
Citation: Xing, H.; Wang, H.; Gao, D.;

Hou, D.; Wu, H. Simplifying Land

Cover-Geoprocessing-Model

Migration with a PAMC-LC

Containerization Strategy in the Open

Web Environment. ISPRS Int. J.

Geo-Inf. 2024, 13, 187. https://

doi.org/10.3390/ijgi13060187

Academic Editors: Jamal Jokar

Arsanjani and Wolfgang Kainz

Received: 21 April 2024

Revised: 29 May 2024

Accepted: 30 May 2024

Published: 3 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Simplifying Land Cover-Geoprocessing-Model Migration
with a PAMC-LC Containerization Strategy in the Open
Web Environment
Huaqiao Xing 1,2,3, Haihang Wang 1,2 , Denghai Gao 1,2, Dongyang Hou 4,* and Huayi Wu 5,6,7

1 School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China;
xinghuaqiao18@sdjzu.edu.cn (H.X.); 2021165107@stu.sdjzu.edu.cn (H.W.);
2022165110@stu.sdjzu.edu.cn (D.G.)

2 Key Laboratory of Digital Simulation in Spatial Design of Architecture and Urban-Rural, Department of
Education of Shandong Province, Jinan 250101, China

3 Department of Civil Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
4 School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
5 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan

University, Wuhan 430079, China; wuhuayi@whu.edu.cn
6 Hubei Luojia Laboratory, Wuhan 430079, China
7 Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, China
* Correspondence: houdongyang1986@csu.edu.cn

Abstract: Land cover and its changes over time are significant for better understanding the Earth’s
fundamental characteristics and processes, such as global climate change, hydrology, and the carbon
cycle. A number of land cover-geoprocessing models have been proposed for land cover-data pro-
duction with different spatial and temporal resolutions. With the massive growth in land cover data
and the increasing demand for efficient model utilization, developing efficient and convenient land
cover-geoprocessing models has become a formidable challenge. Although some model-migration
methods have been proposed for handling the massive data, the intricacy of land cover-data and
-heterogeneity models frequently prevent current strategies from directly meeting demand. In this
paper, we propose the PAMC-LC-containerization approach to overcome the difficulties associated
with moving existing land cover models in the open web environment. Based on the idea of model
migration, we design a standardized model description and hierarchical encapsulation strategy for
land cover models, and develop migration and deployment methods. Furthermore, we assess the
viability and efficacy of the proposed approach by using coupled workflows for model migration and
the introduction of visualization on the Mts-WH dataset and the Google dataset. The experimental
results show that the PAMC-LC approach can simplify and streamline the model migration process,
with important ramifications for increasing productivity, reusing models, and lowering additional
data-transmission costs.

Keywords: land cover; containerization migration; Docker; geoprocessing workflow

1. Introduction

Land cover is significant for better understanding the Earth’s fundamental characteris-
tics and processes, such as global climate change, hydrology, and the carbon cycle [1]. Land
cover-geoprocessing models are of great significance for monitoring dynamic changes in
global land cover, climate, and the sustainability of ecosystems, as well as for predicting
future changes [2–4].The emergence of “Land Cover 2.0”, which represents a new era in
land cover geoprocessing, is due to the free and open access to data, prepared analysis
data, high-performance computing, and rapidly evolving data processing and analysis
capabilities [5]. In recent decades, remarkable advancements have been achieved in land
cover-geoprocessing models, spanning data, methodology, computational capabilities, and

ISPRS Int. J. Geo-Inf. 2024, 13, 187. https://doi.org/10.3390/ijgi13060187 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi13060187
https://doi.org/10.3390/ijgi13060187
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-4575-5517
https://orcid.org/0000-0003-3971-0512
https://doi.org/10.3390/ijgi13060187
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi13060187?type=check_update&version=1

ISPRS Int. J. Geo-Inf. 2024, 13, 187 2 of 20

practical applications [6]. Specifically, these models encompass a range of sophisticated
techniques, including maximum likelihood classification, random forest, support vector
machine, neural networks, change-detection models, and more.

Land cover-geoprocessing models often involve complex and resource-intensive work-
flows, which require significant computing power to process large amounts of remote
sensing data [7]. Remote sensing data has often been downloaded locally and analyzed
using specialist desktop applications. However, with the emergence of large and accessible
remote sensing datasets, this approach has become increasingly time-consuming and ineffi-
cient [8]. Moreover, the processing and computation efficiency of conventional methods is
limited by device performance, and the transmission of large volumes of land cover data
requires high network capacity. Therefore, it is an ideal solution for end-users to migrate
their data-processing models and environments in order to directly access the required
processing results from the data side, reducing additional data-transmission expenses and
improving work efficiency. In this context, the development of network technologies for
sharing, reusing, and integrating land cover models in network environments has gained
widespread acceptance [9]. Reusing computing algorithms is a top goal in these efforts, not
only to prevent redundant implementation and increase utilization efficiency, but also to
ultimately acquire more effective and high-quality models. Given the size and quantity of
remote sensing datasets, it is essential to move the computing code closer to the data rather
than transferring a large amount of data to the processing services. Furthermore, elastic
computing environments such as grids and cloud computing also require technology that
can seamlessly distribute land cover-processing logic in scalable environments [10]. By
embracing these technological improvements, users can handle land cover data effectively
and efficiently, supporting a variety of efficient applications like environmental monitoring
and land cover planning.

Model migration is a crucial topic in software engineering that deals with moving
various software-system components from one platform to another in order to meet evolv-
ing business needs, customer expectations, and technical improvements [11]. In recent
years, researchers and practitioners have scrutinized these migration issues from multiple
perspectives, proposing theoretical frameworks, design patterns, implementation strategies,
and evaluation metrics. This research includes ensuring compatibility with the new system,
preserving functionality and data, and minimizing downtime during the migration process.
For example, the utilization of ONNX’s (Open Neural Network Exchange) open format
can facilitate the exchange of machine learning models across different frameworks and
platforms [12]. The ActiveSpace framework was proposed for transferring binary code to a
buffer and compiling it in real-time [13]. Numerous container platforms, such as OpenVZ
(OpenVZ Virtualization Environment) [14], LXC (Linux Containers) [15], and Docker [16]
fully or partially support container migration. Research in this field mainly concentrates on
developing automated tools and processes to expedite code migration, enhance reliability,
reduce risk, and increase re-usability [17]. Moreover, standardized methods and technolo-
gies are required to simplify human–computer and computer–model interactions, whether
supporting service composition or promoting the use of cross-domain and interdisciplinary
models. Some research aims to increase the accessibility and interoperability of models by
lowering the threshold for model execution, including developing web-based-modeling
methods with simple graphical user interfaces, linking different models via application
programming interfaces (APIs) [9], and providing models as accessible web services [18].
A recent example is the use of OGMS-WS (OpenGMS Model Service Wrapper) to share
environmental models as web services [19]. However, land cover-processing schemes
based specifically on virtual containers to replace data transmission have not been fully
researched and implemented. Given the complexity of land cover, which involves diverse
terrain types, various vegetation species, and the impacts of human activities, it is crucial to
properly consider the unique characteristics of spatial heterogeneity, temporal variability,
and scale dependency in land cover-information data, as well as the model’s functional
logic and interface mapping. Although numerous efficient model-migration methods have

ISPRS Int. J. Geo-Inf. 2024, 13, 187 3 of 20

evolved in recent years, none of them are capable of concurrently handling heterogeneous
model compatibility, interactivity, and portability in various situations.

In order to address the above challenges, this paper presents a novel model-
migration strategy known as PAMC-LC (Polyglot Algorithmic Migration Container
for Land Cover). First, a standardized model-description interface was designed for
the land cover-geoprocessing model to simplify the obstacles in the deployment and use
of the model. Second, with regard to the layering strategy of the virtual container, an
encapsulation scheme was proposed for the land cover-geoprocessing model addressing
two aspects, i.e., runtime-resource encapsulation and runtime-environment encapsulation.
Finally, the migration and deployment schemes of the encapsulated model were developed
according to the actual needs of the land cover-geoprocessing-model migration. Compared
with existing migration solutions, PAMC-LC can readily accommodate multiple model
development languages, have both interfaces and visualization interfaces, and provide a
mobility solution based on virtual containers.

The remainder of this paper is organized as follows. Section 2 presents the transfer
concept and the PAMC-LC method. Section 3 introduces the specific implementation
and purpose of model migration through two walkthrough examples. Section 4 presents
the evaluations and discussion of the effective service chains with PAMC-LC. Finally,
conclusions and future work directions are given in Section 5.

2. Methods
2.1. Breaking the Barriers of Data Transfer with PAMC-LC

Data is frequently considered as isolated entities in the conventional land cover-data
service [20]. It is a typical paradigm for land cover geoprocessing using user-provided
models or applications at personal workstation. This requires the original land cover data
to be transmitted from the data provider to the user’s workstation via a wide area network
(WAN). Due to the typically large size of land cover data, the time and cost of transmitting
this data over a WAN can be significant. Therefore, it is of great importance to provide
on-demand processing capabilities on the land cover-data provider’s side, allowing users to
submit their data-processing models for execution on the server’s side and directly obtain
the processing results they need. This is essential for lowering extra data-transfer costs and
raising productivity.

