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Abstract: In the realm of intelligent transportation systems, accurately predicting vehicle trajectories
is paramount for enhancing road safety and optimizing traffic flow management. Addressing the
impacts of complex traffic environments and efficiently modeling the diverse behaviors of vehicles are
the key challenges at present. To achieve precise prediction of vehicle trajectories, it is essential to fully
consider the dynamic changes in traffic conditions and the long-term dependencies of time-series data.
In response to these challenges, we propose the Memory-Enhanced Spatio-Temporal Graph Network
(MESTGN), an innovative model that integrates a Spatio-Temporal Graph Convolutional Network
(STGCN) with an attention-enhanced Long Short-Term Memory (LSTM)-based sequence to sequence
(Seq2Seq) encoder–decoder structure. MESTGN utilizes STGCN to capture the complex spatial
dependencies between vehicles and reflects the interactions within the traffic network through road
traffic data and network topology, which significantly influences trajectory prediction. Additionally,
the model focuses on historical vehicle trajectory data points using an attention-weighted mechanism
under a traditional LSTM prediction architecture, calculating the importance of critical trajectory
points. Finally, our experiments conducted on the urban traffic dataset ApolloSpace validate the
effectiveness of our proposed model. We demonstrate that MESTGN shows a significant performance
improvement in vehicle trajectory prediction compared with existing mainstream models, thereby
confirming its increased prediction accuracy.

Keywords: vehicle trajectory prediction; memory-enhanced spatio-temporal graph network; long
short-term memory network; Seq2Seq encoder–decoder

1. Introduction

As urbanization accelerates and traffic volumes surge, traditional traffic management
systems are increasingly overwhelmed by the demands of complex traffic patterns. Issues
like congestion, frequent accidents, and environmental pollution are prompting researchers
to explore more intelligent and efficient solutions. In response to these challenges, deep
learning technology has become a key tool, offering innovative approaches for developing
intelligent transportation systems. Vehicle trajectory prediction based on deep learning [1]
has become an important research field for addressing contemporary transportation chal-
lenges. With the continuous evolution of autonomous driving technology, the accurate
prediction of vehicle trajectories has become an indispensable task with wide-ranging
application prospects. Motion trajectory data [2] often contain rich spatio-temporal infor-
mation, requiring in-depth analysis to achieve trajectory prediction, ensuring the safety
and efficiency of driving.

However, predicting vehicle trajectories accurately poses a highly challenging task due
to the characteristics of trajectory data, such as their temporal nature, multidimensionality,
large volume, trends, and complexity, which often involve long sequential data [3]. In
the early stages of research on vehicle trajectory prediction algorithms, many scholars
adopted approaches based on establishing kinematic or dynamic models to predict the
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trajectories of surrounding vehicles, considering vehicles as objects governed by physical
laws [4]. Vehicle trajectory prediction often relies on the assumption that specific vehicle
states will either stay the same or change at a consistent rate moving forward [5]. However,
this approach fails to utilize environmental information and spatio-temporal interaction
information for modeling, resulting in insufficient prediction accuracy [6]. In recent years,
with the continuous development of artificial intelligence and hardware computing power,
an increasing number of researchers have adopted data-driven approaches for vehicle
trajectory prediction. Data-driven trajectory prediction methods predict the possible future
trajectories of the target vehicle based on a segment of its historical trajectory [7]. These
data-driven models can be divided into classical machine learning models [8,9] and neural-
network-based deep learning models [10,11].

This study introduces an innovative trajectory prediction network model that in-
tegrates an interaction-aware spatio-temporal graph with an LSTM-based attention en-
hancement mechanism, applying the Seq2Seq framework for trajectory prediction output,
as shown in Figure 1. By integrating these two core components, the model effectively
captures the spatial complexities among vehicles while fully accounting for the temporal
continuity and long-term dependencies in their trajectories, thereby achieving higher ac-
curacy and reliability in vehicle trajectory prediction. Specifically, our main contributions
include the following:

(1) We propose a novel vehicle trajectory prediction framework that integrates a Spatio-
Temporal Graph Convolutional Network (STGCN) with an attention-enhanced LSTM
trajectory prediction network into a Seq2Seq architecture, accurately capturing the
spatio-temporal dependencies in vehicle trajectory data.

