotes a transformer structure, and its implemented details are
shown in Appendix B due to space constraints.

Figure 3b depicts the residual connection of ST blocks; for the l-th layer, the output of
the layer Xst(l + 1) is formulated as follows:

Xst(l + 1) = STblock(Xst(l)) + Xst(0), (10)

where STblock(·) is the single ST block aforementioned and Xst(0) is equal to Xst.

4.4. Predictor

The predictor is comprised of a linear layer and a reshape operation. This part takes
the concatenation of spatio-temporal feature Xst from the STFE module in Section 4.3 and
the hidden feature Xhidden of the calibrator in Section 4.2 as the input X f inal ∈ R2H×N×d:

X f inal = Xst ⊕ Xhidden, (11)

which is then delivered to a fully connected linear layer and transformed accordingly to
conform to the prescribed prediction shape. The process could be represented as follows:

Xprediction = δ(WX f inal + b), (12)

where δ(·) is an activation function and W and b are parameters to be trained (Xprediction ∈
RL×N×d, here L denotes the prediction time steps).

4.5. Training

The whole procedure of our proposed model SASTGCN is depicted in Algorithm 2.
It should be noted that the self-adaptive calibrator is trained synchronously, that is to say,
the entire model constitutes a seamless end-to-end pipeline. The training loss L can be
expressed in the following manner:

L = L1 + µL2, (13)

where L1 denotes the loss of model input and prediction, L2 indicates the calibrator loss
(encoder–decoder loss), L1 and L2 are MSE (mean squared error) losses, and µ is a hyperpa-
rameter that balances the weight of these two losses, which is set to 0.5 in practice.

Algorithm 2: Self-Adaptive Spatio-Temporal Graph Convolutional Network (SASTGCN)

Input: Initial input Xin ∈ RH×N×d.//sample chosen from preprocessed dataset.

Output: model prediction Xout ∈ RL×N×d.//corresponding predictions for the input.

1. Xhidden = Encoder(Xin) //use a two-layer LSTM structure to encode the input

2. Xout1 = Decoder(Xhidden) //decode the hidden representation via a decoder

3. Xnew = Xin ⊕ (Xin − Xout1)//join the initial input Xin with its deviation from Xout1

4. Xst = STFE(Xnew) //generate the spatio-temporal feature

5. X f inal = Xst ⊕ Xhidden //concatenate the feature with the hidden representation

6. Xout = Linear(X f inal) //generate the prediction Xout and reshape it

7. return Xout
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5. Experiments

We execute comprehensive experiments on two real-world traffic datasets, METR-
LA and PEMS-BAY, to substantiate the efficacy of the proposed approach with empirical
evidence. In addition to evaluating its performance against other baselines, ablation
research has been conducted to confirm the functionality of several modules in SASTGCN.
Furthermore, we conduct a rigorous examination of the impact of the hyperparameter on
the efficacy of the model.

5.1. Datasets

We verify our model on two publicly available spatio-temporal traffic datasets, METR-
LA and PEMS-BAY, released by Li et al. (DCRNN) [2]. METR-LA compiles data collected
by 207 sensors over four months to provide statistics on traffic speed along the highways
of Los Angeles County, encompassing the period between 1 March 2012, and 30 June 2012.
The detailed information of METR-LA dataset is illustrated in Appendix D. The PEMS-BAY
has documented an extensive six-month period of traffic speed information, commencing
on 1 January in the year of our Lord two thousand and seventeen and culminating on
31 May in the same year, sampled from 325 sensors in the Bay Area. As for the spatial
adjacency network, we creatively employ the SVD methods to obtain a dynamic adjacency
matrix to better cope with dynamic spatial correlation changes. We aggregate these two
datasets into 5 min windows. The dataset statistics details are shown in Table 1.

Table 1. Dataset description.

Dataset Nodes Samples Sampling Interval Edges Missing Ratio

METR-LA 207 34,272 5 min 1515 8.109%
PEMS-BAY 325 52,116 5 min 2369 0.003%

5.2. Baselines

We use the following baselines as a comparison. For the sake of fairness, we tune the
key hyperparameters to ensure that they have the best performance.

HA: The historic average method is a forecasting technique that assumes that traffic
flow follows a seasonal pattern and predicts future traffic by taking the average of past
observations. An example of implementing this approach would involve utilizing all
recorded data from 5:00 p.m. to 6:00 p.m. on Mondays throughout history as a reference
point to forecast traffic speed for the same time frame on the upcoming Monday.

SVR [14]: Support vector regression employs a linear support vector machine to
perform regression tasks, which allows for a certain degree of deviation between the actual
and predicted values.