This paper examines a crucial issue in land cover geoprocessing: how can we efficiently
handle the transmission of large-scale land cover data within an open web environment? A
typical WPS (Web Processing Services) server requires clients to send their data to the server
for computation before returning the processing results, which is the current model for
using remote sensing data. Even though this paradigm is appropriate for managing small
data sets, it greatly ties up network capacity when processing huge data sets, such as those
produced by bulk data processing or intricate and large-storage-demanding land cover
data. With the increasing diversity and capabilities of remote sensing imaging methods, as
well as the continuous improvement of spatial and temporal resolutions, the complexity
and volume of remote sensing images are increasing geometrically. Nevertheless, effective
processing and utilization of massive land cover data is a crucial step. Applying this big
data characteristic to WPS services is challenging as the necessary remote sensing images
can be several hundred megabytes or more in size. A distributed-geographic-information
processing system may also require data to be repeatedly transmitted between different
servers to achieve service composition. In synchronous mode, when users execute the
“Execute” interface, they need to establish a connection with the server, submit data, and
wait for a server response, during which the user is blocked. Prolonged waiting times may
render the service unfeasible. Although an asynchronous mode can partially address this
response issue, users still need to endure long time delays, which cannot be fundamentally
resolved even with data compression and the use of raw binary formats.

As a result, rather than replacing data exchange, the ideas of model and environment
transfer enable the algorithm code to be shifted closer to the site of the data. As shown

ISPRS Int. J. Geo-Inf. 2024, 13, 187 4 of 20

in Figure 1, the idea of model transfer can also be used to process massive and dispersed
data sets across nodes, allowing specific parallelization strategies. The cutting-edge state
of big data processing also shows that there is still a need to enhance cross-platform code
exchange and interoperability.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 4 of 21

time delays, which cannot be fundamentally resolved even with data compression and
the use of raw binary formats.

As a result, rather than replacing data exchange, the ideas of model and environment
transfer enable the algorithm code to be shifted closer to the site of the data. As shown in
Figure 1, the idea of model transfer can also be used to process massive and dispersed
data sets across nodes, allowing specific parallelization strategies. The cuĴing-edge state
of big data processing also shows that there is still a need to enhance cross-platform code
exchange and interoperability.

Figure 1. The conceptual framework of land cover-model migration.

This study suggests a model-encapsulation method based on container technology,
called Polyglot Algorithmic Migration Container for Land Cover (PAMC-LC), to address
the needs of model migration in land cover-processing applications. This approach can
handle a variety of difficulties that existing models encounter during migration. The
method has three distinct qualities in particular: (1) During the migration process, the
code and environment are encapsulated together in a container to ensure the model’s cor-
rect operation across different systems and avoid conflicts between different models. (2)
As land cover-processing applications involve multiple programming languages, the
strategy supports mainstream programming languages and provides multiple language
interfaces. (3) To enhance the model’s usability and availability, the strategy encapsulates
the model as a service and provides an HTML interface and API. With this strategy, the
goal of “one encapsulation, multiple deployments” can be achieved. Users do not need to
be concerned about potential environmental incompatibilities that could lead to model
malfunction because the model, code, dependencies, and environment are all housed
within the container. In conclusion, the PAMC-LC model-encapsulation approach is an
effective strategy for model migration. Subsequent sections will discuss the specifics of
this strategy’s implementation and application cases.

2.2. Simplifying Model Deployment with Resource Interfaces
To provide a solid foundation for model deployment, it is essential to provide a struc-

tured description of the heterogeneous features of the model-runtime environment. There
are many languages available for standardizing and describing packaged applications,
which are used to direct the deployment of model applications in the process of generat-
ing models. For example, the Deployable Software Description (DSD) language is used to
describe complex internal and external dependencies of software systems; the Open Soft-
ware Description (OSD) language can be used to describe software components, versions,
and internal structures of packaged software; and the Management Information Format

Figure 1. The conceptual framework of land cover-model migration.

This study suggests a model-encapsulation method based on container technology,
called Polyglot Algorithmic Migration Container for Land Cover (PAMC-LC), to address
the needs of model migration in land cover-processing applications. This approach can
handle a variety of difficulties that existing models encounter during migration. The
method has three distinct qualities in particular: (1) During the migration process, the
code and environment are encapsulated together in a container to ensure the model’s
correct operation across different systems and avoid conflicts between different models.
(2) As land cover-processing applications involve multiple programming languages, the
strategy supports mainstream programming languages and provides multiple language
interfaces. (3) To enhance the model’s usability and availability, the strategy encapsulates
the model as a service and provides an HTML interface and API. With this strategy, the
goal of “one encapsulation, multiple deployments” can be achieved. Users do not need
to be concerned about potential environmental incompatibilities that could lead to model
malfunction because the model, code, dependencies, and environment are all housed
within the container. In conclusion, the PAMC-LC model-encapsulation approach is an
effective strategy for model migration. Subsequent sections will discuss the specifics of this
strategy’s implementation and application cases.

2.2. Simplifying Model Deployment with Resource Interfaces

To provide a solid foundation for model deployment, it is essential to provide a struc-
tured description of the heterogeneous features of the model-runtime environment. There
are many languages available for standardizing and describing packaged applications,
which are used to direct the deployment of model applications in the process of generating
models. For example, the Deployable Software Description (DSD) language is used to de-
scribe complex internal and external dependencies of software systems; the Open Software
Description (OSD) language can be used to describe software components, versions, and
internal structures of packaged software; and the Management Information Format (MIF)
language adds many standard fields to support software deployment, which can be used to
describe elements of different operating systems. These languages can be used to describe
software, but because of their sophisticated syntax and extensive content, they are less
user-friendly.

ISPRS Int. J. Geo-Inf. 2024, 13, 187 5 of 20

The runtime-environment description document should be created with people in
mind when it comes to land cover-processing models. The environment requirements
for deployment and execution are made explicit to model users through this interface.
Moreover, the runtime-environment description document is also intended for machine
interpretation, allowing for the determination of the completeness of the operating environ-
ment and the facilitation of subsequent adaptation and deployment processes.

This work proposes a model-resource-description interface to give a uniform and
consistent description of encapsulated geographic models in order to complement our
suggested strategy. The interface is based on the RESTful service architecture style, where
a web service is seen as a collection of all the resources in the project. Each resource
corresponds to a unique URL identifier, which can be accessed to perform operations
on the resource. The overall design of the interface is shown in Figure 2 and includes
several sections such as basic model information, input and output descriptions, runtime
descriptions, software and hardware environments, and license information.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 5 of 21

(MIF) language adds many standard fields to support software deployment, which can be
used to describe elements of different operating systems. These languages can be used to
describe software, but because of their sophisticated syntax and extensive content, they
are less user-friendly.

The runtime-environment description document should be created with people in
mind when it comes to land cover-processing models. The environment requirements for
deployment and execution are made explicit to model users through this interface. More-
over, the runtime-environment description document is also intended for machine inter-
pretation, allowing for the determination of the completeness of the operating environ-
ment and the facilitation of subsequent adaptation and deployment processes.

This work proposes a model-resource-description interface to give a uniform and
consistent description of encapsulated geographic models in order to complement our
suggested strategy. The interface is based on the RESTful service architecture style, where
a web service is seen as a collection of all the resources in the project. Each resource cor-
responds to a unique URL identifier, which can be accessed to perform operations on the
resource. The overall design of the interface is shown in Figure 2 and includes several
sections such as basic model information, input and output descriptions, runtime descrip-
tions, software and hardware environments, and license information.

 Model providers can more precisely structure and specify model-deployment infor-
mation by utilizing the model-resource-description interface. Additionally, model users
can use the data in the runtime description document to have a comprehensive knowledge
of the environmental requirements for model deployment and operation. The interface
uses an approachable JSON format, which improves readability and makes writing and
editing easier. The interface also adheres to particular paĴerns and criteria, making it sim-
ple to extend and validate. It is possible to nimbly insert dynamic content, new elements,
or characteristics when creating algorithm descriptions.

Figure 2. Model-resource-description interface in PAMC-LC.

Figure 2. Model-resource-description interface in PAMC-LC.

Model providers can more precisely structure and specify model-deployment informa-
tion by utilizing the model-resource-description interface. Additionally, model users can
use the data in the runtime description document to have a comprehensive knowledge of
the environmental requirements for model deployment and operation. The interface uses
an approachable JSON format, which improves readability and makes writing and editing
easier. The interface also adheres to particular patterns and criteria, making it simple to
extend and validate. It is possible to nimbly insert dynamic content, new elements, or
characteristics when creating algorithm descriptions.

2.3. Streamlined Model Migration with Container-Based Encapsulation

The core concept of the model-encapsulation strategy is to bundle the model, code,
dependencies, and environment in a container, enabling fast and reliable model migration.
Specifically, the container consists of two parts: the runtime resources and the runtime

ISPRS Int. J. Geo-Inf. 2024, 13, 187 6 of 20

environment. The runtime environment encompasses the operating system, programming
language-runtime environment, and other system-level dependencies, whereas the runtime
resources include code, the model, and other application-level dependencies. In the model-
encapsulation strategy, both the runtime environment and the resources are packaged as
an image file and loaded together upon container startup.

2.3.1. Four-Tier Model Deployment: Runtime-Resource Encapsulation

In an effort to deploy land cover models as a usable model service, we sought to
develop an encapsulation-based strategy. Based on this concept, this article reorganized
the deployment package into four layers: (1) the core deployment resources of the model;
(2) the resources for executing the model service; (3) the resources for validating the model;
and (4) the resources for configuring and extending the model. As depicted in Figure 3,
these layers include fields that provide information on the land cover-processing logic and
its specific implementation [21].

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 6 of 21

2.3. Streamlined Model Migration with Container-Based Encapsulation
The core concept of the model-encapsulation strategy is to bundle the model, code,

dependencies, and environment in a container, enabling fast and reliable model migra-
tion. Specifically, the container consists of two parts: the runtime resources and the
runtime environment. The runtime environment encompasses the operating system, pro-
gramming language-runtime environment, and other system-level dependencies,
whereas the runtime resources include code, the model, and other application-level de-
pendencies. In the model-encapsulation strategy, both the runtime environment and the
resources are packaged as an image file and loaded together upon container startup.

