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Abstract: In recent years, question answering on knowledge bases (KBQA) has emerged as a promis-
ing approach for providing unified, user-friendly access to knowledge bases. Nevertheless, existing
KBQA systems struggle to answer spatial-related questions, prompting the introduction of geographic
knowledge ba se question answering (GeoKBQA) to address such challenges. Current GeoKBQA
systems face three primary issues: (1) the limited scale of questions, restricting the effective applica-
tion of neural networks; (2) reliance on rule-based approaches dependent on predefined templates,
resulting in coverage and scalability challenges; and (3) the assumption of the availability of a golden
entity, limiting the practicality of GeoKBQA systems. In this work, we aim to address these three
critical issues to develop a practical GeoKBQA system. We construct a large-scale, high-quality GeoK-
BQA dataset and link mentions in the questions to entities in OpenStreetMap using an end-to-end
entity-linking method. Additionally, we develop a query generator that translates natural language
questions, along with the entities predicted by entity linking into corresponding GeoSPARQL queries.
To the best of our knowledge, this work presents the first purely neural-based GeoKBQA system with
potential for real-world application.

Keywords: GeoKBQA; KBQA; semantic parsing

1. Introduction

Modern knowledge bases (KBs) contain a wealth of structured knowledge. For ex-
ample, FREEBASE [1] contains over 45 million entities and 3 billion facts across more
than 100 domains, while GOOGLE KNOWLEDGE GRAPH has amassed over 500 billion
facts about 5 billion entities. The emergence of question answering on knowledge bases
(KBQA) represents a significant advancement, offering users unified and simplified access
to the vast and diverse knowledge stored in KBs while shielding them from their inherent
complexities. As the scale and coverage of KBs increase, KBQA is becoming even more
important due to the increasing difficulty of writing structured queries like SPARQL [2].

KBQA systems serve as intuitive natural language interfaces for users, transform-
ing natural language queries into formalized query language. Initially, KBQA systems
predominantly operated on rule-based mechanisms. They rely on predefined rules or
templates to parse questions into logical forms [3,4], suffering from coverage and scalability
problems. Recently, there has been a noticeable shift towards neural semantic parsing
approaches in research. Particularly, the introduction of GrailQA [2] has marked a signifi-
cant advancement in this field, featuring a large-scale, high-quality dataset consisting of
64,331 questions [2,5–9]. GrailQA diverges from pre-existing datasets, such as WebQSP [10]
and ComplexWebQSP [11], which predominantly focused on i.i.d assumptions. Instead,
GrailQA boasts three levels of generalization, allowing the KBQA model to generalize novel
compositions of seen schema items or even in a zero-shot fashion. Such characteristics
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have prompted a wide array of of research initiatives focuses toward resolving the intrinsic
challenges in KBQA using GrailQA.

Geographic knowledge base question answering (GeoKBQA) is an extension of KBQA,
specifically adapted to the geographic domain. Just like KBQA, GeoKBQA aims to provide
a unified and user-friendly access to geographic knowledge bases, enabling users to extract
detailed geographic information efficiently. It extends the functionality of KBQA by not
only encompassing general knowledge but also integrating specific geographic knowledge
about the world. For example, a user could ask questions like “How many pharmacies
are in 200 m radius of High Street in Oxford?”. Structured data stored in KBs are more
suitable than unstructured text retrieval to answer such questions. Using structured data,
geographic question answering (GeoQA) systems can perform spatial (i.e., 200 m radius)
and nonspatial operations (i.e., count how many), and retrieve information based on specific
criteria (e.g., High Street in Oxford) [12].

Research in geographic knowledge base question answering (GeoKBQA) has been lim-
ited, with only a handful of studies addressing this area [12–14]. Ref. [13] pioneered work in
this domain by developing GeoKBQA systems based on a template-based query generator,
employing linked geospatial data. They introduced the GeoQuestions201 dataset, featuring
201 place-related question pairs, each paired with SPARQL/GeoSPARQL queries, and uti-
lized templates to convert natural language questions into SPARQL/GeoSPARQL queries.
Ref. [12] employed deep neural networks (DNNs), such as BERT, to transform natural
language questions into sequences of encodings, using a template-based approach for con-
verting these sequences into GeoSPARQL queries. Further contributing to the field, ref. [14]
improved the GeoQuestions201 dataset, leading to the creation of GeoQuestions1089. This
improved dataset includes more complex questions, demanding a more sophisticated
understanding of both natural language and GeoSPARQL. Ref. [14] also enhanced the
question-answering system introduced by ref. [13], which incorporated an entity linker that
primarily utilizes string matching for entity disambiguation. All research in this domain
consistently utilizes a template-based approach for query generation. Ref. [14] introduced
a string-match-based entity linker in their system. This approach, despite facilitating the
association of mentions with relevant entities in the knowledge bases, has its limitations
owing due to the simplicity and inherent nature of string matching.

Compared to existing KBQA studies, GeoKBQA faces three principal challenges.
First, GeoQuestions201 and GeoQuestions1089 are the only datasets specifically available
for querying the geospatial knowledge base, are limited by their relatively small size.
(When we say GeoKBQA dataset, we exclude the dataset with the query targeted on
specific APIs such as the overpass API.) These datasets are insufficiently comprehensive
for the practical development of KBQA systems based on DNNs. Second, the dominant
methodologies in current studies are predominantly rule-based, concentrating on template-
based translation of natural language into query language. These methods face significant
challenges concerning coverage and scalability. Finally, most studies lack an entity linker, an
essential component for GeoKBQA, with the only existing study employing hand-crafted
features and rules. This limitation constrains the practical applicability of GeoKBQA
systems.