FC-LSTM [33]: The FC-LSTM model represents an encoder–decoder architecture that
leverages the long-short term memory (LSTM) neural network with a peephole mecha-
nism. Notably, both the encoder and decoder components are composed of two distinct
recurrent layers.

DCRNN [2]: Similar to FC-LSTM, it is a diffusion convolutional recurrent neural net-
work that represents a sophisticated encoder–decoder architecture, comprising a recurrent
layer that enables the network to effectively process sequential data. Nevertheless, in
recurrent layers, the matrix multiplications are replaced with diffusion convolution.

GraphWaveNet [26]: Graph WaveNet introduces a pioneering adaptive adjacency
matrix concept, which is incorporated into the graph convolution technique employing
1-D dilated convolutions to learn the dynamic and long-term spatio-temporal correlations.

MTGNN [34]: MTGNN is a spatio-temporal framework that integrates graph learning,
graph convolution, and temporal convolutional modules.

SLCNN [35]: SLCNN combines structure learning convolution blocks with a pseudo-
three-dimensional convolution module to model the spatio-temporal correlations in traffic
speed data.
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AutoCTS [36]: AutoCTS employs a combination of micro and macro search spaces to
represent potential architectures of ST blocks and connections between them to obtain the
optimal forecasting models.

STFGNN [27]: STFGNN fuses several spatial and temporal graphs and applies a gated
convolution layer to handle the long-term sequence prediction problem.

MD-GCN [37]: MD-GCN employs a dual graph convolution network operating across
multiple temporal scales, which is comprised of a gated temporal convolution and a dual
graph convolution module.

5.3. Experimental Setup

We partition the METR-LA and PEMS-BAY datasets into discrete training, validation,
and testing sets apportioned at a ratio of 7:1:2. The basic time interval is set to 5 min,
and we leverage the observed traffic values spanning throughout 12 time intervals to
forecast the ensuing values in the next 3, 6, and 12 time intervals, respectively. We set
the aforementioned parameters to align with the ones documented in the literature [1]
to establish a fair comparison setting. To assess the effectiveness of the approaches, we
employ a triumvirate of commonly accepted metrics, namely the mean absolute error
(MAE), the rooted mean squared error (RMSE), and the mean absolute percentage error
(MAPE). All three criteria are specified in Appendix C for simulation, and the smaller the
numerical value, the better the model performs. All experiments were executed on a 64-bit
Ubuntu Server equipped with a 2.40 GHz GPU and a plenty ensemble of 8 NVIDIA Titan
GPUs, and the codes were implemented by the PyTorch (https://pytorch.org/, accessed on
8 May 2023) framework. In the realm of neural network-based methodologies, the optimal
hyperparameters were selected through a rigorous grid search process that was predicated
upon the performance evaluation of the validation set. We optimized the whole model
with the Adam optimizer, whose learning rate was set to 0.001. The training epoch was 200
and an early-stopping mechanism was utilized with 10 patient epochs.

5.4. Main Results

Tables 2 and 3 present the primary outcomes of SASTGCN on two real-world datasets.
The superior results from the experiment are emphasized in bold. Moreover, ten-fold
cross-validation was conducted to calculate the average error for each value, which is then
denoted by the ± symbol to represent the error range. Upon observation, it is evident that
our proposed method, SASTGCN, outperforms all others in each of the three evaluation
metrics, thereby proving its superiority and applicability. It is noticeable that traditional
methods (HA, SVR) are far less effective than deep learning methods. The poor effect of
FC-LSTM is likely because it completely ignores the spatial correlations among regions.
Additionally, short-term forecasting outperforms long-term forecasting in terms of accuracy
and precision. This phenomenon can be attributed to the accumulation of prediction errors
in the early stages of long-term forecasting, which subsequently impact the accuracy of later
stages. In conclusion, by incorporating a calibrator mechanism and transformer architecture
to extract spatio-temporal correlations among regions, our proposed SASTGCN model
outperforms all comparative methods in the majority of instances.

Table 2. Prediction efficacy of divergent approaches on the METR-LA dataset.