2.3.1. Four-Tier Model Deployment: Runtime-Resource Encapsulation
In an effort to deploy land cover models as a usable model service, we sought to

develop an encapsulation-based strategy. Based on this concept, this article reorganized
the deployment package into four layers: (1) the core deployment resources of the model;
(2) the resources for executing the model service; (3) the resources for validating the
model; and (4) the resources for configuring and extending the model. As depicted in Fig-
ure 3, these layers include fields that provide information on the land cover-processing
logic and its specific implementation [21].

Figure 3. Runtime-resource hierarchical encapsulation structure.

At the level of model service utilities, in addition to the files related to model execu-
tion, there is other supplementary information that is provided to help users gain a more
comprehensive understanding of the deployed model service. Firstly, the model’s core
encapsulated resources mainly consist of the image construction files and the necessary
dependent environment, which serves as the foundation of model construction. Secondly,
the model service-execution resources include the contents that support the operation of
the model structure, such as core algorithms, GUI interfaces, and cached data. Addition-
ally, in the execution resources, we can include heterogeneous programming languages
such as Python and R. Thirdly, the model-validation resources contain demonstration
data and validation scripts to assist in verifying whether the deployed model service can
be used. This also helps model service users to gain a clearer understanding of the in-
put/output data of the model service and prepare appropriate data when using specific
model services. The validation script file mainly records the input and output file names

Figure 3. Runtime-resource hierarchical encapsulation structure.

At the level of model service utilities, in addition to the files related to model execu-
tion, there is other supplementary information that is provided to help users gain a more
comprehensive understanding of the deployed model service. Firstly, the model’s core
encapsulated resources mainly consist of the image construction files and the necessary
dependent environment, which serves as the foundation of model construction. Secondly,
the model service-execution resources include the contents that support the operation of
the model structure, such as core algorithms, GUI interfaces, and cached data. Additionally,
in the execution resources, we can include heterogeneous programming languages such
as Python and R. Thirdly, the model-validation resources contain demonstration data and
validation scripts to assist in verifying whether the deployed model service can be used.
This also helps model service users to gain a clearer understanding of the input/output
data of the model service and prepare appropriate data when using specific model ser-
vices. The validation script file mainly records the input and output file names of the
demonstrated model. Finally, the model configuration and extension resources include the
model-description interface and configuration files. The model-description interface is used
to provide information for the standardized description of the model and the construction
of the GUI interface. The configuration file configures the process number for handling
requests, asynchronous processing methods, exposed interfaces, timeout duration, and

ISPRS Int. J. Geo-Inf. 2024, 13, 187 7 of 20

other contents related to the model. It also includes a license document to explain the
licensing copyright of the model service.

2.3.2. Minimizing Heterogeneity: Runtime-Environment Encapsulation

In order to facilitate the re-use and integration of models, it is essential to consider the
issue of model heterogeneity. Models for land cover processing are developed by different
researchers or research groups using various techniques or methods, and therefore they
are typically built on different platforms (e.g., Linux and Windows), written in different
programming languages (such as Python, R, Matlab, and Java), and employ different user
interfaces (such as command-line, desktop software, executable files, and dynamic link
libraries). In order to make it easier for model users to re-use various models, these hetero-
geneities must be reduced. This process, known as heterogeneous model encapsulation,
seeks to lessen the execution variances from the initial design [8].

Researchers or model providers frequently employ numerous programming languages
to provide services or applications in the field of practical model development. Typically,
all these components must function in a variety of settings, including development, testing,
and production. If every component makes use of a different language environment, then
managing and maintaining various environments may become exceedingly challenging.
Additionally, heterogeneous model encapsulation could be very helpful when working
with big, complicated datasets. It is possible that a single model will not be sufficient to
account for every trend in the data. A sophisticated model that works more accurately,
reliably, and efficiently on fresh, untested data can be produced by integrating many
models. To properly manage land cover data, this form of model building necessitates
careful consideration of the differences between heterogeneous models. As a result, they
must be incorporated into a single framework.

It is possible to accelerate continuous integration and deployment, simplify envi-
ronment configuration, increase application portability, and reduce resource usage by
encapsulating various language environments using Docker and combining them into a
single workspace [16]. The numerous language components and their dependencies, which
make up the foundational elements of the framework, take up a comparatively high storage
proportion of the base image throughout the unification process. Pure algorithms have a
nearly nonexistent network-transmission cost. In fact, many similar or identical services
require a certain base image to be constructed. By open-sourcing the base image, users
can download or save the already-pulled base image in advance, making it easier to use
similar or identical services in the future, which can improve execution efficiency. In terms
of service composition, this model is extremely important.

Figure 4’s illustration of the PAMC-LC multi-language model method shows how
it is designed. Each layer in the Docker container is incrementally modified, serving as
building blocks for constructing the image. This modular design allows different images to
share a common base image, enabling us to encapsulate different programming languages
in different layers. To accommodate different development languages, we use layers to
construct the container during the building process. An image is composed of one or more
layers, and when these layers are “stacked” together, they form the image we see. Layers in
an image are read-only, meaning we cannot modify the data contained in these layers. The
data in the image layers can only be read, and when a container is started based on an image,
a new read–write layer is added on top of the read-only layers. This read–write layer does
not belong to the image but to the current container, and all operations within the container
are performed in this read–write layer. The data we see in the container is the result of
combining the read–write and read-only layers, and these two layers together are referred
to as the “container layer”. By constructing different layers in this way, we can encapsulate
multiple programming language environments. By packaging several languages and
dependency libraries in different levels, we may even add or delete current algorithms
in the “container layer”. By ensuring that each layer only contains the installation files
required for the associated language or dependency library and excluding all other files,

ISPRS Int. J. Geo-Inf. 2024, 13, 187 8 of 20

this method considerably reduces the size of the picture. It significantly reduces the size of
the image by simply sending incremental or differential data to the image.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 8 of 21

together are referred to as the “container layer”. By constructing different layers in this
way, we can encapsulate multiple programming language environments. By packaging
several languages and dependency libraries in different levels, we may even add or delete
current algorithms in the “container layer”. By ensuring that each layer only contains the
installation files required for the associated language or dependency library and exclud-
ing all other files, this method considerably reduces the size of the picture. It significantly
reduces the size of the image by simply sending incremental or differential data to the
image.

Figure 4. Runtime-environment hierarchical encapsulation structure.

2.4. Moving and Deployment Strategy for Encapsulated Model
Data interoperability refers to the ability of data to be correctly interpreted and used

between different systems or organizations [22]. The foundation of model applications is
data exchange and manipulation, but they are often challenged by technical and concep-
tual difficulties. Conceptual challenges involve resolving the different representations of
data and knowledge by model builders and providing different levels of model interop-
erability. Technical challenges involve implementing “dialogue” between models, auto-
mating data exchange, collaboratively executing models, and ensuring the repeatability
and reproducibility of model configuration and processing [23]. Datasets should be in-
teroperable during the data exchange process so that they can be converted and prepared
for use as input by different models. Furthermore, additional computations are needed to
adapt data to different model requirements, such as the spatial scope, resolution, and for-
mat of the data [24]. Data interaction between models should come first in the collabora-
tion and “dialogue” processes of models, then should come automated or semi-automatic
deployment of algorithms or models, and finally reliable transmission and storage capa-
bilities should be guaranteed [25].

First, in order to handle and store our model-container images throughout the mi-
gration phase of our models, we must pre-create a private image repository on the target
host server. Private image repositories have several advantages over public image repos-
itories: (1) They save network bandwidth and improve Docker deployment speed. We do
not need to download images from the public image repository every time, but rather only
need to download them from the private repository. (2) They boost safety. In general, we

Figure 4. Runtime-environment hierarchical encapsulation structure.

2.4. Moving and Deployment Strategy for Encapsulated Model

Data interoperability refers to the ability of data to be correctly interpreted and used
between different systems or organizations [22]. The foundation of model applications is
data exchange and manipulation, but they are often challenged by technical and conceptual
difficulties. Conceptual challenges involve resolving the different representations of data
and knowledge by model builders and providing different levels of model interoperability.
Technical challenges involve implementing “dialogue” between models, automating data
exchange, collaboratively executing models, and ensuring the repeatability and repro-
ducibility of model configuration and processing [23]. Datasets should be interoperable
during the data exchange process so that they can be converted and prepared for use as
input by different models. Furthermore, additional computations are needed to adapt data
to different model requirements, such as the spatial scope, resolution, and format of the
data [24]. Data interaction between models should come first in the collaboration and “dia-
logue” processes of models, then should come automated or semi-automatic deployment
of algorithms or models, and finally reliable transmission and storage capabilities should
be guaranteed [25].

First, in order to handle and store our model-container images throughout the mi-
gration phase of our models, we must pre-create a private image repository on the target
host server. Private image repositories have several advantages over public image reposi-
tories: (1) They save network bandwidth and improve Docker deployment speed. We do
not need to download images from the public image repository every time, but rather only
need to download them from the private repository. (2) They boost safety. In general, we
only put our application-packaged pictures in the private repository rather than the public
image repository. Thus, image tampering or leakage can be avoided.

Secondly, data in Docker containers is non-persistent. Data volumes are one or more
directories that are specifically designated in containers, bypassing the union file system
and providing various useful features for persistent or shared data. Therefore, data files
can be shared between containers and hosts. Data stored on data volumes continues to

ISPRS Int. J. Geo-Inf. 2024, 13, 187 9 of 20

exist after the container’s lifecycle and can be shared and accessed by other containers.
Each deployment of a container may result in residual and unnecessary containers causing
resource waste. When a data volume is attached to a container, this feature should not
be used. An elegant way to reduce the risk of data loss is to use a processing-separated
data volume. Sharing and replicating volume data provides decoupling between data
and services. In addition, by setting up distributed regions on different nodes, data and
applications can be strategically placed in multiple regions. This can reduce failure points,
indirectly increasing application and data availability.