In this study, we aim to address these challenges by developing a robust and practical
GeoKBQA system. Our goal is to create an expansive GeoKBQA dataset centered around
OpenStreetMap (OSM) and to establish a neural-based GeoKBQA system. To the best of our
knowledge, our work is pioneering, being the first to introduce a neural-based approach
supported by a substantial dataset.

The contributions of our work include:

• The creation of an unprecedented, extensive GeoKBQA dataset, encompassing 4468
questions enriched with diverse spatial functions, schema item compositions, and
paraphrased natural language questions;
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• The integration of advanced entity linking in GeoKBQA systems, enhancing their
practical applicability. This is a notable advancement over previous works that either
lacked an entity linker or relied on entity linkers with hand-crafted features and rules;

• The introduction of a novel neural-based GeoKBQA system, signifying a substantial
departure from traditional rule-based systems, and augmented by our comprehensive
dataset.

This paper is organized as follows: Section 2 reviews previous works related to KBQA,
GeoKBQA, and geographic question datasets. In Section 3, we describe the process of
constructing the GeoKBQA datasets and outline the GeoKBQA pipeline, providing detailed
explanations for each stage of the process. Section 4 discusses the setup of GeoKBQA and
the methodologies employed for evaluating the system’s results. In Section 5, we present
and analyze the results of the GeoKBQA system. Finally, Section 6 concludes the paper with
a summary of our findings and an overview of the potential applications and limitations of
our work. It also suggests directions for future research.

2. Related Works
2.1. KBQA

Knowledge base question answering (KBQA) has attracted significant attention re-
cently due to its capacity to facilitate direct access to extensive knowledge graphs (KGs)
without requiring specialized query-syntax knowledge. In the context of KBQA, given a
natural language question, the system aims to retrieve an appropriate answer from the facts
stored within the KG [15]. Most recent studies in the field of KBQA predominantly utilize
datasets, such as WebQSP and GrailQA, to benchmark system performance. These specific
datasets are primarily constructed based on Freebase, which includes over 100 domains,
45 million entities, and 3 billion facts, making it a robust resource for this purpose, despite
its lack of current update [2].

KBQA systems typically employ semantic parsing approaches, where a natural lan-
guage question is converted into an executable command in various formal languages such
as SPARQL, lambda calculus, or S-expressions [9]. This approach encompasses several
processes, including entity linking, schema retrieval, logical form enumeration, and trans-
ducer [5,6,8]. (Note that these methodologies employ neural networks to translate natural
language into S-expressions but subsequently utilize a rule-based approach for converting
S-expressions into SPARQL queries). Entity linking is a crucial process in KBQA, where
explicit entity mentions are matched with corresponding entities in a KB. This process
encompasses three main stages: mention detection, candidate generation, and entity dis-
ambiguation. Mention detection involves identifying entity mentions within questions.
Candidate generation is concerned with finding possible entities that correspond to each
mention, and entity disambiguation involves selecting the most suitable entity from the
generated candidates. The schema retriever is another essential component, responsible
for extracting relevant schema items that are either explicitly or implicitly referred to in
the question. After the necessary KB items (entities, schema items) are retrieved, the
transducer generates the logical form. Certain studies introduce logical form enumeration
as a technique to facilitate the transducer in understanding the syntax of logical forms.
Additionally, to ensure the syntactic correctness of the output program, mechanisms like
checkers, grammar-based decoding, or constrained decoding have been utilized in some
research.

ReTraCk [5] integrates three central components: the retriever, the transducer, and the
checker. The retriever, which includes an entity linker and schema retriever, follows the
entity-linking methodology described in ref. [2]. Starting with the identification of entity
mentions through a BERT-based named entity recognition (NER) system, it then generates
candidate entities along with their prior scores, utilizing an alias map mined from the
KB and FACC1 [16]. For entity disambiguation, a prior baseline approach is employed,
selecting the entity with the most substantial prior score. The schema retriever operates
using a biencoder architecture with two distinct BERT-base encoders. The transducer
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employs a bidirectional long short-term memory neural network (BiLSTM) encoder, paired
with LSTM decoders. The checker component incorporates features like instance-level and
ontology-level checking, as well as real and virtual execution capabilities.

RnG-KBQA [6] employs BERT–NER systems for mention detection and utilizes FACC1
for candidate generation. In their approach, the entity-disambiguation problem is trans-
formed into an entity-ranking task, applying a BERT-base model as a cross-encoder. RnG-
KBQA introduced a methodology involving logical form enumeration and ranking. This
methodology enumerates potential logical forms, selects the top-k forms, and utilizes
them as supplementary inputs for the transducer. In the transduction process, RnG-KBQA
utilizes the T5 (text-to-text transfer transformer) in a sequence-to-sequence model. Ref. [8]
adopts a pipeline akin to that of RnG-KBQA but integrates outputs from the entity linker,
schema retriever, and logical form enumerator, directing them as inputs to the transducer
model. Unlike RnG-KBQA, ref. [8] treats mention detection as a span-classification task,
enhancing the performance of entity linking. The T5 is employed as a transducer, with the
addition of constrained decoding implemented based on a prefix tree.