Model
METR-LA (15 min/30 min/60 min)

MAE RMSE MAPE (%)

HA 4.16/4.16/4.16 7.80/7.80/7.80 13.00/13.00/13.00
SVR 3.99/5.05/6.72 8.45/10.87/13.67 9.30/12.10/16.70

FC-LSTM 3.44/3.77/4.37 6.30/7.23/8.69 9.60/10.90/13.20
DCRNN 2.77/3.15/3.60 5.38/6.45/7.59 7.30/8.80/10.50

GraphWaveNet 2.69/3.07/3.53 5.15/6.22/7.37 6.90/8.37/10.01
MTGNN 2.69/3.05/3.49 5.18/6.17/7.23 6.86/8.19/9.87
SLCNN 2.53/2.88/3.30 5.18/6.15/7.20 6.70/8.00/9.70

https://pytorch.org/
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Table 2. Cont.

Model
METR-LA (15 min/30 min/60 min)

MAE RMSE MAPE (%)

AutoCTS 2.67/3.05/3.47 5.11/6.11/7.14 6.80/8.15/9.81
STFGNN 2.57/2.83/3.18 4.73/5.46/6.40 6.51/7.46/8.81
MD-GCN 2.65/2.99/3.43 5.09/6.06/7.15 6.82/8.19/10.04

SASTGCN(ours) 2.63 ± 0.04/2.86 ± 0.05/3.15 ± 0.05 4.52 ± 0.04/5.50 ± 0.04/6.34 ± 0.05 6.77 ± 0.08/7.41 ± 0.08/8.73 ± 0.09

Table 3. Prediction efficacy of divergent approaches on the PEMS-BAY dataset.

Model
PEMS-BAY (15 min/30 min/60 min)

MAE RMSE MAPE (%)

HA 2.88/2.88/2.88 5.59/5.90/5.59 6.80/6.80/6.80
SVR 1.85/2.48/3.28 3.59/5.18/7.08 3.80/5.50/8.00

FC-LSTM 2.05/2.20/2.37 4.19/4.55/4.96 4.80/5.20/5.70
DCRNN 1.38/1.74/2.07 2.95/3.97/4.74 2.90/3.90/4.90

GraphWaveNet 1.30/1.63/1.95 2.74/3.70/4.52 2.73/3.67/4.63
MTGNN 1.32/1.65/1.94 2.79/3.74/4.49 2.77/3.69/4.53
SLCNN 1.44/1.72/2.03 2.90/3.81/4.53 3.00/3.90/4.80

AutoCTS 1.30/1.61/1.89 2.71/3.62/4.32 2.69/3.55/4.36
STFGNN 1.16/1.39/1.66 2.33/3.02/3.74 2.41/3.02/3.77
MD-GCN 1.32/1.64/1.92 2.81/2.71/4.40 2.77/3.66/4.45

SASTGCN(ours) 1.15 ± 0.03/1.37 ± 0.02/1.79 ± 0.03 2.45 ± 0.05/2.64 ± 0.04/3.68 ± 0.06 2.38 ± 0.03/3.05 ± 0.03/3.61 ± 0.04

5.5. Effect of Each Component

We have undertaken a meticulous ablation study on the PEMS-BAY dataset to ascertain
the efficacy of the pivotal components that significantly enhance the overall performance
of our model. For the sake of convenience, we name SASTGCN without the different
components below:

• w/o HR: SASTGCN without the hidden representation added in the predictor. We
utilize the output of STFE to a linear layer to generate the prediction straightly.

• w/o Calibrator: SASTGCN without the whole calibrator part. We sent the initial input
to the STFE module to derive the ultimate prediction.

• w/o Transformer: SASTGCN without the transformer part in each ST block. We
eliminate the temporal feature module in the STFE module.

• w/o RC: SASTGCN with the residual connection in the STFE module. We stack three
ST blocks together in a basic configuration.

We conducted an experiment on the PEMS-BAY dataset, with a forecasting horizon of
six timesteps (30 min). The results are shown in Table 4. It is noteworthy that SASTGCN
outperformed the variants that lacked a hidden representation in the predictor, which indi-
cates that the hidden representation can preserve information and assist in the prediction.
Additionally, SASTGCN performed better than the variants without a calibrator and a
transformer, demonstrating the effectiveness of the calibrator and the indispensability of
the temporal module. Furthermore, the residual connection was also found to be beneficial.
In summary, each of the designed sub-modules mentioned above had a positive impact on
improving overall performance.

Table 4. Ablation study on the PEMS-BAY dataset (horizon = 6).