The main goal of the model-deployment phase is to arrange a collection of containers.
A YAML configuration file that specifies the Docker container ensemble overrides the
runtime settings of the containers. A tool called Compose makes it possible to build and
run multi-container Docker applications. It permits setting up a YAML file to configure an
application’s services. All services can then be created and launched from the configuration
using a single command, as seen in Figure 5b. In this architecture, the client may communi-
cate through an API gateway instead of through the service directly in order to connect to
each service. With greater flexibility and reduced risk, the development team can deploy
updates, add new features, or embrace other technology stacks without disrupting the
entire program. To preserve changes made in the container, administrators need to commit
these changes to an image. Docker will then create additional layers on top of the existing
image. Automatic update-deployment scripts are shown in Figure 5c. Image startup and
deployment times are relatively short, enabling new developers to quickly join the project,
as they only need to understand the single service that provides the functionality they are
working on, rather than the entire system. A single service provided by the image model
can be integrated as a component into other systems, and if the usage of that functionality
is excessively high, then the service can be scaled outwards to handle high loads. Therefore,
this service architecture can be utilized for horizontal scaling, and the system will not suffer
from a single point of failure.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 9 of 21

only put our application-packaged pictures in the private repository rather than the public
image repository. Thus, image tampering or leakage can be avoided.

Secondly, data in Docker containers is non-persistent. Data volumes are one or more
directories that are specifically designated in containers, bypassing the union file system
and providing various useful features for persistent or shared data. Therefore, data files
can be shared between containers and hosts. Data stored on data volumes continues to
exist after the container’s lifecycle and can be shared and accessed by other containers.
Each deployment of a container may result in residual and unnecessary containers caus-
ing resource waste. When a data volume is aĴached to a container, this feature should not
be used. An elegant way to reduce the risk of data loss is to use a processing-separated
data volume. Sharing and replicating volume data provides decoupling between data and
services. In addition, by seĴing up distributed regions on different nodes, data and appli-
cations can be strategically placed in multiple regions. This can reduce failure points, in-
directly increasing application and data availability.

The main goal of the model-deployment phase is to arrange a collection of containers.
A YAML configuration file that specifies the Docker container ensemble overrides the
runtime seĴings of the containers. A tool called Compose makes it possible to build and
run multi-container Docker applications. It permits seĴing up a YAML file to configure an
application’s services. All services can then be created and launched from the configura-
tion using a single command, as seen in Figure 5b. In this architecture, the client may
communicate through an API gateway instead of through the service directly in order to
connect to each service. With greater flexibility and reduced risk, the development team
can deploy updates, add new features, or embrace other technology stacks without dis-
rupting the entire program. To preserve changes made in the container, administrators
need to commit these changes to an image. Docker will then create additional layers on
top of the existing image. Automatic update-deployment scripts are shown in Figure 5c.
Image startup and deployment times are relatively short, enabling new developers to
quickly join the project, as they only need to understand the single service that provides
the functionality they are working on, rather than the entire system. A single service pro-
vided by the image model can be integrated as a component into other systems, and if the
usage of that functionality is excessively high, then the service can be scaled outwards to
handle high loads. Therefore, this service architecture can be utilized for horizontal scal-
ing, and the system will not suffer from a single point of failure.

Figure 5. Model-deployment script and Compose service combination pseudocode. Figure 5. Model-deployment script and Compose service combination pseudocode.

ISPRS Int. J. Geo-Inf. 2024, 13, 187 10 of 20

3. Experiment
3.1. Containerization Model Transfer and Verification
3.1.1. Enhancing Sharing and Security

To ensure the security of our private image repository, we must consider two aspects:
first, the security of the image repository itself. For example, when using it, appropriate
security certificates must be configured and communication must take place using the
HTTPS protocol. The second concern is the security of the image’s pulling procedure, which
includes authentication, looking for image signatures, and scanning while pulling images.
To manage and store our model-container images, we have employed Harbor, an open-
source, cloud-native, image repository project. Harbor offers additional functionalities,
such as security scanning, role-based access control, and log collection, among others. Its
structure is illustrated in Figure 6.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 10 of 21

3. Experiment
3.1. Containerization Model Transfer and Verification
3.1.1. Enhancing Sharing and Security

To ensure the security of our private image repository, we must consider two aspects:
first, the security of the image repository itself. For example, when using it, appropriate
security certificates must be configured and communication must take place using the
HTTPS protocol. The second concern is the security of the image’s pulling procedure,
which includes authentication, looking for image signatures, and scanning while pulling
images. To manage and store our model-container images, we have employed Harbor, an
open-source, cloud-native, image repository project. Harbor offers additional functional-
ities, such as security scanning, role-based access control, and log collection, among oth-
ers. Its structure is illustrated in Figure 6.

Figure 6. Harbor’s private-mirror-warehouse structure.

During this stage, three services for storage and management were deployed into the
Harbor image repository of the target domain. Table 1 includes details about these three
services.

Table 1. Three services providing information for processing task.

ID Service-A Service-B Service-C
Name Change Detection Pass Filter Image Matching

Function PCA/K-Means Pass/Filter/Morphing Matching/Crop
Language Python R Python

Storage
172.31.41.119:5000/lcc_pca_kmean

s:v6
172.31.41.119:5000/r_shiny-

ebimage:v20
172.31.41.119:5000/gdal_crop:v2

Descrip-
tion

Identifies changes or differences
that occur in the data

A signal processing method that
can filter out unwanted frequency
components and retain frequency

components of interest

Matches the image according to the
coordinate system and crop out the

common area

The Change Detection process consists of PCA and K-Means algorithms and encom-
passes three essential stages: the generation of difference images and feature vector space
(EVS), the construction of the feature vector space (FVS), and clustering of the feature vec-
tor space and change map. The Pass Filter module includes high-pass and low-pass filters,
as well as erosion and dilation operations. In the Image Matching stage, images are
matched based on coordinate systems, and a common region is extracted by cropping,
ensuring smooth execution of the Change Detection process.

Figure 6. Harbor’s private-mirror-warehouse structure.

During this stage, three services for storage and management were deployed into
the Harbor image repository of the target domain. Table 1 includes details about these
three services.

Table 1. Three services providing information for processing task.

ID Service-A Service-B Service-C

Name Change Detection Pass Filter Image Matching
Function PCA/K-Means Pass/Filter/Morphing Matching/Crop
Language Python R Python

Storage 172.31.41.119:5000/lcc_pca_kmeans:v6 172.31.41.119:5000/r_shiny-
ebimage:v20 172.31.41.119:5000/gdal_crop:v2

Description Identifies changes or differences that
occur in the data

A signal processing method that
can filter out unwanted frequency
components and retain frequency

components of interest

Matches the image according to
the coordinate system and crop

out the common area

The Change Detection process consists of PCA and K-Means algorithms and encom-
passes three essential stages: the generation of difference images and feature vector space
(EVS), the construction of the feature vector space (FVS), and clustering of the feature vector
space and change map. The Pass Filter module includes high-pass and low-pass filters, as
well as erosion and dilation operations. In the Image Matching stage, images are matched
based on coordinate systems, and a common region is extracted by cropping, ensuring
smooth execution of the Change Detection process.

3.1.2. Achieving Automated Model Deployment and Interoperability

The use of automated deployment has grown in popularity during the past few years.
Firstly, it can significantly improve the repeatability of software builds, which is essential

ISPRS Int. J. Geo-Inf. 2024, 13, 187 11 of 20

for ensuring consistent application deployment across platforms and hosts. Secondly,
automated deployment can reduce the time required to deploy and launch applications,
especially in cloud-based environments. Finally, automated deployment can also achieve
faster and more reliable software-change testing and deployment, thereby improving the
efficiency of continuous integration processes. During the deployment phase of our model,
we built automated scripts to update and deploy its migrated container, and the automated
update-deployment script is shown in Figure 5c.

To facilitate adapting and deploying models in computing nodes, we suggested a
model-resource-description interface in Section 2.2. Data volumes and bind mounts are
the two main methods used for data exchange in containers. Whenever Docker uses
data volumes, it creates one or more directories on the host computer and uses those as
data volumes. These data volumes have higher portability and maintainability and can
share data between containers. At the same time, data volumes can also be used for data
persistence, ensuring that data still exists after the container is deleted. When using bind
mounts, data in the container can interact with any directory or file on the host machine, but
this method has certain limitations and is not conducive to sharing data between containers.
Therefore, employing data volumes helps to ensure that data is transported from one model
to another when exchanging data between multiple models. As an illustration, a user starts
the Service-A container, create some data, and save it to the/data directory. Next, a user
starts the Service-B container, mount the same data volume to it, and then read the data
they created in the Service-A container from the Service-B container. These steps can be
used to mount the data volume to various containers in order to provide data sharing
and durability.

3.1.3. Registering and Accessing Model Resources through a Portal Website

In this paper, we have developed a model-description interface and a template file
for generating dynamic interfaces to models based on migration strategies. The model-
description interface (implemented by the model provider) is used by the deployment
process to transform computing nodes into usable model services and establish connections
with model service users, as shown in Figure 7. This interface can be incorporated as a web
component in third-party applications or accessed as a service through an API.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 11 of 21

3.1.2. Achieving Automated Model Deployment and Interoperability
The use of automated deployment has grown in popularity during the past few years.

Firstly, it can significantly improve the repeatability of software builds, which is essential
for ensuring consistent application deployment across platforms and hosts. Secondly, au-
tomated deployment can reduce the time required to deploy and launch applications, es-
pecially in cloud-based environments. Finally, automated deployment can also achieve
faster and more reliable software-change testing and deployment, thereby improving the
efficiency of continuous integration processes. During the deployment phase of our
model, we built automated scripts to update and deploy its migrated container, and the
automated update-deployment script is shown in Figure 5c.