Contrastingly, refs. [7,9] adopt a dynamic program induction methodology to translate
natural language into logical forms. This approach involves generating intricate programs
through the cumulative expansion of a list of subprograms. Ref. [7] applies BERT as
an encoder and LSTM as a decoder, interacting with the KB to incorporate information
regarding permissible tokens during the encoding process. While decoding, the vocabulary
is limited to a concise set of allowable tokens, influenced by the decoding history and
conforming to predefined rules. In a slight variation, ref. [9] employs a rule-based logical
form generator and utilizes language models primarily for ranking purposes, rather than
token generation.

2.2. GeoKBQA

GeoKBQA has recently attracted increased interest from researchers due to its ability
to handle place-related questions that necessitate sophisticated spatial reasoning, an aspect
not thoroughly supported by conventional factoid question retrieval methods [12]. Recent
advancements in GeoKBQA have predominantly utilized the GeoQuestions201 dataset for
their research. GeoQuestions201 is interlinked with geospatial databases, such as DBpe-
dia, OpenStreetMap, and the GADM dataset of global administrative areas. Unlike other
KBQA datasets, GeoQuestions201 presents limitations in scale and quality, comprising only
201 questions. These questions were primarily crafted by third-year artificial intelligence
students who were instructed to formulate “simple” questions by envisioning scenarios
where geospatial information was essential. The unique constraints of GeoQuestions201
may pose challenges to the broader development and practical applicability of GeoKBQA
systems. The introduction of the GeoQuestions1089 dataset marks a significant progression,
incorporating questions that require an advanced understanding of both natural language
and GeoSPARQL, thereby elevating semantic complexity. Despite these enhancements,
certain methodological limitations persist. The significant reliance on human intervention
in question generation introduces intrinsic restrictions. This approach results in a limited
diversity of paraphrased natural language questions and reduces the scalability and diver-
sity of schema items, which could inhibit the comprehensive development of GeoKBQA
systems.

Similar to KBQA, GeoKBQA is also typically modeled as semantic parsing. In ref. [13],
the authors implemented the first QA engine capable of answering questions with a geospa-
tial dimension. They proposed a template-based query translator, translating natural
language into SPARQL/GeoSPARQL queries using predefined templates. Additionally,
they utilized AGDISTIS [17] for entity disambiguation, leveraging manually crafted fea-
tures based on knowledge-graph structures and string similarity. Ref. [12] employed a
rule-based query generator, utilizing neural-based constituency and dependency parsing
methods to discern the structure of input questions and the relations among their tokens.
They incorporated neural networks to determine each encoding in the parsed tree. How-



ISPRS Int. J. Geo-Inf. 2024, 13, 10 5 of 17

ever, despite utilizing DNNs across various components, the core of their query generator
remained template based. Ref. [14] introduced GeoQA2, aligning with ref. [12] in em-
ploying dependency and constituency parsing to identify the structure of input questions
and the relations among tokens. They also used a rule-based query generator, applying
predefined templates filled with instances and concepts, to construct the final GeoSPARQL
queries. A distinctive feature of GeoQA2 is the introduction of an entity linker based on
TAGME [18], operating with hand-crafted features and rules. Ref. [19] compared GeoQA2
from refs. [12,14] using the GeoQuestions1089 dataset, underscoring the significance of
the entity linker in [14]. Nonetheless, ref. [14] encounters limitations with TAGME, which
relies on hand-crafted features and rules. This presents challenges in practical applications,
as TAGME’s contextual comprehension and adaptability are restrained compared to the
DNN approaches that utilize learning-based features.

Note that, unlike existing KBQA systems that translate natural language into logical
forms like s-expressions and then convert them into SPARQL queries using a rule-based
approach, GeoKBQA studies primarily focus on converting natural language directly into
executable GeoSPARQL queries.

2.3. Geographic Question Dataset

Research on geographic questions has typically employed datasets comprising a
range of several hundred to a few thousand questions. Notable early contributions were
made by [20,21], who focused on methods to parse approximately 880 questions that
could interact with GEOBASE. GEOBASE is a specialized database that houses around
1000 geospatial facts related to the US geography domain, covering objects such as cities,
states, rivers, and specific geometric properties like area and length. The questions were
designed to extract information on various dimensions, such as the number of objects,
population, and location, as well as topics related to humanities and social sciences.

Ref. [22] extracted 2500 questions randomly from approximately 1 million query logs
of actual searches conducted on the Excite search engine and identified 464 as geo-related
questions. A question was classified as geo related if it contained elements such as a place
name, zip code, adjectives of place (e.g., international, western, north of), or terms such
as city, site, street, island, or lake. Sanderson also organized specific prepositions into
three categories: inclusion (in/at/from), direction (north/south/east/west), and vicinity
(near/surrounding).

Ref. [23] crafted queries to extract geo-related objects from DBpedia and OSM data.
These queries encompassed a variety of spatial questions, including proximity questions
such as “Find hospitals outside and within 10 km of the city of Cardiff,” crossing ques-
tions that ascertain whether a river or road intersects a specific administrative area, and
containment questions that determine whether a spatial feature resides within a particular
administrative region. Specifically tailored for Ohio State students, ref. [24] formulated
spatial questions for the GeoQA system. A compilation of 800 questions was developed,
encapsulating essential information about cities within Ohio, including coordinates, popu-
lation, and other descriptive details. These questions were systematically categorized into
five types, enhancing the efficacy of natural language processing and facilitating queries
pertaining to names, coordinates, locations, and populations.