(2) The Memory-Enhanced Spatio-Temporal Graph Network (MESTGN) model focuses
on analyzing the interactions between vehicles and deeply captures and understands
these interactions’ complex spatial relationships through the integration of a spatio-
temporal graph. It accurately identifies and addresses the dynamic interplay between
vehicles, thus achieving higher precision and reliability in vehicle trajectory prediction.

(3) We conducted experiments on the urban traffic dataset ApolloSpace, validating our
model’s performance advantage in vehicle trajectory prediction. The experimental
results validate our model’s effectiveness in this field.
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Figure 1. The architecture of the Spatial–Temporal Graph Convolutional Network.

The subsequent sections of this paper are organized as follows: Section 2 reviews
related work. Section 3 provides a detailed exposition of our model architecture and
methodology. Section 4 outlines the proposed design scheme. Section 5 showcases the
experimental settings and result analysis. Section 5 summarizes the entire document.
Finally, Section 6 discusses future research directions.
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2. Related Works

The current methods for vehicle trajectory prediction are primarily categorized into
two types: classification-based maneuver models that use traditional methods and percep-
tion models that employ deep learning to analyze vehicle behavior.

Classification-based maneuver models concentrate on recognizing the maneuvering
actions of vehicles by treating these actions as a classification problem, relying on specific
vehicle features. These models typically consist of two main components: a maneuver
identification module and a trajectory prediction module tailored to specific maneuvers.
The identification module functions as a classifier, utilizing historical trajectory data, mo-
tion status, and contextual clues from the surrounding environment to categorize different
maneuvering behaviors. Various classifiers have been applied, including heuristic meth-
ods [12], Bayesian networks [13], hidden Markov models [14], random forest classifiers [15],
and Gaussian process models [16]. These classifiers determine the kinematic parameters of
the vehicle’s maneuver based on its historical trajectory data, thus judging the vehicle’s
maneuvering behavior. A regression trajectory prediction model first forecasts the vehicle’s
future path. The trajectory prediction module then determines the future position based on
the maneuver category.

However, traditional traffic prediction methods are typically based on modeling
under simple scenario assumptions. When facing complex traffic environments, the per-
formance of these methods may significantly degrade. Traditional approaches rely on
handcrafted features that need to be adapted for different traffic conditions. Additionally,
their precision tends to decrease more noticeably with long-term trajectory forecasts. This is
because long-term prediction requires considering more uncertainty and dynamic changes,
making it challenging to model accurately. Therefore, traditional methods may not pro-
vide satisfactory performance for complex traffic environments and long-term trajectory
prediction tasks.

In vehicle perception, predicting vehicle trajectories can be viewed as a sequence clas-
sification or sequence generation task [17]. Sequence classification maps trajectory inputs
to predefined categories or labels, while sequence generation creates new sequences related
to these inputs, such as future vehicle trajectories. In the vehicle perception discussed
in this paper, the key is to extract features from vehicle trajectory data in both temporal
and spatial dimensions [18] to help the model understand the interaction relationships
between vehicles and temporal dependencies. Before forwarding the vehicle trajectories
to the predictive neural network, the raw trajectory data needs to be represented in an
appropriate form. Common representations include sequential points [19], occupancy
grids [20], and rasterized images [21]. Based on these representations, various network
components can be used to extract temporal and spatial contexts.

For temporal correlation analysis, both recurrent and convolutional neural networks
can be leveraged. Owing to their inherent memory mechanisms, Recurrent Neural Net-
works (RNNs), Long Short-Term Memory networks (LSTMs), and Gated Recurrent Units
(GRUs) are particularly well-suited to sequence data, enabling them to capture complex
social interactions and temporal dependencies among vehicles effectively. These models
analyze historical trajectory data to comprehend how vehicles interact and influence each
other’s actions at different time points.