Approaches w/o HR w/o
Calibrator

w/o
Transformer w/o RC SASTGCN

MAE 1.47 1.68 1.72 1.53 1.37
RMSE 3.24 3.54 4.21 3.02 2.64

MAPE (%) 3.83 4.24 5.69 3.87 3.04
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5.6. Parameter Sensitivity Study

The hyperparameter input horizon has a crucial impact on the model performance,
which is essential in SASTGCN. The impacts of different horizon lengths on the model
prediction outcomes are shown for the datasets METR-LA in Figure 4. The values of the
input horizon length H are 3, 6, 12, 24, 48, and 72; the forecast horizon is set to 6. The
RMSE error lowers at first before rising. We can see that the input horizon length of
12 yields the greatest results in the SASTGCN model. The RMSE decreases as length
increases because the model has more historical data at its disposal. Nevertheless, perfor-
mance continues to decline as H increases above 12 points. One possible explanation is
that as the sequence length increases, the model becomes much more complicated and the
prospect of overfitting presents a considerable concern as it bears the potential to adversely
affect its overall performance.
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6. Conclusions

In this paper, we proposed a novel Self-Adaptive Spatio-Temporal Graph Convo-
lutional Network (SASTGCN) for traffic prediction. SASTGCN can effectively capture
complex and dynamic spatio-temporal relationships and model the temporal distribu-
tion shift by combining a self-adaptive calibrator with graph convolution. To capture the
temporal drifts in distribution, we employ a calibrator consisting of an encoder–decoder
framework made up of multiple LSTM layers. Furthermore, we stack a series of spatio-
temporal modules via residual connections to extract spatio-temporal features from the
data. Each spatio-temporal module comprises GCN layers and a transformer encoder,
where GCN is utilized to extract spatial correlations among regions, and the transformer
is employed to capture temporal characteristics. The SVD method was employed in con-
structing the adjacency matrix for GCN. Extensive experimental results on two real-world
datasets have demonstrated the effectiveness of our proposed model.

For future work, we aim to improve the performance of our model by incorporating
external features, such as weather, holidays, and events. It is worth noting that SASTGCN
is not only limited to traffic prediction but can also serve as a general framework for spatio-
temporal sequence prediction in various domains. As a result, we intend to adapt the
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proposed SASTGCN to other prediction scenarios, including weather, energy, agricultural
yield, and social media prediction, among others.
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Appendix A

The principles and definitions of Long Short-Term Memory in Section 4.2 are elabo-
rated here in detail.

As a typical representative of recurrent neural networks (RNN), long short-term
memory (LSTM) addresses the issue of vanishing gradients present in conventional RNNs.
It has been extensively employed in the realm of natural language processing, speech
recognition, and other sequence modeling tasks.

The equation of LSTM entails the incorporation of three sophisticated gates and a mem-
ory cell to meticulously regulate the information flow throughout the neural network. The
input gate, forget gate, and output gate serve as the guardians of information flow, while
the memory cell dutifully preserves long-term knowledge. The function of the input gate is
to selectively designate information from the present input that merits retention within the
memory cell. The forget gate discerns the relevance and necessity of former remembrances
within the memory cell to be relinquished. Finally, the output gate is responsible for deter-
mining which specific information from the memory cell ought to be transmitted to the
output. The equation of LSTM can be expressed formally as described below:

it = σ(Wi · [xt, ht − 1] + bi),

ft = σ(W f · [xt, ht − 1] + b f ),

ot = σ(Wo · [xt, ht − 1] + bo),

Ct = ft · Ct−1 + it · tanh(WC · [xt, ht − 1] + bC),

ht = ot · tanh(Ct),

where it, ft, and ot respectively assume the role of the input gate, forget gate, and output
gate at time step t. Ct denotes the cell state and ht is the hidden state at time step t. xt
represents the input at time step t. W and b are corresponding trainable weight and bias
matrices. σ is the sigmoid function, and · denotes element-wise multiplication.

Appendix B

This appendix describes the transformer formulation in Section 4.3.
The transformer, an eloquently conceived neural network paradigm introduced by

Google in 2017, remains a stalwart model employed for intricate natural language pro-
cessing (NLP) endeavors. Compared to traditional convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), the transformer has better performance and faster
training speed when processing long sequence data. The multi-head self-attention mecha-
nism serves as the fundamental core of the transformer’s architecture, which can establish
long-range dependencies between different positions, thereby better capturing the infor-
mation in the sequence. The transformer also includes two modules, the encoder and

https://github.com/liyaguang/DCRNN
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decoder, which effectively map the input sequence onto the hidden space and subsequently
decode the resulting representation into the output sequence. The detailed equation of the
transformer is as follows:

1. Self-Attention Mechanism
In the transformer, the self-attention mechanism is used to calculate the correlation

between each word and other words to establish context relationships. Specifically, the
representation vector of each word can simultaneously serve as a query vector, key vector,
and value vector. The equation is as stated below:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V,

where Q, K, and V are query vector, key vector, and value vector, respectively. dk is the
dimension of K. Through meticulous computation of the similarity between the inquiry
vector and the key vector, the weight vector is eventually derived. Subsequently, the weight
vector is subjected to multiplication with the value vector and finally aggregated to yield
the ultimate output vector.