Ref. [13] collected spatial-related questions from third-year undergraduates and man-
ually crafted SPARQL/GeoSPARQL queries for each question. The dataset included a total
of 201 questions, broadly categorized into seven types such as location, spatial relationship,
and attribute comparison. Following a similar methodology to [13,14] instructed third-year
students in an AI course to develop 50 geospatial questions each, tailored to be compatible
with querying databases on Wikipedia and OSM. From the accumulated 9335 questions,
approximately 1000 were randomly selected, for which SPARQL/GeoSPARQL queries
were manually written. These questions were systematically categorized into nine distinct
types utilizing patterns, attributes, classes, instances, and aggregations.
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3. Methodology
3.1. Basic Idea

Our methodology is organized into three critical subsections: dataset construction,
entity retrieval, and target query generation. In dataset construction, the process of curating
the dataset specifically for GeoKBQA is detailed. Following this, in entity retrieval, our
methodology for linking entities is elucidated. The final subsection, target query generation,
is dedicated to explaining our method for converting natural language into specific target
queries. Figure 1 represents our pipeline for the GeoKBQA system, incorporating elements
of entity retrieval and query generation. It is noteworthy that our approach diverges
from conventional KBQA methods, which typically transition from natural language to
s-expression, followed by the application of rule-based techniques to convert s-expression
to SPARQL. Instead, our methodology leverages a transducer to directly translate natural
language into corresponding SPARQL/GeoSPARQL queries. This section may be divided
by subheadings. It should provide a concise and precise description of the experimental
results, their interpretation, as well as the experimental conclusions that can be drawn.
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Figure 1. Our pipeline for the GeoKBQA system.

3.2. Dataset Construction

In this section, we present the methodology employed in the construction of our novel
geospatial question dataset. A comprehensive analysis was conducted on existing geospa-
tial question datasets to enhance the diversity of schema items, scale, and array of spatial
functions, which are essential for the effective training of DNNs. Among the available
geospatial question datasets, Questions1089 was selected as the baseline for our dataset
due to its extensive collection of geospatial questions paired with SPARQL/GeoSPARQL
queries. The procedure for constructing our dataset is organized as follows: 1. examination
and analysis of existing geospatial questions to create foundational templates; 2. the substi-
tution of entities, classes, and spatial functions to augment the diversity of schema items
and spatial functions, and to expand the scale of the dataset; 3. paraphrasing of geospatial
questions using ChatGPT (GPT-3.5 Turbo) to enhance natural language diversity; 4. selec-
tion of question–query pairs based on successful queries to the OpenStreetMap database,
choosing pairs that yield results. Figure 2 illustrates the pipeline of our dataset-construction
process.
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In the initial step, we thoroughly analyzed the GeoQuestions1089 dataset to create
foundational templates. Although questions in GeoQuestions1089 were grouped into nine
categories, the corresponding Geo-SPARQL queries exhibited a lack of uniform structure
within each category. This discrepancy necessitated a reclassification of questions based on
the structural variance in their GeoSPARQL queries, leading to more in-depth analysis and
the development of novel query templates. As depicted in Figure 1, masks were designed
for each template, facilitating the substitution of geospatial entities, classes, and spatial
functions in subsequent steps. In the second step, elements from predefined lists were
randomly selected to replace each mask. Lists included geospatial entities such as countries,
cities, and regions. In the case of geospatial classes, types like parks, universities, and banks
were utilized, following the approach by [13]. A manually curated list of spatial functions
was also applied to each template. The third step involved using ChatGPT to paraphrase
questions, aiming to increase the diversity of natural language expressions in the dataset.
This is crucial as GeoKBQA systems should effectively handle a variety of paraphrased
sentences that maintain consistent meanings and the corresponding SPARQL/GeoSPARQL
queries. In the final step, queries returning nonempty results were prioritized, allowing
the exclusion of unrealistic questions from the dataset, thereby ensuring its relevance and
applicability in practical scenarios.

3.3. Entity Retrieval

In contrast to existing KBQA studies, which treat entity linking as separate tasks—
mention detection, candidate generation, and entity disambiguation—we adopted ELQ,
the end-to-end entity-linking method proposed by [25], which jointly handles mention
detection and entity disambiguation. To link mentions in the questions to the entities
in OSM, we utilized entity information from Wikipedia. Specifically, for a given OSM
entity, we followed its Wikipedia links to gather information, which was then provided
to the entity-linking models. Figure 3 illustrates the question in conjunction with its
corresponding entity-linking outcomes.
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Entity Linker

Is Kota Masai neighboring Downtown Core?

Entity Mention => Entity in KB

Kota Masai = Q6433809
Downtown Core = Q3810086

Figure 3. Entity-linking example.

3.3.1. Mention Detection

Given a question [q1 . . . qn]
T= BERT([CLS]q1 . . . qn[SEP]) ∈ Rnxh, we consider candi-

date mentions as all spans [i, j] (i-th to j-th tokens of q) in the text up to length L.
To calculate the likelihood score of a candidate [i, j] being an entity mention, we

determine scores for each token, evaluating whether it is the start, part, or end of a mention
using the following equations.

sstart(i) = wT
startqi (1)

smention(t) = wT
mentionqt (2)

send(j) = wT
endqj (3)

where wT
start, wT

mention, wT
end ∈ Rh are learnable vectors.