Standard RNNs struggle with vanishing or exploding gradients, hindering their
ability to learn from long sequences. To address this, LSTMs were introduced with three
sophisticated gates: input, forget, and output, which help manage information flow and
greatly improve the capture of long-term dependencies. In the study by Choi et al. [22], an
LSTM-based trajectory prediction model initially processes the historical coordinate data
of vehicles through separate LSTM units to extract the dynamic context of each grid. An
integrated LSTM network subsequently computes the occupancy probability for each grid
using this contextual information and predicts future vehicle trajectories accordingly. Ma
et al. [23] propose a LSTM-based real-time traffic prediction algorithm, TrafficPredict. This
uses an instance layer to learn instances’ movements and interactions and has a category
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layer to learn the similarities of instances belonging to the same type to refine the prediction.
Contrarily, GRUs employ a simplified architecture with an update gate and a reset gate,
which reduces the number of parameters and enhances training efficiency, making it
especially suitable for short-term trajectory prediction. Han et al. [24] utilized a GRU-based
approach in their research, which inherits the lightweight features of LSTM and effectively
extracts information from historical trajectory data. Additionally, Zhu et al. [25] improved
the traditional encoder–decoder LSTM structure by introducing trajectory prediction using
deep neural networks within a star topology. This approach enhances prediction accuracy
and computational efficiency by considering collective interactions and employing linear
computations. Although the above models can extract features related to environmental
interactions, they typically focus only on a single target and predict its future trajectory
alone. The spatial relationships between vehicles include non-Euclidean characteristics such
as curved paths, making methods based solely on LSTM both inefficient and non-intuitive in
processing spatio-temporal data. The computational demand increases exponentially when
predicting the future trajectories of all nearby vehicles, which will lead to inefficiencies in
the model’s performance. Therefore, the emergence of graph neural networks provides
new avenues for addressing these issues.

Graph Neural Networks (GNNs) are inherently well-suited for modeling interactions
between vehicles, effectively capturing complex dependencies [26]. GNNs distill structural
and semantic information into low-dimensional representations of nodes. Graph Convolu-
tional Networks (GCNs) expand the scope of convolutional operations from conventional
CNNs to graph data, facilitating nodes in propagating information and aggregating features
through their neighbors [27]. This adaptation enables GCNs to generalize convolutional
operations from traditional grid-based data to complex graph structures, enhancing the
efficacy of feature extraction and representation learning [28]. Li et al. [29] utilized undi-
rected graphs to represent vehicles and their interactions, employing GCNs alongside
spatially related graph operations to effectively extract interaction contexts and discern
dynamic inter-vehicle interactions. Additionally, Gao et al. [30] introduced a hierarchical
architecture to refine interaction modeling, representing each vehicle through multiple
subgraphs. These subgraphs are subsequently integrated using fully connected graphs to
elucidate dependencies between vehicles.

3. Methodology

In a static traffic scenario at a certain moment, observing any behavior that vehicles
are about to execute is based on two levels:

The first level focuses on the current time point, where features from the vehicle’s
historical trajectory, such as position, velocity, acceleration, heading angle, and relative
distance, will affect its future behavior and the development of subsequent trajectories.

The second level involves interactions between various states of surrounding vehicles’
historical trajectories and the observed vehicle’s state. This includes how the historical
spatial positions of nearby vehicles influence the observed vehicle and how their trajectory
features interact.

This paper models vehicle trajectory prediction by estimating future trajectory dis-
tributions from past trajectories, while also forecasting positions of all adjacent vehicles.
Mathematically, this approach is formulated as follows: first, the vehicle positions within
the past time range T are denoted as

X = [P1, P2,. . . Pt, . . ., PT] (1)

where
Pt = [(xt

1, yt
1), . . ., (xt

n, yt
n), . . ., (xt

N, yt
N)] (2)
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represents the coordinates at time t, and N is the total number of observed vehicles. When
past trajectories of vehicles are collected at a certain frequency, the predicted trajectories for
the future time range F can be represented as

Y = [PT+1, PT+2, . . ., PT+t, . . ., PT+F] (3)

where
PT+1 = [(xT+t

1, yT+t
1), . . ., (xT+t

n, yT+t
n), . . ., (xT+t

N, yT+t
N)] (4)

Therefore, the trajectory prediction problem can be summarized as follows: given
the positions of all adjacent vehicles in the past time range T, the goal is to predict their
trajectory distribution within the future time range F.

4. Proposed Scheme

To overcome the shortcomings of current approaches, this section introduces a novel
deep learning model designed to predict target trajectories. Our model consists of three
parts: (1) an input preprocessing model, (2) a graph convolutional network (GCN), (3) a tra-
jectory prediction model. This section initially details the computational steps involved in
the input preprocessing model, followed by an explanation of how the graph convolutional
network extracts spatio-temporal features from vehicle trajectories. Then, based on the
features extracted by the GCN network, we construct a trajectory prediction model using a
sequence-to-sequence (Seq2Seq) architecture with LSTM. Finally, the training process of
the algorithm and the analysis of prediction results are presented.