To facilitate adapting and deploying models in computing nodes, we suggested a
model-resource-description interface in Section 2.2. Data volumes and bind mounts are
the two main methods used for data exchange in containers. Whenever Docker uses data
volumes, it creates one or more directories on the host computer and uses those as data
volumes. These data volumes have higher portability and maintainability and can share
data between containers. At the same time, data volumes can also be used for data persis-
tence, ensuring that data still exists after the container is deleted. When using bind
mounts, data in the container can interact with any directory or file on the host machine,
but this method has certain limitations and is not conducive to sharing data between con-
tainers. Therefore, employing data volumes helps to ensure that data is transported from
one model to another when exchanging data between multiple models. As an illustration,
a user starts the Service-A container, create some data, and save it to the/data directory.
Next, a user starts the Service-B container, mount the same data volume to it, and then
read the data they created in the Service-A container from the Service-B container. These
steps can be used to mount the data volume to various containers in order to provide data
sharing and durability.
3.1.3. Registering and Accessing Model Resources through a Portal Website

In this paper, we have developed a model-description interface and a template file
for generating dynamic interfaces to models based on migration strategies. The model-
description interface (implemented by the model provider) is used by the deployment
process to transform computing nodes into usable model services and establish connec-
tions with model service users, as shown in Figure 7. This interface can be incorporated
as a web component in third-party applications or accessed as a service through an API.

Figure 7. Integration of the virtual container as a separate component.

Figure 7. Integration of the virtual container as a separate component.

Stateless and loosely linked application programs with any interacting components are
required for the container’s application programs. Container configurations can be changed
in the event of a failure without affecting the availability of the entire system. This approach
offers the following benefits: (1) Rapid service deployment and dismantling; components
can be added, removed, and managed in real-time within third-party applications, and
the application process within the Docker container can be launched instantly due to the

ISPRS Int. J. Geo-Inf. 2024, 13, 187 12 of 20

absence of any startup procedures. When the application is no longer needed, the container
can be dismantled, leaving no trace on the host operating system. (2) It enables the model to
become an independent, reusable entity, and facilitates the creation of tightly coupled and
loosely coupled systems. It can be used for the fast execution of workflows to build different
models, making the models more easily reusable and adaptable to different application
scenarios [26].

In this section, we demonstrate the utilization of a component-based GUI for land
cover-change detection in the study area, facilitated by image-processing services. We
are assuming successful deployment of the Change Detection and Pass Filter models on
the target host, developed using Python and R programming languages, respectively,
and provided externally via distinct RESTful frameworks. In addition, the Multi-temp
Scene Wuhan (Mts-WH) dataset is stored on the target server, comprising two large, high-
resolution remote sensing images obtained from the IKONOS sensor, with dimensions of
7200 × 6000 pixels, covering the Hanyang district of Wuhan, China. The images were ac-
quired in February 2002 and June 2009, and after GS (Gram–Schmidt) algorithm fusion, they
possess a 1 m resolution and include four bands (blue, green, red, and near-infrared) [27,28].

As shown in Figure 8, users of computing resources can directly launch the model
image in the deployed node without additional configuration by utilizing existing computer
nodes. The model-resource-description interface describes basic information regarding
the model container, and registers it in the computing resource repository. Subsequently,
the UI provided to external users can be loaded into the system as a component via the
portal website, enabling the construction of available model services. The model’s built-in
GUI provides users with inputs, executions, outputs, and information descriptions, and
generates a Change Detection execution case via visual operations that invoke this model
service. In this case, we use two services: Change Detection and Pass Filter. Change
Detection is based on the Python language, provided by the Flask framework, and includes
PCA and K-Means algorithms; Pass Filter is based on the R language, provided by the
shiny-server, and includes high-pass filters, low-pass filters, morphological erosion, and
morphological dilation. It is worth noting that we can use a combination of erosion and
dilation to perform opening and closing operations on the image. Firstly, we upload the
prepared 2002 and 2009 images of Hanyang district, set the number of image bands, and
after clicking “Run Model” the computed results will be displayed directly on the page,
including original and processed images. Subsequently, using image-processing tools
provided by Pass Filter, we can optimize the resulting image and remove spurious patches
in the Change Detection results.

As depicted in Figure 9, the data and results obtained via model calculations are
illustrated. Figure 9a,b, respectively represents the high-resolution remote sensing images
of the Han Yang district in 2002 and 2009. Figure 9c displays the change-intensity image
obtained through gray mapping of the difference image. In the difference image, brighter
pixels represent areas of higher difference, corresponding to regions with more significant
changes in the remote sensing images. The black areas in the Change Detection result
indicate unchanged regions, whereas the white areas denote the changing areas. Notably,
sparse villages represented by scattered houses gradually disappeared in 2009, giving way
to the rapid expansion of industrial and residential areas, as shown in the Figure 9d. Most
of the unused land in 2002 was converted into other land-use categories. Therefore, it
can be inferred that after seven years of development, the western side of Han Yang has
transformed into a residential area, while the eastern side has developed into an industrial
area [27]. The results obtained from PAMC-LC are consistent with the development
situation of the study area.

ISPRS Int. J. Geo-Inf. 2024, 13, 187 13 of 20ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 13 of 21

Figure 8. Using the migration model for change detection and image processing.

As depicted in Figure 9, the data and results obtained via model calculations are il-
lustrated. Figure 9a,b, respectively represents the high-resolution remote sensing images
of the Han Yang district in 2002 and 2009. Figure 9c displays the change-intensity image
obtained through gray mapping of the difference image. In the difference image, brighter
pixels represent areas of higher difference, corresponding to regions with more significant
changes in the remote sensing images. The black areas in the Change Detection result in-
dicate unchanged regions, whereas the white areas denote the changing areas. Notably,
sparse villages represented by scaĴered houses gradually disappeared in 2009, giving way
to the rapid expansion of industrial and residential areas, as shown in the Figure 9d. Most
of the unused land in 2002 was converted into other land-use categories. Therefore, it can
be inferred that after seven years of development, the western side of Han Yang has trans-
formed into a residential area, while the eastern side has developed into an industrial area
[27]. The results obtained from PAMC-LC are consistent with the development situation
of the study area.

Figure 8. Using the migration model for change detection and image processing.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 14 of 21

Figure 9. Change detection results from PAMC-LC.

3.2. Building Effective Service Chains with PAMC-LC
To validate the capabilities and practicality of the proposed strategy, we developed

a container-based service chain. Testing and validating models against specific require-
ments can significantly improve the quality of the models. Integrating a model’s environ-
ment can be challenging as it requires considerable scientific and programming efforts
[29] Even if individual components are tested separately and executed correctly, the inte-
grated output may still produce unexpected results due to different assumptions in the
overall process [30]. The purpose of this part is to provide an example application of the
change-detection model in order to illustrate the advantages of the PAMC-LC approach.
Figure 10 illustrates the design process of the model transfer and composition using this
approach.

In this instance, we utilized the Change Detection dataset for high-resolution satellite
images (Google Data Set) to verify the efficacy of our proposed strategy in constructing a
service chain [31]. The dataset comprises satellite images collected between 2006 and 2019,
covering the suburbs of Guangzhou, China. Nineteen pairs of images, which exhibit sea-
sonal changes, were collected using Google Earth services through BIGEMAP software.
These images consist of three spectral bands—red, green, and blue—with a spatial reso-
lution of 0.55 m and sizes ranging from 1006 × 1168 pixels to 4936 × 5224 pixels. To validate
the feasibility of integrating the transfer model into a service chain, a visual execution
demonstration of change detection was developed.

Figure 9. Cont.

ISPRS Int. J. Geo-Inf. 2024, 13, 187 14 of 20

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 14 of 21

Figure 9. Change detection results from PAMC-LC.

3.2. Building Effective Service Chains with PAMC-LC
To validate the capabilities and practicality of the proposed strategy, we developed

a container-based service chain. Testing and validating models against specific require-
ments can significantly improve the quality of the models. Integrating a model’s environ-
ment can be challenging as it requires considerable scientific and programming efforts
[29] Even if individual components are tested separately and executed correctly, the inte-
grated output may still produce unexpected results due to different assumptions in the
overall process [30]. The purpose of this part is to provide an example application of the
change-detection model in order to illustrate the advantages of the PAMC-LC approach.
Figure 10 illustrates the design process of the model transfer and composition using this
approach.

In this instance, we utilized the Change Detection dataset for high-resolution satellite
images (Google Data Set) to verify the efficacy of our proposed strategy in constructing a
service chain [31]. The dataset comprises satellite images collected between 2006 and 2019,
covering the suburbs of Guangzhou, China. Nineteen pairs of images, which exhibit sea-
sonal changes, were collected using Google Earth services through BIGEMAP software.
These images consist of three spectral bands—red, green, and blue—with a spatial reso-
lution of 0.55 m and sizes ranging from 1006 × 1168 pixels to 4936 × 5224 pixels. To validate
the feasibility of integrating the transfer model into a service chain, a visual execution
demonstration of change detection was developed.

Figure 9. Change detection results from PAMC-LC.

3.2. Building Effective Service Chains with PAMC-LC

To validate the capabilities and practicality of the proposed strategy, we developed a
container-based service chain. Testing and validating models against specific requirements
can significantly improve the quality of the models. Integrating a model’s environment can
be challenging as it requires considerable scientific and programming efforts [29] Even if
individual components are tested separately and executed correctly, the integrated output
may still produce unexpected results due to different assumptions in the overall process [30].
The purpose of this part is to provide an example application of the change-detection model
in order to illustrate the advantages of the PAMC-LC approach. Figure 10 illustrates the
design process of the model transfer and composition using this approach.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 15 of 21

Figure 10. Change Detection-model-migration process.