The mention probabilities can be computed as

p([i, j]) = σ(sstart(i) + send(j) +
j

∑
t=i

smention(t)) (4)

3.3.2. Entity Disambiguation

For every ei ∈ ε, we obtain entity representations

xe = BERT[CLS]([CLS]t(ei)[ENT]d(ei)[SEP]) ∈ Rh (5)

where BERT[CLS] indicates that we select the representation of [CLS] token of the BERT
embeddings, t(ei) is a title of the entity in Wikipedia, and d(ei) is a text description of the
entity in Wikipedia.

To obtain a mention representation for each mention candidate [i, j], we average
qi . . . qj, and compute a similarity score s between the mention candidate and an entity
candidate e ∈ ε

yi,j =
1

(j − i + 1)

j

∑
t=i

qt ∈ Rh (6)

s(e, [i, j]) = xT
e yi,j (7)

We then compute a likelihood distribution over all entities, conditioned on the mention
[i, j]

p(e|[i, j]) =
exp(s(e, [i, j]))

∑e′∈ε exp(s(e′, [i, j]))
(8)
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3.3.3. Training and Inference

We train the mention-detection and entity-disambiguation components jointly by
optimizing the sum of their losses. A binary cross-entropy loss is used across all mention
candidates.

LMD = − 1
N ∑

1≤i≤j≤min(i+L−1, n)
(y[i,j]logp([i, j]) +

(
1 − y[i,j]

)
log(1 − p([i, j]))) (9)

whereby y[i,j] = 1 if [i, j] is a gold mention span, and 0 otherwise. N is the total number of
candidates we consider.

The loss for entity disambiguation is expressed as:

LED = − log p
(
eg
∣∣[i, j]

)
(10)

where eg is the gold entity corresponding to mention [i, j].
The inference step is as follows. Given an input question q, we use our mention-

detection model to obtain our mention set

M = {[i, j] : 1 ≤ i ≤ j ≤ min(i + L − 1, n), p([i, j]) > γ} (11)

where γ is a threshold.
Then, for each [i, j] ∈ M, and threshold according to γ, probability of mention [i, j]

linked to entity e is
p(e, [i, j]) = p(e|[i, j])p([i, j]). (12)

3.4. Target Query Generation

Our target query generation takes the question and entity-linking results as inputs,
generating corresponding GeoSPARQL queries, as depicted in Figure 4. Following the
standard pipeline of KBQA research, we utilized T5 [26]—a transformer-based seq2seq
model—as the foundational transducer architecture. The input sequence is a concatenation
of the natural language instruction, the input question, and the retrieved entities. For
the natural language instruction, we used: “Translate the place-related questions into
SPARQL/GeoSPARQL queries based on their semantics.” The T5 model is fine-tuned to
generate the target sequence, minimizing the cross-entropy loss.

Lgen = −
n

∑
t=1

log(p(yt|y<t , x, e)) (13)

where x denotes the input question (concatenated with the natural instructions), e denotes
the retrieved entities, y denotes the target GeoSPARQL sequence, and n is the length of the
target sequence.

While existing KBQA studies translate natural language into s-expressions, which
are simpler than SPARQL queries, our work translates natural language into SPARQL/
GeoSPARQL. To enhance the performance of translating natural language into GeoSPARQL,
we experimented with variants of T5, which exhibited improved performance in various
tasks. We tested three variants of T5: FLAN-T5 [27], CodeT5 [28], and CodeT5+ [29]. Since
T5 was not originally pretrained with natural language instructions, we evaluated whether
models fine tuned with instructions could enhance the performance of target query genera-
tion. Furthermore, viewing the translation of natural language into GeoSPARQL queries as
a variant of code generation, we tested the CodeT5+ models, which are specifically trained
for code understanding and generation.
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Is Kota Masai neighboring Downtown Core?|entity|Kota

Masai=Q6433809,Downtown Core=Q3810086

Transducer

ASK { 

?region1 osmkey:wikidata "Q6433809” . 
?region2 osmkey:wikidata "Q3810086” . 

?region1 geo:hasGeometry ?rwkt1 . 

?region2 geo:hasGeometry ?rwkt2 . 
FILTER(geof:sfTouches(?rwkt1, ?rwkt2)) }

Figure 4. Query generation example.

4. Experimental Setup
4.1. Dataset

We constructed the dataset using the OSM TTL RDF dataset [30] in the Singapore
region. Unlike Questions1089, which chose Great Britain as the research area, we selected
Singapore—a slightly smaller region but one rich in urban spatial features and with an
English-speaking demographic. We extracted entities that have Wikidata IDs in the OSM
TTL. Following the dataset-construction pipeline demonstrated in Section 3.1, we created
a dataset with 4468 geographic question and query pairs. For each question, we also
constructed its mention and corresponding Wikidata ID for entity linking. We split the
dataset into a training set with 3574 entries, a validation set of 446, and a test set of 448.

4.2. Evaluation Metrics

For performance evaluation, we utilized the string-based exact match (EM) score.
Compared to the standard evaluation pipeline of [2], which used a graph-isomorphism EM
score, we opted for the string-based EM score. This decision was made because our queries
are in SPARQL/GeoSPARQL language, which is not a graph query language, and hence,
implementing a graph–isomorphism exact match is not straightforward.