4.1. Data Preprocessing

To effectively model vehicle motion, it is crucial to accurately capture the spatial
and temporal correlations inherent in vehicle dynamics. This requires the use of data
input representations that encapsulate the movement of vehicles across both space and
time. These representations should include variables such as the coordinates, velocity, and
acceleration of vehicle trajectories, which are essential for the model to comprehend the
dynamic evolution of vehicle motion over time. Additionally, historical trajectory data is
typically formatted as a time series, allowing for the selection of suitable time windows to
analyze and predict vehicle trajectories comprehensively.

In this paper, due to the requirements for subsequent data representation and computa-
tion, the original data must be transformed. Normalization of the coordinates is performed
to eliminate the influence of specific scene scales, making the model more generalizable.
Assuming all objects observed in the traffic scene within a time step of Th are segmented
into n time slices, we represent this observation information in a specific format as a three-
dimensional array (n × Th × c). Since trajectories are given in coordinate form in the
dataset, we set c to 2 to represent the x and y coordinates of objects. Both coordinate values
are normalized to fall within the range (−1, 1). The calculation formula can be expressed as

xnorm = 2
(

x − xmin
xmax − xmin

)
− 1 (5)

where x is the original coordinate value, xmin and xmax are the minimum and maximum
values, respectively, among the coordinate values in the above-mentioned array, and xnorm
is the normalized coordinate value.

4.2. Spatio-Temporal Feature Extraction Based on GCNs

In our study, we explore the complex interactions between vehicles to enhance the
accuracy of vehicle trajectory predictions. The prediction model considers not only the
individual trajectories of vehicles but also the impact of the motion states of surround-
ing vehicles. This mutual influence is essential for creating a more realistic and reliable
prediction model.
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In transportation research, vehicle movements often display characteristics of interde-
pendence and constraint. For instance, the lane-changing, deceleration, or acceleration of
one vehicle can trigger similar behaviors in nearby vehicles. These intricate interactions
are shaped by both the physical dynamics between vehicles and driver behaviors, such as
adherence to traffic regulations, subjective decision-making, and the anticipation of the
actions of other drivers.

To better capture these interactional relationships, we choose to represent the interac-
tions between vehicles using an undirected graph G = {V, E}. In this representation, nodes V
in the graph represent vehicles on the road, and edges E represent the interactions between
vehicles. Given that GCNs perform convolution operations on each vertex in the graph and
have been proven to be effective in capturing spatial dependencies between a node and
its neighboring nodes [31], we have incorporated spatial graph convolution operations in
our paper. This approach enables the model to perceive the relationships between vehicle
nodes, enhancing the accuracy of capturing spatial trajectory evolution.

Due to the significant dependence of vehicle interactions on distance, within a specified
observation range, the farther a vehicle is from the vehicle being predicted, the smaller
its relative impact. To accurately describe these interactions among vehicles, we assign
different weights to each edge in the graph model. Considering that the influence between
vehicles is inversely proportional to distance, we use a weighted adjacency matrix in
the construction of the graph’s spatial convolution module to express this relationship.
Specifically, we use the reciprocal of the distance as the weight, ensuring that vehicles closer
in proximity receive higher weights in the graph. Our weighted adjacency matrix A can be
specifically represented as follows:

A[i][j] =


1

Di,j
,vi, vj ∈ E

0,else
(6)

where Di,j in A[i][j] denotes the distance between the vehicles i and j.
The two-dimensional convolution operation of graph convolution [27] can be ex-

pressed as

Zi+1 = F
(

Λ− 1
2

t At Λ
1
2
t Zi Wi

)
(7)

where Z represents the feature matrix of the graph vertices, A is the adjacency matrix, Λ is
the diagonal node degree matrix of A, and W is the weight matrix. It aims to normalize the
adjacency matrix, which speeds up the training process of the GCN.

As shown in Figure 2, by extracting spatial information around the vehicle and per-
forming graph convolutional operations, the features (including position, speed, and
influence weights) of the target vehicle and its surrounding vehicles are weighted and
summed, and then the result is passed onto the next layer. The design specifically accounts
for how the target vehicle’s state impacts its future movement.