Suppose we have three source servers, A, B, and C, each storing models for change
detection, filtering, and accuracy evaluation, which were developed using different pro-
gramming languages. In order to validate the effectiveness of PAMC-LC in different sce-
narios, we want to construct a service chain through the interface of these models and
estimate the land cover changes that occurred in the study area at a certain time. To
achieve this goal, we deployed three atomic services, namely Image Matching, Change
Detection, and Pass Filter, on the target host. These services were developed using differ-
ent programming languages and frameworks and encapsulated in cross-platform contain-
ers.

We have deployed three services on the target host based on the PAMC-LC strategy,
enabling the application to access these services via an API. The model-resource-descrip-
tion interface provides basic information about the model container, and based on this
interface, we have developed a visual workflow to verify the combinatorial capability of
multi-programming language models. As shown in Figure 11a–c, we need to manually
enter parameters for configuration. In (a), we upload two phases of images that need
change detection, we select a Change Detection model in (b), and in (c) we then set the
erode parameter to “5”, and the workflow is built as in Figure 11d. After clicking “Exe-
cute”, the workflow starts to execute. At this point, the containers are called for the com-
putation tasks, and the results are displayed as in Figure 11e upon completion. The output
results include the original images of the two periods, the matched images after region
matching, the Change Detection results, and the post-processed images. Through these
steps, we have successfully established a service chain containing multiple atomic services
to estimate the land cover changes in the study area. This model migration and deploy-
ment strategy can be applied in different scenarios and has high scalability and flexibility.

Figure 10. Change Detection-model-migration process.

In this instance, we utilized the Change Detection dataset for high-resolution satellite
images (Google Data Set) to verify the efficacy of our proposed strategy in constructing

ISPRS Int. J. Geo-Inf. 2024, 13, 187 15 of 20

a service chain [31]. The dataset comprises satellite images collected between 2006 and
2019, covering the suburbs of Guangzhou, China. Nineteen pairs of images, which exhibit
seasonal changes, were collected using Google Earth services through BIGEMAP software.
These images consist of three spectral bands—red, green, and blue—with a spatial resolu-
tion of 0.55 m and sizes ranging from 1006 × 1168 pixels to 4936 × 5224 pixels. To validate
the feasibility of integrating the transfer model into a service chain, a visual execution
demonstration of change detection was developed.

Suppose we have three source servers, A, B, and C, each storing models for change
detection, filtering, and accuracy evaluation, which were developed using different pro-
gramming languages. In order to validate the effectiveness of PAMC-LC in different
scenarios, we want to construct a service chain through the interface of these models
and estimate the land cover changes that occurred in the study area at a certain time. To
achieve this goal, we deployed three atomic services, namely Image Matching, Change
Detection, and Pass Filter, on the target host. These services were developed using different
programming languages and frameworks and encapsulated in cross-platform containers.

We have deployed three services on the target host based on the PAMC-LC strategy,
enabling the application to access these services via an API. The model-resource-description
interface provides basic information about the model container, and based on this interface,
we have developed a visual workflow to verify the combinatorial capability of multi-
programming language models. As shown in Figure 11a–c, we need to manually enter
parameters for configuration. In (a), we upload two phases of images that need change
detection, we select a Change Detection model in (b), and in (c) we then set the erode
parameter to “5”, and the workflow is built as in Figure 11d. After clicking “Execute”, the
workflow starts to execute. At this point, the containers are called for the computation
tasks, and the results are displayed as in Figure 11e upon completion. The output results
include the original images of the two periods, the matched images after region matching,
the Change Detection results, and the post-processed images. Through these steps, we have
successfully established a service chain containing multiple atomic services to estimate the
land cover changes in the study area. This model migration and deployment strategy can
be applied in different scenarios and has high scalability and flexibility.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 16 of 21

Figure 11. Using service chain for land cover processing (Steps is displayed in red boxes).

The Google Data Set contains 40 high-resolution satellite images of the suburbs of
Guangzhou that were taken between 2006 and 2019. We processed these images using the
suggested workflow. Some of the processed results are shown in Figure 12. Our experi-
mental results demonstrate the efficacy of the PAMC-LC model in handling high-resolu-
tion satellite image data, providing strong support for future related research. The pro-
cessed images reveal significant changes in land cover, such as urban expansion, defor-
estation, and agricultural development. These changes have important implications for
urban planning, environmental management, and resource conservation. Moreover, the
workflow-based change-detection approach exhibits high scalability and adaptability,
making it suitable for processing large volumes of satellite image data from different re-
gions and time periods.

Figure 12. Partial processing result of Google Data Set.

Figure 11. Using service chain for land cover processing (Steps is displayed in red boxes).

The Google Data Set contains 40 high-resolution satellite images of the suburbs of
Guangzhou that were taken between 2006 and 2019. We processed these images using the
suggested workflow. Some of the processed results are shown in Figure 12. Our experimen-

ISPRS Int. J. Geo-Inf. 2024, 13, 187 16 of 20

tal results demonstrate the efficacy of the PAMC-LC model in handling high-resolution
satellite image data, providing strong support for future related research. The processed
images reveal significant changes in land cover, such as urban expansion, deforestation, and
agricultural development. These changes have important implications for urban planning,
environmental management, and resource conservation. Moreover, the workflow-based
change-detection approach exhibits high scalability and adaptability, making it suitable for
processing large volumes of satellite image data from different regions and time periods.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 16 of 21

Figure 11. Using service chain for land cover processing (Steps is displayed in red boxes).

The Google Data Set contains 40 high-resolution satellite images of the suburbs of
Guangzhou that were taken between 2006 and 2019. We processed these images using the
suggested workflow. Some of the processed results are shown in Figure 12. Our experi-
mental results demonstrate the efficacy of the PAMC-LC model in handling high-resolu-
tion satellite image data, providing strong support for future related research. The pro-
cessed images reveal significant changes in land cover, such as urban expansion, defor-
estation, and agricultural development. These changes have important implications for
urban planning, environmental management, and resource conservation. Moreover, the
workflow-based change-detection approach exhibits high scalability and adaptability,
making it suitable for processing large volumes of satellite image data from different re-
gions and time periods.

Figure 12. Partial processing result of Google Data Set. Figure 12. Partial processing result of Google Data Set.

In order to verify the reliability of the results, we selected enough samples for accu-
racy assessment. During the evaluation process, we randomly selected two change test
results. The first study area selected 453 “change” samples and 374 “no change” samples,
and the second study area selected 442 and 557 corresponding samples. Accuracy assess-
ment showed that the overall accuracy for each of these two regions was 0.88 and 0.86,
respectively, and the Kappa coefficient for each region was 0.75 and 0.72, respectively.

4. Discussion

To assess the effectiveness of the PAMC-LC strategy in reducing data migration costs,
we convened a seminar with five professionals in the field and collected results on service
usability and time under different modes of operation. Our investigation focused primarily
on the level of difficulty in using containerized services for change detection compared to
the original processing services, as well as the time required to obtain change detection
results. The original services provide web services by the same algorithm and are placed
on different servers. Unlike PAMC-LC, these services are not containerized. Figure 13
illustrates the efficiency and network stability of using containerized services for change
detection, with Figure 13a showing the average time required for image processing and
Figure 13b displaying the number of network interruptions during operation, with each
member conducting five different change-detection experiments on images.

ISPRS Int. J. Geo-Inf. 2024, 13, 187 17 of 20

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 17 of 21

In order to verify the reliability of the results, we selected enough samples for accu-
racy assessment. During the evaluation process, we randomly selected two change test
results. The first study area selected 453 “change” samples and 374 “no change” samples,
and the second study area selected 442 and 557 corresponding samples. Accuracy assess-
ment showed that the overall accuracy for each of these two regions was 0.88 and 0.86,
respectively, and the Kappa coefficient for each region was 0.75 and 0.72, respectively.

4. Discussion
To assess the effectiveness of the PAMC-LC strategy in reducing data migration costs,

we convened a seminar with five professionals in the field and collected results on service
usability and time under different modes of operation. Our investigation focused primar-
ily on the level of difficulty in using containerized services for change detection compared
to the original processing services, as well as the time required to obtain change detection
results. The original services provide web services by the same algorithm and are placed
on different servers. Unlike PAMC-LC, these services are not containerized. Figure 13 il-
lustrates the efficiency and network stability of using containerized services for change
detection, with Figure 13a showing the average time required for image processing and
Figure 13b displaying the number of network interruptions during operation, with each
member conducting five different change-detection experiments on images.

Figure 13. Testing by different users.

The data must be communicated at least four times, from the user to the first pro-
cessing service, to the last processing service, and then back to the user, assuming that we
have three processing services and that the current algorithm requires processing services
to perform change detection. The amount of data that is transmiĴed over the network
should rise by two, in theory. The migrated services are more reliable and efficient, as
evidenced by the investigation results in Figure 13a. Furthermore, the image must also be
transferred at least twenty times between the three services and the user if the original
services are used for five tests. This causes 1–3 network oscillations and necessitates that
the user re-upload the data.

In the case of service composition, it has been found that loading the model onto the
data side yields faster results in all of the considered scenarios. This is due to the smaller
size of the transmiĴed model (see Table 2) and the size of the results returned to the ap-
plication being smaller than the original data size, resulting in faster transmission times.
The data to be processed on the user’s host comprises 40 remote sensing images with a
total size of 1.42 GB. When processed with the original services, a total of 4.38 GB of data
is transmiĴed, far exceeding the 1.58 GB of data transmiĴed with the PAMC-LC strategy.
Additionally, multiple data transmissions could exacerbate network turbulence and dis-
ruptions and possibly jeopardize data security. In order to minimize repetitive data trans-
missions and significantly lower network, storage, and time costs in the case of enormous
data volumes, users can migrate models to the data side using containers in the mirror-

Figure 13. Testing by different users.