4.3. Implementation Details

Our models were implemented using PyTorch and Hugging Face transformers. For
entity linking, we utilized the BERT-base [31] model across all cases, and for target query
generation, we employed the T5-base model, following the approaches of [2,5,8]. Addi-
tionally, we conducted experiments using the T5-large model to assess whether scaling up
the model size enhances performance. Each model was trained for 50 epochs, utilizing
a learning rate of 5 × 10−5 and the AdamW optimizer [32]. We adopted a total batch
size of 128, with gradient accumulation steps set to 2, and warm-up steps set to 200. The
number of beams used was four. For training, we utilized bf16 16-bit mixed precision.
For other hyperparameters, we adhered to the default options provided by Hugging Face
transformers.

5. Results
5.1. Dataset-Construction Results

In our study, we generated a dataset of 4468 geographic question and query pairs
using a specialized pipeline, as illustrated in Figure 5. This pipeline generates templates in
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both natural language (‘template_nl’) and query format (‘template_query’). Each template
includes specific placeholders, denoted as ‘masks’, which indicate the type of data to
be substituted. For instance, the mask ‘[country]’ in the question template ‘What is the
population of [country]?’ signifies that it should be replaced with an actual country name.
The ‘substitution list’ serves two crucial functions. Firstly, it maps the masks in ‘template_nl’
to their counterparts in ‘template_query’, ensuring that a mask like ‘[country]’ in the natural
language template is appropriately paired with a ‘[wikiID]’ mask in the query template.
Secondly, this list specifies the potential substitutions for these masks, drawing from a
range of entities, classes in the OpenStreetMap’s TTL format, and spatial functions. As
an example, the ‘[country]/[wikiID]’ pair could be replaced with ‘Indonesia’ and ‘Q252′,
respectively, in the respective masks.
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Template_queryTemplate_nl
PREFIX osmkey: <https://www.openstreetmap.org/wiki/Key:>
PREFIX osm: <https://www.openstreetmap.org/>

SELECT DISTINCT ?population where {
?s osmkey:wikidata ”[wikiID]”.
?s osmkey:population ?population.

}

What is the population of [country]?

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX osmkey: <https://www.openstreetmap.org/wiki/Key:>
PREFIX rdf: <http://www.w3.org/1999/02/22‐rdf‐syntax‐ns#>
PREFIX osm: <https://www.openstreetmap.org/>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>

ASK {
?region1 osmkey:wikidata ""[wikiID_1]” .
?region2 osmkey:wikidata ""[wikiID_2]” .
?region1 geo:hasGeometry ?rwkt1 .
?region2 geo:hasGeometry ?rwkt2 .
FILTER([spatial_query](?rwkt1, ?rwkt2))

}

Is [region_1] [spatial_nl] [region_2]?

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX osmkey: <https://www.openstreetmap.org/wiki/Key:>
PREFIX osm: <https://www.openstreetmap.org/>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX rdf: <http://www.w3.org/1999/02/22‐rdf‐syntax‐ns#>

SELECT DISTINCT ?class WHERE {
?region1 osmkey:wikidata ""[wikiID]” .
?region1 geo:hasGeometry ?rwkt1 .
?class [osmkey] “[osmkeyType]” .
?class geo:hasGeometry ?cwkt1 .
FILTER([spatial_query](?rwkt1, ?cwkt1))

}"

Which [class] [spatial_nl] [region]?

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX osmkey: <https://www.openstreetmap.org/wiki/Key:>
PREFIX osm: <https://www.openstreetmap.org/>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX rdf: <http://www.w3.org/1999/02/22‐rdf‐syntax‐ns#>

ASK WHERE {
?region1 osmkey:wikidata ""[wikiID]” .
?region1 geo:hasGeometry ?rwkt1 .
?class [osmkey] “[osmkeyType]” .
?class geo:hasGeometry ?cwkt1 .
FILTER([spatial_query](?cwkt1,?rwkt1))

}

Are there any [class] in [region]

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX osmkey: <https://www.openstreetmap.org/wiki/Key:>
PREFIX osm: <https://www.openstreetmap.org/>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX rdf: <http://www.w3.org/1999/02/22‐rdf‐syntax‐ns#>
PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

SELECT DISTINCT ?class WHERE {
?region1 osmkey:wikidata ""[wikiID]” .
?region1 geo:hasGeometry ?rwkt1 .
?class [osmkey] “[osmkeyType]” .
?class geo:hasGeometry ?cwkt1 .
FILTER(geof:distance(?rwkt1,?cwkt1,uom:metre) [distance_query])

}

Which [class] are [distance_nl] [region]?

[spatial_nl_c1] – [spatial_query_c1]
intersects with ‐ geo:sfIntersects
Neighbors ‐ geof:sfTouches
Borders ‐ geof:sfTouches

Share borders with ‐ geof:sfTouches
exist in ‐ geof:sfWithin
Cross ‐ geo:sfCrosses
next to ‐ geof:sfTouches
adjacent to ‐ geof:sfTouches

are contained in ‐geof:sfContains

[Class] – [Osmkey] – [OsmKeyType]
school – osmkey:amenity – school
park – osmkey:leisure – park
hotel – osmkey:tourism – hotel

Hospital – osmkey:amenity – hospital
college – osmkey:amenity – college
museum – osmkey:tourism – museum
river – osmkey:waterway – river
island – osmkey:place – island

university – osmkey:amenity – university
…

[Region] – [wikiId]
Downtown Core ‐Q3810086 
Loyang ‐ Q669491 
Taman Ungku Tun Aminah ‐ Q7680664 