Therefore, by modeling the spatio-temporal relationships of vehicle trajectory data
through graph convolutional networks overall, this study can comprehensively and deeply
understand the complex interactions between vehicles, providing a more reliable founda-
tion for vehicle trajectory prediction.
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4.3. Trajectory Analysis and Prediction Network

After capturing spatio-temporal features through graph convolution, it is possible to
generate future trajectory distributions, which is a typical sequence generation task. In
the basic prediction network, the trajectory prediction module is structured as an LSTM-
based encoder–decoder network. As shown in Figure 3, it uses the output from the
graph convolutional model as input, feeding it into the encoder LSTM at each time step.
Subsequently, the encoder’s hidden features, combined with the previous time step’s object
coordinates, are inputted into the decoder LSTM to predict the position coordinates for the
current time step. This decoding process repeats several times until the model predicts the
positions for all expected future time steps.
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Figure 3. LSTM-based trajectory prediction.

In the traditional Seq2Seq model, the LSTM encoder typically generates a fixed-length
context vector to represent the entire past trajectory of the vehicle. This approach may lead
to information loss when dealing with long-term trajectory data, because a fixed-length
vector struggles to capture all key details. Without using an attention mechanism, the
model may perform poorly in capturing long-term dependencies within the sequence,
especially in terms of how early behaviors influence future trajectories. This limitation
could result in inadequate accuracy when predicting the future positions of vehicles.

With the introduction of the dot-product attention mechanism into the LSTM en-
coder [32], the traditional Seq2Seq model’s issue of information loss due to the use of
fixed-length context vectors can be effectively overcome. This architecture is illustrated in
Figure 4.
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The dot-product attention mechanism dynamically determines the attention weights
for each time step through the dot-product calculation between the hidden states produced
by the encoder (referred to as “keys”) and the current state of the decoder (referred to
as “query”). These weights reflect the contribution of each time step to the current de-
coding task, optimize the analysis of the relationship between early behaviors and future
trajectories, and allow the model to precisely focus on specific input segments according to
prediction needs. The computation formula is as follows:

Ai = align
(
hi, Yj

)
, f or j = 0 to M (8)

In this process, hi represents output states generated by the encoder, while Yj denotes
the computational outputs of the decoder. The steps for computing using the ”align”
function evaluates the relevance of each hi to every Yj.

(1) Linear maps: {
ki = wk · hi
qi = wQ · Yj

f or j = 0 to M (9)

(2) Inner product:
∼
Ai = kT

i qi (10)

(3) Normalization:

[A1, · · · AM] = so f tmax
([∼

A1, · · ·
∼
AM

])
(11)

After the relevance is quantified as weights Ai, we generate a context vector C by
taking a weighted average of these weight vectors. The computation formula is as follows:

C = ∑N
i=0 Ai ∗ hi (12)

Yj+1 = tanh
(

W ·
[
X′

i , Yj, Ci
]−1

+ b
)

(13)

Then, the context vector combined with the actual trajectory coordinates X′
i and the

previous decoder output Yj, forms a comprehensive vector that is continuously used to
update the decoder’s output. This process generates trajectory prediction coordinates for
the vehicle at each step.
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5. Experiments
5.1. Dataset

This paper evaluates our approach using the ApolloScape trajectory dataset [33]. The
ApolloScape trajectory dataset is collected by running Apollo autonomous vehicles in
urban areas during peak hours. The collected traffic data includes camera-based images
and LiDAR-based point clouds, and object detection and tracking algorithms are used to
compute object trajectories. Overall, the trajectory dataset consists of 53 min of training
sequences captured at a rate of 2 frames per second and 50 min of testing sequences. The
dataset provides information such as object ID, object type, object location, object size, and
heading angle. As the data is collected in urban areas, it involves five different types of
objects: small vehicles, large vehicles, pedestrians, motorcycle riders, and bicycle riders.
This specific dataset allows researchers to stress-test their designed trajectory prediction
solutions to accommodate various types of traffic agents with different behaviors, posing
additional challenges in design.

During training, 20% of the sequences from our training subset were used for val-
idation, while we trained the model with the other 80%. After training, we generated
predictions for the test sequences and assessed the outcomes.