The data must be communicated at least four times, from the user to the first processing
service, to the last processing service, and then back to the user, assuming that we have
three processing services and that the current algorithm requires processing services to
perform change detection. The amount of data that is transmitted over the network should
rise by two, in theory. The migrated services are more reliable and efficient, as evidenced by
the investigation results in Figure 13a. Furthermore, the image must also be transferred at
least twenty times between the three services and the user if the original services are used
for five tests. This causes 1–3 network oscillations and necessitates that the user re-upload
the data.

In the case of service composition, it has been found that loading the model onto
the data side yields faster results in all of the considered scenarios. This is due to the
smaller size of the transmitted model (see Table 2) and the size of the results returned to
the application being smaller than the original data size, resulting in faster transmission
times. The data to be processed on the user’s host comprises 40 remote sensing images
with a total size of 1.42 GB. When processed with the original services, a total of 4.38 GB
of data is transmitted, far exceeding the 1.58 GB of data transmitted with the PAMC-LC
strategy. Additionally, multiple data transmissions could exacerbate network turbulence
and disruptions and possibly jeopardize data security. In order to minimize repetitive
data transmissions and significantly lower network, storage, and time costs in the case of
enormous data volumes, users can migrate models to the data side using containers in
the mirror-model-migration process. In the example, the returned data was only saved
as binary images, so the size was not large. However, for many other services, the size of
returned data may be comparable to that of the submitted data. Therefore, it is difficult to
repeatedly transmit such vast amounts of data through the network.

Table 2. Comparison between original service and PAMC-LC.

Original Service PAMC-LC

Server IM CD PF Client Data Client

Bytes received theoretically 1.42 G 1.42 G 1.42 G 123.8 M 1.46 G 123.8 M
Bytes sent theoretically 1.42 G 1.42 G 123.8 M 1.42 G 123.8 M 1.46 G

Total transfer 4.38 G 1.58 G
Timeout possibility Higher Lower

Transmission 4 times 2 times
Data security No Yes

The core algorithm script, which only uses a few kilobytes of memory, is the only part
that is really executed because the basic image and its dependent surroundings take up the
majority of storage space in a mirror image. If the basic image can be deployed in advance

ISPRS Int. J. Geo-Inf. 2024, 13, 187 18 of 20

on the target host, then the amount of model data transmitted through the network can
be greatly reduced. In fact, the PAMC-LC runtime-environment encapsulation strategy
minimizes the volume of the mirror image when it is transferred from one host to another.
Docker only transfers the layers that are missing from the target host after comparing the
hash values of each image layer on the local and target sites. The mirror image’s size can
be minimized while still keeping its integrity in this fashion. However, using a typical
processing service could be more effective when the volume of data to be processed is
considerably less than the size of the service image.

We simulated low bandwidths ranging from 3 Mbps to 30 Mbps to test our system
on a wide area network. As shown in Figure 14, the cost of data transmission increases
significantly when the amount of data reaches around 103 Mb (1 Gb), and at this point, the
size of the processing model container also reaches the level of gigabytes. In this evaluation
process, the time required to move 1.5 GB of data to the service side is approximately the
same as the time required to transfer the mirror model to the data side. For data sizes
smaller than 1.5 GB, moving data is more efficient, whereas for data sizes larger than 1.5 GB,
deploying code on the data side is more efficient. As a result, different processing methods
may be appropriate for various application situations. When processing large amounts of
data, it may be more appropriate to upload the processing service to the data side; however,
when sharing data between devices or when processing tasks with smaller data volumes, it
may be more appropriate to upload the data to the processing service side.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 18 of 21

model-migration process. In the example, the returned data was only saved as binary im-
ages, so the size was not large. However, for many other services, the size of returned data
may be comparable to that of the submiĴed data. Therefore, it is difficult to repeatedly
transmit such vast amounts of data through the network.

Table 2. Comparison between original service and PAMC-LC.

 Original Service PAMC-LC
Server IM CD PF Client Data Client

Bytes received theoretically 1.42 G 1.42 G 1.42 G 123.8 M 1.46 G 123.8 M
Bytes sent theoretically 1.42 G 1.42 G 123.8 M 1.42 G 123.8 M 1.46 G

Total transfer 4.38 G 1.58 G
Timeout possibility Higher Lower

Transmission 4 times 2 times
Data security No Yes

The core algorithm script, which only uses a few kilobytes of memory, is the only
part that is really executed because the basic image and its dependent surroundings take
up the majority of storage space in a mirror image. If the basic image can be deployed in
advance on the target host, then the amount of model data transmiĴed through the net-
work can be greatly reduced. In fact, the PAMC-LC runtime-environment encapsulation
strategy minimizes the volume of the mirror image when it is transferred from one host
to another. Docker only transfers the layers that are missing from the target host after
comparing the hash values of each image layer on the local and target sites. The mirror
image’s size can be minimized while still keeping its integrity in this fashion. However,
using a typical processing service could be more effective when the volume of data to be
processed is considerably less than the size of the service image.

We simulated low bandwidths ranging from 3 Mbps to 30 Mbps to test our system
on a wide area network. As shown in Figure 14, the cost of data transmission increases
significantly when the amount of data reaches around 103 Mb (1 Gb), and at this point,
the size of the processing model container also reaches the level of gigabytes. In this eval-
uation process, the time required to move 1.5 GB of data to the service side is approxi-
mately the same as the time required to transfer the mirror model to the data side. For
data sizes smaller than 1.5 GB, moving data is more efficient, whereas for data sizes larger
than 1.5 GB, deploying code on the data side is more efficient. As a result, different pro-
cessing methods may be appropriate for various application situations. When processing
large amounts of data, it may be more appropriate to upload the processing service to the
data side; however, when sharing data between devices or when processing tasks with
smaller data volumes, it may be more appropriate to upload the data to the processing
service side.

Figure 14. Data exchange efficiency. Figure 14. Data exchange efficiency.

5. Conclusions

Multi-Language Containerization Strategy: Our paper proposes a multi-language
containerization strategy to facilitate the migration of land cover models. We developed a
workflow based on this strategy, demonstrating and verifying land cover-change detection.
Through Docker and our encapsulation method, we achieved the seamless migration of
Python and R models, along with their dependent environments and service-oriented models.

Efficiency in Data-Processing Tasks: Our results, evaluated using the Mts-WH dataset
and Google dataset, highlight the superiority of virtual containers for massive data-
processing tasks. By deploying processing models directly to the data side, we effectively
managed model components, reducing the overhead associated with system administration
and maintenance.

Usability and Flexibility: Through exercise examples, we validated the usability of our
suggested model. By creating individual services as standalone elements, while supporting
specific objectives, we enable the development of both tightly connected and loosely cou-
pled systems. This approach also facilitates the combination of disparate models to create
new ones, enhancing re-usability and adaptability across various application contexts.

Efficiency in Change Detection: Our method for detecting changes in land cover, uti-
lizing 40 remote sensing images, showcased significant improvements in data-transmission
efficiency. The PAMC-LC technique reduced data-transmission volume by 63.92% com-

ISPRS Int. J. Geo-Inf. 2024, 13, 187 19 of 20

pared to using the original processing service. Moreover, it enhanced change-detection job
efficiency by three to four times by avoiding the time cost of data transfer. Consequently,
this technique alleviates strain on local computer, storage, and network resources.

Impact and Future Directions: By providing a stable and portable runtime environ-
ment for models, our approach has the potential to revolutionize model migration and
re-use in massive land cover-data processing. Future research will focus on enhancing
virtual container and cross-platform compatibility to further improve web-based land
cover-geoprocessing efficiency. At the same time, in the future, more complex model con-
figurations will be added based on the original strategy to provide deep learning, transfer
learning and other needs.

Author Contributions: Conceptualization, Huaqiao Xing and Huayi Wu; Methodology, Haihang
Wang and Dongyang Hou; Software, Huaqiao Xing, Haihang Wang and Denghai Gao; Formal
analysis, Huaqiao Xing and Denghai Gao; Investigation, Haihang Wang, Denghai Gao and Dongyang
Hou; Resources, Huaqiao Xing and Dongyang Hou; Data curation, Haihang Wang and Dongyang
Hou; Writing—original draft, Huaqiao Xing and Haihang Wang; Writing—review & editing, Huaqiao
Xing; Visualization, Denghai Gao and Dongyang Hou; Supervision, Huaqiao Xing and Huayi Wu;
Project administration, Huayi Wu; Funding acquisition, Huaqiao Xing. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was jointly funded by the Shandong Provincial Natural Science Foundation
(No. ZR2022YQ36), the Youth Innovation Team Project of Higher School in Shandong Province (No.
2022KJ201), the Program of China Scholarship Council (No. 202209995003), and the Jinan City and
University Integration Development Project (JNSX2023065).

Data Availability Statement: The Mts-WH Dataset is available on the Sensing Intelligence, Geoscience
and Machine learning lab resource catalog as “Multi-temporal Scene WuHan Dataset” [http://sigma.
whu.edu.cn/resource.php] (accessed on 15 April 2023).The Google dataset is derived from the
following resources available in the public domain: [https://github.com/daifeng2016/Change-
Detection-Dataset-for-High-Resolution-Satellite-Imagery] (accessed on 21 April 2023).

Acknowledgments: The authors would like to thank the editors and the anonymous reviewer whose
constructive comments will help to improve the presentation of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Foley, J.; Defries, R.; Asner, G.; Barford, C.; Bonan, G.; Carpenter, S.; Chapin, F.S., III; Coe, M.; Daily, G.; Gibbs, H.; et al. Global

Consequences of Land Use. Science 2005, 309, 570–574. [CrossRef]
2. Meyer, W.B.; Turner, B.L. Human Population Growth and Global Land-Use/Cover Change. Annu. Rev. Ecol. Syst. 1992, 23, 39–61.