Marina South ‐ Q10605488 
Kallang ‐ Q4216846 
Tampoi ‐ Q11152281 
Jurong East ‐ Q1714023
…

[spatial_nl_b1] – [spatial_query_b1]
near – 5000
Close to ‐ 5000
Not far from ‐ 5000

[country/wikiID]

Substitution list

[Country] – [wikiID]
Indonesia ‐ Q252
Malaysia ‐ Q833

[region/wikiID]

[Region] – [wikiId]
Downtown Core ‐ Q3810086 
Loyang ‐Q669491 
Taman Ungku Tun Aminah ‐ Q7680664 

Marina South ‐ Q10605488 
Kallang ‐ Q4216846 
Tampoi ‐ Q11152281 
Jurong East ‐ Q1714023
…

[spatial_nl/spatial_query]

[class/osmkey,osmkeytype] [spatial_nl/spatial_query] [region/wikiID]

[region/wikiID]

[Region] – [wikiId]
Downtown Core ‐ Q3810086 
Loyang ‐ Q669491 
Taman Ungku Tun Aminah ‐ Q7680664 

Marina South ‐ Q10605488 
Kallang ‐Q4216846 
Tampoi ‐ Q11152281 
Jurong East ‐ Q1714023
…

[Class] – [Osmkey] – [OsmKeyType]
school – osmkey:amenity – school
park – osmkey:leisure – park
hotel – osmkey:tourism – hotel

Hospital – osmkey:amenity – hospital
college – osmkey:amenity – college
museum – osmkey:tourism – museum
river – osmkey:waterway – river
island – osmkey:place – island

university – osmkey:amenity – university
…

[class/osmkey,osmkeytype]

[distance_nl] ‐ [distance_query]
a short distance away from ‐ <= 5000
less than 50km away from ‐ < 50000
within 20km of ‐ <= 20000

near ‐ < 5000
far from ‐ > 5000
…

[Class] – [Osmkey] – [OsmKeyType]
school – osmkey:amenity – school
park – osmkey:leisure – park
hotel – osmkey:tourism – hotel

Hospital – osmkey:amenity – hospital
college – osmkey:amenity – college
museum – osmkey:tourism – museum
river – osmkey:waterway – river
island – osmkey:place – island

university – osmkey:amenity – university
…

[Region] – [wikiId]
Downtown Core ‐ Q3810086 
Loyang ‐Q669491 
Taman Ungku Tun Aminah ‐ Q7680664 

Marina South ‐ Q10605488 
Kallang ‐ Q4216846 
Tampoi ‐ Q11152281 
Jurong East ‐ Q1714023
…

[class/osmkey,osmkeytype] [distance_nl/distance_query] [region/wikiID]

[x] – [spatial query]
geo:sfIntersects
geo:sfWithin

[x/spatial_query]

Figure 5. Generated template example.

Figure 6 presents a sample question and query pair produced by our pipeline. In
this figure, the initial sentence under ‘question’ is the direct output from our substitution
process. The subsequent sentences are paraphrases generated by ChatGPT, designed to
maintain the original meaning. For instance, ‘Can you tell me the timezone of Singapore?’ is
a paraphrase of the original question ‘What timezone is Singapore in?’. This demonstrates
the consistency in meaning across different formulations of the question. In the ‘entity’
column, the ground truth entities used in the substitution are listed. It is important to
note that this column exclusively contains entities and does not include spatial functions
or classes that were part of the substitution process. To illustrate, the question ‘Which
park is a short distance away from Bukit Indah?’ (refer to Figure 6) originates from the
template ‘Which [class] are [distance_nl] from [region]?’ (refer to Figure 5). During the
generation process, placeholders such as [class], [distance_nl], and [region] were substituted.
However, in the ‘entity’ column, only the [region] placeholder is represented, as [class] and
[distance_nl] do not constitute entities. The ‘query’ column displays the query generated
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from template substitution. Here, the correspondence between the masks in ‘question’
and the substituted elements in the ‘query’ is evident. For example, when ‘Pengerang’
replaces the [region] mask, its corresponding [wikiID] (Q7162711) is used in the query,
demonstrating the direct mapping between natural language placeholders and their query
counterparts.
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5.2. GeoKBQA Results

In evaluating our models, two distinct scenarios were considered: first, utilizing
outputs from the entity-linking process as inputs, and second, employing golden entities
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(accurate, ground truth entities) directly within the transducer. Figure 7 provides several
illustrative examples of the operational flow in our GeoKBQA pipeline. For instance,
upon receiving an input question such as ‘Which hotel is the nearest to Kangkar Pulai?’,
the entity linker processes this input and yields a paired result, specifically the mention
‘Kangkar Pulai’ and its corresponding entity ID ‘Q6362781′. Subsequently, the input
question is combined with the predictions from the entity linker. This is achieved by
appending the identified entity information to the query, resulting in a combined input
format: ‘Which hotel is nearest to Kangkar Pulai? | entity: Kangkar Pulai = Q6362781′.
Moreover, in adherence to the original T5 model’s protocol, which involves prefixing inputs,
we incorporated a specific input prefix. We prepend each question with the specific input
prefix ‘translate the place-related questions into SPARQL/GeoSPARQL queries depending
on their semantics and specific requirements of each question,’ indicating the task type
being performed.
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Table 1 presents a detailed evaluation of SPARQL/GeoSPARQL generation within the
GeoKBQA pipeline, as depicted in Figure 7. The column labeled ‘ELQ’ specifically identifies
instances where ELQ functioned as the entity linker. The analysis reveals a distinct and
consistent trajectory of performance improvement across various model configurations.
This progressive enhancement, evident in the transition from the T5 base model through
FLAN-T5, CodeT5, and culminating in CodeT5+, is also reflected in their respective large
model counterparts. Such a pattern robustly illustrates the correlation between advance-
ments in pretraining strategies, spanning from T5 to CodeT5+, and the increased efficiency
in translating questions into SPARQL/GeoSPARQL queries.