5.2. Experimental Environment

Table 1 outlines the specific hardware configuration used for the experiments de-
tailed in this paper, which were conducted using Python and the PyTorch deep learning
framework.

Table 1. Hardware testing platform.

Experimental Equipment Experimental Specifications

CPU 12th Gen Intel(R) Core(TM) i7-12700KF
CPU Frequency 3600 MHz

GPU NVIDIA GeForce RTX 3090
System Ubuntu 20.04

Memory 64 GB

5.3. Results Evaluation

RMSE: In this paper, we report our results based on the root mean square error (RMSE)
of the predicted trajectories for the future (within a 5 s range). The RMSE at time t can be
calculated as follows:

RMSE =

√
1
n∑n

i=1

(
Yt

Pred[i]− Yt
true[i]

)2 (14)

Here, n is the number of samples, and Yt
pred and Yt

true are the corresponding predicted
outcomes and the ground truth at time t.

5.4. Ablation Experiments

In this section, we conducted two ablation studies to validate the efficacy of different
components within our MESTGN:

(1) Removal of different modules: This includes excluding the GCN from the MESTGN,
disabling the attention mechanism within the encoder–decoder, or reverting it to a con-
ventional sequence to sequence (Seq2Seq) model for predictions. The outcomes of these
ablation studies, as presented in Table 2, unequivocally demonstrate that the removal of
any component from the MESTGN results in an increase in the RMSE.
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Table 2. Comparison off the RMSE for the different components within the MESTGN.

Prediction
Horizons

MESTGN
(No GCN)

MESTGN
(No Attention) MESTGN

1 0.57 0.37 0.35
2 1.73 1.12 0.81
3 2.81 1.67 1.43
4 4.12 3.12 2.20
5 5.34 4.36 3.24

Average 2.51 2.13 1.40
The bold values indicate the lowest RMSE results within each prediction horizons.

Table 2 can be understood as follows: the absence of the GCN component leads to a
deficiency in the spatio-temporal dependencies among the features inputted into the LSTM.
This deficiency stems from the lack of GCN’s support, which is crucial for adequately re-
flecting the dynamic interactions among vehicles across different times and locales, thereby
restricting the model’s capability to adapt to intricate traffic scenarios. Conversely, when
the dot-product attention mechanism is excluded from the encoder–decoder configuration,
the model’s ability to capitalize on the longitudinal characteristics of vehicle trajectory
data is significantly compromised. The attention mechanism is instrumental in enabling
the model to prioritize historical events that exert substantial influence on the predictive
outcomes, such as specific driving behaviors or preferred routes.

(2) Due to our model’s focus on the spatio-temporal positions of vehicles using graph
convolution, surrounding objects around vehicles become essential considerations. There-
fore, we investigated how the distance between vehicles affects the performance of our
model. In this study, we use a distance threshold, referred to as “Distance” to determine
whether there is an edge connection between two vehicle nodes, and we explore the optimal
distance between two vehicles in the graph network for the best predictive performance
of the model. In Figure 5, we can see that when “Distance” = 0 (indicating exclusion of
surrounding objects, depicted by blue lines in Figure 5), the prediction error is signifi-
cantly higher than when “Distance” > 0 (considering nearby objects). Thus, considering
surrounding objects indeed contributes to improving the predictive capability of our model.
Additionally, we observed a slight increase in prediction error as “Distance” increased
from 25 feet (depicted by orange lines) to 50 feet (represented by green lines). This is due
to vehicles in road traffic being more affected by nearby objects while often ignoring the
influence of distant ones.
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5.5. Quantitative Analysis

In Table 3, we compared the proposed MESTGN model with other models for valida-
tion, including TrafficPredict [23], StarNet [25], and GRIP [29]. These methods are all based
on LSTM for trajectory prediction. The algorithm’s performance metrics adopt error weight
configurations provided by the ApolloScape website. They use the following metrics to
assess the algorithm’s performance:

• Average displacement error (ADE): the mean Euclidean distance over all the predicted
positions and ground truth positions during the prediction time.

• Final displacement error (FDE): the mean Euclidean distance between the final pre-
dicted positions and the corresponding ground truth locations.

Table 3. Model prediction error.