[CrossRef]
3. Zhao, M.; Xu, T. Research on the Environmental Impacts of Land Use and Land Cover Change. Res. Soil Water Conserv. 2005, 12,

43–45.
4. Zhao, Q.; Wen, Z.; Chen, S.; Ding, S.; Zhang, M. Quantifying Land Use/Land Cover and Landscape Pattern Changes and Impacts

on Ecosystem Services. Int. J. Environ. Res. Public Health 2020, 17, 126. [CrossRef]
5. Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land Cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284.

[CrossRef]
6. Xing, H.; Zhu, L.; Feng, Y.; Wang, W.; Hou, D.; Meng, F.; Ni, Y. An Adaptive Change Threshold Selection Method Based on Land

Cover Posterior Probability and Spatial Neighborhood Information. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14,
11608–11621. [CrossRef]

7. Venter, Z.S.; Sydenham, M.A.K. Continental-Scale Land Cover Mapping at 10 m Resolution Over Europe (ELC10). Remote Sens.
2021, 13, 2301. [CrossRef]

8. Xing, H.; Chen, J.; Wu, H.; Hou, D. A Web Service-Oriented Geoprocessing System for Supporting Intelligent Land Cover Change
Detection. ISPRS Int. Geo-Inf. 2019, 8, 50. [CrossRef]

9. Laniak, G.F.; Olchin, G.; Goodall, J.; Voinov, A.; Hill, M.; Glynn, P.; Whelan, G.; Geller, G.; Quinn, N.; Blind, M.; et al. Integrated
Environmental Modeling: A Vision and Roadmap for the Future. Environ. Model. Softw. 2013, 39, 3–23. [CrossRef]

10. Yue, P.; Zhou, H.; Gong, J.; Hu, L. Geoprocessing in Cloud Computing Platforms—A Comparative Analysis. Int. J. Digit. Earth
2013, 6, 404–425. [CrossRef]

http://sigma.whu.edu.cn/resource.php
http://sigma.whu.edu.cn/resource.php
https://github.com/daifeng2016/Change-Detection-Dataset-for-High-Resolution-Satellite-Imagery
https://github.com/daifeng2016/Change-Detection-Dataset-for-High-Resolution-Satellite-Imagery
https://doi.org/10.1126/science.1111772
https://doi.org/10.1146/annurev.es.23.110192.000351
https://doi.org/10.3390/ijerph17010126
https://doi.org/10.1080/01431161.2018.1452075
https://doi.org/10.1109/JSTARS.2021.3124491
https://doi.org/10.3390/rs13122301
https://doi.org/10.3390/ijgi8010050
https://doi.org/10.1016/j.envsoft.2012.09.006
https://doi.org/10.1080/17538947.2012.748847

ISPRS Int. J. Geo-Inf. 2024, 13, 187 20 of 20

11. Williams, J.R.; Paige, R.F.; Polack, F.A.C. Searching for Model Migration Strategies. In 6th International Workshop on Models and
Evolution, Proceedings of the ACM/IEEE 15th International Conference on Model Driven Engineering Languages and Systems, Innsbruck
Austria, 1–5 October 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 39–44.

12. Danopoulos, D.; Kachris, C.; Soudris, D. Utilizing Cloud FPGAs towards the Open Neural Network Standard. Sustain. Comput.
Inform. Syst. 2021, 30, 100520. [CrossRef]

13. Docan, C.; Parashar, M.; Cummings, J.; Klasky, S. Moving the Code to the Data-Dynamic Code Deployment Using Activespaces.
In Proceedings of the 2011 IEEE International Parallel & Distributed Processing Symposium, Anchorage, AK, USA, 16–20 May
2011; IEEE: New York, NY, USA, 2011; pp. 758–769.

14. Romero, F.; Hacker, T.J. Live Migration of Parallel Applications with Openvz. In Proceedings of the 2011 IEEE Workshops of
International Conference on Advanced Information Networking and Applications, Singapore, 22–25 March 2011; IEEE: New
York, NY, USA, 2011; pp. 526–531.

15. Qiu, Y.; Lung, C.-H.; Ajila, S.; Srivastava, P. Experimental Evaluation of LXC Container Migration for Cloudlets Using Multipath
TCP. Comput. Netw. 2019, 164, 106900. [CrossRef]

16. Boettiger, C. An Introduction to Docker for Reproducible Research, with Examples from the R Environment. SIGOPS Oper. Syst.
Rev. 2015, 49, 71–79. [CrossRef]

17. Xing, H.; Hou, D.; Wang, S.; Yu, M.; Meng, F. O-LCMapping: A Google Earth Engine-Based Web Toolkit for Supporting Online
Land Cover Classification. Earth Sci. Inf. 2021, 14, 529–541. [CrossRef]

18. Li, Y. Towards Fast Prototyping of Cloud-Based Environmental Decision Support Systems for Environmental Scientists Using R
Shiny and Docker. Environ. Model. Softw. 2020, 132, 104797. [CrossRef]

19. Qiao, X.; Li, Z.; Zhang, F.; Ames, D.P.; Chen, M.; James Nelson, E.; Khattar, R. A Container-Based Approach for Sharing
Environmental Models as Web Services. Int. J. Digit. Earth 2021, 14, 1067–1086. [CrossRef]

20. Xing, H.; Zhu, L.; Chen, B.; Zhang, L.; Hou, D.; Fang, W. A Novel Change Detection Method Using Remotely Sensed Image Time
Series Value and Shape Based Dynamic Time Warping. Geocarto. Int. 2021, 37, 9607–9624. [CrossRef]

21. Müller, M.; Bernard, L.; Kadner, D. Moving Code—Sharing Geoprocessing Logic on the Web. ISPRS J. Photogramm. Remote Sens.
2017, 83, 193–203. [CrossRef]

22. Kadadi, A.; Agrawal, R.; Nyamful, C.; Atiq, R. Challenges of Data Integration and Interoperability in Big Data. In Proceedings of
the 2014 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 27–30 October 2014; pp. 38–40.

23. Knapen, R.; Janssen, S.; Roosenschoon, O.; Verweij, P.; de Winter, W.; Uiterwijk, M.; Wien, J.-E. Evaluating OpenMI as a Model
Integration Platform across Disciplines. Environ. Model. Softw. 2013, 39, 274–282. [CrossRef]

24. Moore, R.V.; Tindall, C.I. An Overview of the Open Modelling Interface and Environment (the OpenMI). Environ. Sci. Policy 2005,
8, 279–286. [CrossRef]

25. Xing, H.; Liu, C.; Li, R.; Wang, H.; Zhang, J.; Wu, H. Domain Constraints-Driven Automatic Service Composition for Online Land
Cover Geoprocessing. ISPRS Int. J. Geo-Inf. 2022, 11, 629. [CrossRef]

26. Belete, G.F.; Voinov, A.; Laniak, G.F. An Overview of the Model Integration Process: From Pre-Integration Assessment to Testing.
Environ. Model. Softw. 2017, 87, 49–63. [CrossRef]

27. Wu, C.; Zhang, L.; Zhang, L. A Scene Change Detection Framework for Multi-Temporal Very High Resolution Remote Sensing
Images. Signal Process. 2016, 124, 184–197. [CrossRef]

28. Wu, C.; Zhang, L.; Du, B. Kernel Slow Feature Analysis for Scene Change Detection. IEEE Trans. Geosci. Remote Sens. 2017, 55,
2367–2384. [CrossRef]

29. Bruggeman, J.; Bolding, K. A General Framework for Aquatic Biogeochemical Models. Environ. Model. Softw. 2014, 61, 249–265.
[CrossRef]

30. Voinov, A.; Cerco, C. Model Integration and the Role of Data. Environ. Model. Softw. 2010, 25, 965–969. [CrossRef]
31. Peng, D.; Bruzzone, L.; Zhang, Y.; Guan, H.; Ding, H.; Huang, X. SemiCDNet: A Semisupervised Convolutional Neural Network

for Change Detection in High Resolution Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5891–5906. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.suscom.2021.100520
https://doi.org/10.1016/j.comnet.2019.106900
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1007/s12145-020-00562-6
https://doi.org/10.1016/j.envsoft.2020.104797
https://doi.org/10.1080/17538947.2021.1925758
https://doi.org/10.1080/10106049.2021.2022013
https://doi.org/10.1016/j.isprsjprs.2013.02.011
https://doi.org/10.1016/j.envsoft.2012.06.011
https://doi.org/10.1016/j.envsci.2005.03.009
https://doi.org/10.3390/ijgi11120629
https://doi.org/10.1016/j.envsoft.2016.10.013
https://doi.org/10.1016/j.sigpro.2015.09.020
https://doi.org/10.1109/TGRS.2016.2642125
https://doi.org/10.1016/j.envsoft.2014.04.002
https://doi.org/10.1016/j.envsoft.2010.02.005
https://doi.org/10.1109/TGRS.2020.3011913

	Introduction
	Methods
	Breaking the Barriers of Data Transfer with PAMC-LC
	Simplifying Model Deployment with Resource Interfaces
	Streamlined Model Migration with Container-Based Encapsulation
	Four-Tier Model Deployment: Runtime-Resource Encapsulation
	Minimizing Heterogeneity: Runtime-Environment Encapsulation

	Moving and Deployment Strategy for Encapsulated Model

	Experiment
	Containerization Model Transfer and Verification
	Enhancing Sharing and Security
	Achieving Automated Model Deployment and Interoperability
	Registering and Accessing Model Resources through a Portal Website

	Building Effective Service Chains with PAMC-LC

	Discussion
	Conclusions
	References