2. Multi-Head Self-Attention Mechanism
To effectively manage interdependencies among diverse positions, the transformer

model has ingeniously incorporated a sophisticated multi-head self-attention mechanism.
Specifically, distinct linear transformations are applied to the input vectors, thereby yielding
a multitude of query vectors, key vectors, and value vectors. Then, self-attention calculation
is performed on each attention head separately, and the ultimate output vector materializes
through the concatenation of the output vectors from each respective head.

Assuming there are h attention heads, each with a dimension of dk, the equation for
the multi-head self-attention mechanism is depicted below:

headi = Attention(Q ·WQ
i , K ·WK

i , V ·WV
i ),

MultiHead(Q, K, V) = Concat(head1, . . . , headh) ·Wo,

where WQ
i , WK

i , and WV
i are the linear transformation matrices corresponding to the i-th

attention head, and Wo is the linear transformation matrix for the concatenated output
vector. The hyperparameters of attention heads h and vector dimension dk are subject to
adjustment in accordance with the demands of the given task.

3. Encoder and Decoder
As for the encoder, given an input series X = (x1, . . . , xn), the output of the encoder

Z = (z1, . . . , zn) can be calculated via the following equations:

Z0 = X,

Zi = LayerNorm(Zi−1 + MultiHead(Zi−1, Zi−1, Zi−1)),

Zi = LayerNorm(Zi + FeedForward(Zi)),

where LayerNorm(·) is a function employed to normalize the input vector and FeedForward(·)
is a feed-forward network layer that extracts features.

As for the decoder, considering the input Y = (y1, . . . , ym) and the results produced
by the encoder, the decoder output O = (O1, . . . , Om) can be determined as follows:

O0 = Y,
Oi = LayerNorm(Oi−1 + MultiHead(Oi−1, Oi−1, Oi−1)),

Oi = LayerNorm(Oi + MultiHead(Oi, Z, Z)),
Oi = LayerNorm(Oi + FeedForward(Oi)),

where the first two equations are the same as those of the encoder, while the third equation
represents the encoder–decoder attention layer, which aligns the output vectors of the
encoder and the decoder.
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Appendix C

The definition of MAE, RMSE, and MAPE Formulation in Section 4.3 are presented in
this section.

Mean absolute error (MAE), rooted mean squared error (RMSE), and mean absolute
percentage error (MAPE) are three measures that quantify the variance between the antici-
pated and observed outcomes. MAE is calculated as the mean of the absolute differences
between the predicted and actual values, which is a reliable measure of accuracy when the
dataset has outliers or extreme values. The smaller the MAE, the better the accuracy of
the model. RMSE is a frequently employed metric for quantifying the disparity between
projected and factual data points. It is a reliable measure of accuracy when the data set
does not have outliers. RMSE is always larger than MAE, and the smaller values of RMSE
denote the higher accuracy of the model. MAPE is calculated as the average of the absolute
differences between the prediction and ground truth divided by the latter. MAPE is a
useful measure when comparing the accuracy of different models or forecasting methods.
The smaller the MAPE, the better the performance of the model. However, MAPE can be
misleading when the real values are close to zero or when there are extreme values in the
dataset. Consequently, we add a positive value approaching 0 to the denominator of the
equation to prevent it from being zero. Their equations are as follows:

MAE =
1
k ∑k

i=1|yi − ŷi|,

RMSE =

√
1
k ∑k

i=1|yi − ŷi|
2
,

MAPE =
1
k ∑k

i=1
|ŷi − yi|
|yi|+ε

× 100%,

where k represents the number of samples, yi is the label of sample i, ŷi represents the
prediction of sample i, and ε is a very small positive value added to ensure that the
denominator is not 0.

Appendix D

A map of scenarios in the experimentation on the METR-LA dataset.
The METR-LA dataset is a subset extracted from the comprehensive Los Angeles

County road network traffic dataset. This original traffic dataset encompasses approxi-
mately 8900 traffic loop-detector sensors deployed on highways, collecting information
from about 2036 buses and 35 trains that traverse across 145 distinct routes within Los
Angeles County. The METR-LA dataset consists of data selected from 207 sensors, spanning
a period of four months from 1 March 2012 to 30 June 2012. The distribution of sensors in
the METR-LA dataset is visually depicted in Figure A1 as follows:
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