Method
Model WSADE ADE

(Vehicles)
ADE

(Pedestrian)
ADE

(Cyclists) WSFDE FDE
(Vehicles)

FDE
(Pedestrians)

FDE
(Cyclists)

TrafficPredict [23] 8.588 7.946 7.810 12.880 24.226 12.77 11.121 22.791
StarNet [25] 1.342 2.386 0.785 1.862 2.498 4.285 1.515 3.464

Grip [29] 1.259 2.240 0.714 1.802 2.363 4.076 1.373 3.415
MESTGN (ours) 1.238 2.217 0.681 1.819 2.277 3.894 1.297 3.391

The bold values indicate the smallest prediction error for each method; lower values are better.

As trajectories of vehicles, cyclists, and pedestrians have different scales, they use the
following weighted sum of the ADE (WSADE) and the weighted sum of the FDE (WSFDE)
as metrics.

WSADE = Dv·ADE(vehicles) + Dp·ADE(pedestrian) + Dc·ADE(cyclist) (15)

WSFDE = Dv·FDE(vehicles) + Dp·FDE(pedestrian) + Dc·FDE(cyclist) (16)

The weights for vehicles, pedestrians, and cyclists are respectively set to 0.20, 0.58,
and 0.22. These weights are inversely related to the average speeds of vehicles, pedestrians,
and cyclists in the dataset.

In Table 3, GRIP has a lower ADE for cyclists, but MESTGN has overall lower WSADE
and WSFDE metrics compared with GRIP. MESTGN uses an attention-enhanced LSTM
network to analyze historical data more precisely, resulting in superior predictive perfor-
mance. Additionally, MESTGN outperforms both TrafficPredict and StarNet across all
predictive metrics. This highlights the superiority of GCN compared to LSTM in capturing
spatial dependencies, underlining the critical role of incorporating surrounding vehicle
information in trajectory prediction.

5.6. Vehicle Trajectory Visualization Analysis

To investigate the accuracy of the MESTGN model in vehicle trajectory prediction, we
conducted a series of predictions using the ApolloScape trajectory dataset under consistent
road scenarios, visualizing the results of the MESTGN model in Figure 6. The original
trajectories were based on 3 s of historical data, with the model predicting trajectories over
a 6 s span.

In Figure 6, it is observed that vehicles closely follow their predecessors within the
three straight lanes, indicating the MESTGN model’s effective recognition of vehicle-
following behavior. Further examination reveals that the predicted coordinates closely
match the actual coordinates, demonstrating the MESTGN model’s ability to accurately
capture and understand vehicle trajectories. This enhances accuracy in vehicle trajectory
prediction tasks.
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6. Conclusions

In this paper, we propose an innovative model framework based on Graph Convolu-
tional Networks (GCNs) and a combination of Long Short-Term Memory (LSTM) networks
with attention mechanisms. This framework predicts the trajectories of all vehicles in a
scene and calculates their future trajectory distributions. In our approach, we introduce a
weighted adjacency matrix to differentiate the varying impacts of nearby vehicles on the
target vehicle. Building upon this, we utilize the graph convolutional network module
to learn the temporal and spatial dependencies among vehicles. Additionally, within the
LSTM-based Seq2Seq encoder–decoder structure, we incorporate an attention mechanism
to focus more on the historical trajectory information of vehicles. Experimental results
demonstrate that our model framework outperforms mainstream methods, exhibiting
smaller prediction errors and better prediction outcomes, thus indicating its potential for
deployment in autonomous vehicles.

7. Discussion

For future work, we can further explore and research more complex attention mecha-
nisms to enhance the model’s ability to model the intricate relationships between vehicles.
Additionally, considering the integration of more data sources such as traffic signal states,
road conditions, weather information, etc., can improve the model’s robustness and general-
ization capability. Furthermore, applying the proposed model framework to real intelligent
transportation systems and conducting field testing and evaluation to validate its effective-
ness and reliability in real-world environments will be crucial. Considering deploying this
model for actual vehicle trajectory prediction in different environments is also important.
Specific deployment environments may include, but are not limited to, vehicles themselves,
cloud platforms, or roadside units. Finally, our future work will focus on further optimizing
the model’s structure and parameter settings to enhance prediction accuracy and efficiency
while reducing computational costs and resource usage. By pursuing these goals, we aim
to refine and advance the proposed model framework, thereby expanding the potential
and applications of intelligent transportation systems.
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