Table 1. Query generation results of T5-base and its variants.

T5 Base Model (220M) T5 Large Model (770M)

ELQ Golden ELQ Golden

T5 51.7857 71.6518 75.8929 79.0179
FLAN-T5 62.2768 73.4375 78.5714 80.5804
CodeT5 84.375 83.4821 91.5179 92.6339

CodeT5+ 93.3036 92.4107 93.0804 94.1964

Moreover, a key observation from the data is the consistent improvement in per-
formance observed when scaling up within each model series. Specifically, for the T5,
FLAN-T5, CodeT5, and CodeT5+ models, moving from the base version to the larger
variant is invariably linked with enhanced performance. This trend highlights the direct
impact of model scaling on overall performance, demonstrating that increasing the model
size within the same series significantly contributes to improved efficiency in translating
questions into SPARQL/GeoSPARQL queries.

Significantly, the performance disparity between the ELQ and golden entity scenarios
narrows as the model’s performance improves. This can be attributed to the presence
of paraphrased questions in the training set that mirror queries in the test set. As the
model’s size increases, its capacity to memorize entities from the training set improves.
This phenomenon and its implications are further exemplified in Figure 8. To avoid
overestimating performance, it is crucial to strategically and deliberately divide the training
and test sets, rather than depending on random segmentation.

The ‘Golden’ column in Table 1 illustrates the transducer’s performance when pro-
vided with accurate (‘golden’) entity inputs. Consistent with previous analyses, this column
reaffirms that advancements in pretraining strategies—from T5 to FLAN-T5, CodeT5, and
then to CodeT5+—correlate positively with the efficiency of translating questions into
queries. Additionally, an increase in model capacity (either through improved pretraining
or scaling), appears to further improve performance, likely due to better memorization of
schema items. Examples demonstrating this capability and its potential challenges are also
presented.

Figure 8 presents several failure cases encountered in our GeoKBQA system. In the first
example, the entity is not correctly identified, leading to an input that lacks specific entity
information. Consequently, the T5-base 220M model fails to accurately translate the natural
language into the correct query, instead substituting a miscellaneous entity ‘Q14489267′.
In contrast, the CodeT5+ 220M model, with its enhanced capacity to memorize entity
information from the training set, successfully retrieves the correct entities and generates
accurate results. This discrepancy highlights a potential overestimation of performance in
advanced models.

The second example illustrates a different challenge: the T5-base 220M model’s inabil-
ity to identify the correct schema. It incorrectly predicts ‘?class2 osmkey:natural “park”’,
whereas the ground truth is ‘?class2 osmkey:leisure “park”’. This error underscores the
struggles of smaller models in accurately retrieving the correct schema, suggesting the
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potential need for an additional schema retriever. Addressing these issues is crucial for
advancing the effectiveness of such systems in future research.
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6. Conclusions

This study constructed the first practical GeoKBQA dataset and GeoKBQA systems
employing DNNs. Prior studies had constructed GeoKBQA datasets that were small
scale and of low quality. They also developed rule-based GeoKBQA systems, which were
impractical due to their limited coverage and scalability issues. Specifically, these previous
systems utilized a rule-based approach to identify entities and generate queries from place-
related questions. To our knowledge, this is the first work to construct a fully neural-based
GeoKBQA system using large-scale datasets.

To build a practical GeoKBQA system, we initially constructed a large-scale GeoKBQA
dataset, enriched with diverse spatial functions, schema item compositions, and para-
phrased natural language questions. In the GeoKBQA system, we first conducted entity
linking on the natural language questions. Subsequently, we trained the query generation
model using input questions concatenated with entity-linking results and the ground truth
SPARQL/GeoSPARQL queries. For entity linking, we utilized information from Wikidata
that is connected to the OSM object, performing an end-to-end entity-linking process. For
query generation, we employed various versions of T5 to enhance the performance of query
generation.

By training various T5 models, we concluded that using pretrained models with
capabilities in code understanding and generation tasks substantially aids in generating
precise queries. Additionally, we found that scaling the model size effectively improves the
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quality of query generation. Utilizing CodeT5+ 220M with ELQ enabled us to develop a
robust GeoKBQA system capable of proficiently translating place-related questions into
GeoSPARQL queries.

Despite being the pioneer in proposing a neural-based, practical GeoKBQA system,
this research has encountered several limitations. Due to the limited schema of Open-
StreetMap, the schema retriever component was not included in this study. Furthermore,
we did not deliberate on how to ensure that the seq2seq models conform precisely with
the SPARQL/GeoSPARQL syntax. Lastly, a careful and strategic division of the dataset is
crucial for an accurate evaluation of the GeoKBQA systems’ performance. Our subsequent
works aim to resolve these existing challenges.
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