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Abstract: Exploring periodic dry–wet changes is an important topic in climate change research due
to its impact on drought and flood disasters. The purpose of this research was to determine the
occurrence law of dry–wet changes in China on a scale of several hundred years, using the example
of transitional zones. In this study, we analyzed typical areas of the ecotone between agricultural land
and pasture along the Great Wall of China. The ring width index of Carya cathayensis was fitted with
the March–August Palmer drought severity index (PDSI38). The PDSI38 was divided into different
periods using the stepwise function fitting method. The results indicated that there were two dry
periods and one wet period in the region from 1543 to 2019. In each dry and wet period, there were
also different temporal periods, including long (decades), intermediate (ten years), and short periods
(several years). Drought represents a significant threat to agricultural production in China. In the first
dry period (1543–1756), four periods with low PDSI38 values (1633–1635, PDSI38 = −1.71; 1636–1939,
PDSI38 = −3.35; 1640–1642, PDSI38 = −4.68; and 1643–1645, PDSI38 = −2.92) occurred, during which
severe droughts (PDSI38 < −4) lasted for 13 years. The dry–wet change showed the characteristics of
a 12-year or multiple 12-year cycle. The results can be used to prepare to effectively address extreme
drought scenarios worldwide in the future.

Keywords: dry–wet change; agriculture and pasture ecotone; periodicity law; 12-year cycle; extreme
drought

1. Introduction

Droughts and floods cause considerable losses around the world each year, and their
occurrence is closely related to the periodicity of dry–wet changes [1,2]. The temporal
variability of dry–wet events may correspond to the regularity of drought and flood
disasters. Prolonged dry periods led to drought conditions in several parts of the world
in the 1930s and 1950s [3]. The analysis of dry–wet changes showed that the frequency
of droughts and floods was synchronous with the decadal timescale in the Loess Plateau
within the catchment of the River Jing, China [4]. As the frequency of dry–wet changes
accelerated, so too did the occurrence of droughts and floods in China. The periodicity
of the dry–wet changes in the country was 4–5 years, which was highly consistent with
the occurrence of drought–flood disasters in some parts of China [5,6]. Periodic dry–wet
changes have a direct impact on the occurrence of droughts and floods in different regions
worldwide [7,8]. The periodicity of dry–wet changes is the main basis for the accurate
forecasting of droughts and floods [9]. Therefore, the analysis of dry–wet changes may aid
in minimizing their associated risks. It is crucial to reveal the laws of such dry–wet changes
to obtain a deeper understanding and early identification of the presenting features of
droughts and floods.
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Northern China, located in the mid-latitude, experiences profound negative impacts
from dry–wet changes. The agricultural water supply, crop yields, and planting systems
depend on the dry–wet state and climate change mode of the region [10,11]. In the eco-
logically fragile zone of Northern China, dry–wet changes play a significant role in the
ecotone between agriculture and pasture, especially in the analysis of the occurrence of
droughts and floods in the region. Recently, many studies have focused on the dry–wet
changes in this region [12]. The results of a wavelet analysis of the precipitation and
evapotranspiration indexes revealed that the dry–wet changes exhibited a 14-year periodic
variation from 1961 to 2012 [13]. Jia and Zhang (2019) indicated that the average annual
frequency of drought events was higher than that of flood events from 1960 to 2016 [14].
Previous studies have indicated that, as the wettability decreases, aridity increases, and the
periodic fluctuation of the dry–wet changes becomes increasingly stronger; this inference
was based on the moisture indexes for 1951–2000 extracted from 160 meteorological stations
in China [15]. Notably, Ma et al. (2005) indicated a humidity trend of 100 years in this
region, with arid periods in the 50th and 20th years [16]. Xiao et al. (2013) indicated that the
large-scale emigration and social unrest in the region in the mid-17th century were driven
by extreme droughts [17].

Tree growth is more sensitive to dry–wet changes in the ecotone between semi-arid
and arid conditions. Therefore, tree-ring records can be utilized for the reconstruction of
climate indexes. In most previous studies, the natural variability of the dry–wet cycles
before the instrumental period was estimated using tree-ring-based reconstructions [18–20].
The March–August Palmer drought severity index (PDSI) for the past 424 years was re-
constructed based on the tree-ring width chronology data of Cedrus deodara in Northern
Pakistan. Additionally, the seasonal variability in the frequency and severity of the dry–wet
cycle in the southwestern United States of America for 1663–2015 was reconstructed accord-
ing to tree-ring records, using a total of 183 stem increment cores collected from seven Pinus
ponderosa stands [21]. The standardized precipitation–evapotranspiration index (SPEI),
extending back to 1773 and calculated using the ring width chronology of Cedrus deodara,
revealed five droughts and pluvials (cold humid periods) during a 244-year period in the
Western Himalayas, India [22].

These studies have addressed the characteristics of the dry–wet changes in Northern
China, and have confirmed that these changes are closely related to droughts and floods.
However, these studies have focused on a timescale of several decades, and there is little
research on the occurrence of extreme droughts and floods based on the laws of dry–wet
changes over a long timescale. Based on this, we studied the laws of dry–wet changes
on a timescale of 480 years and used the periodic changes to infer the characteristics of
extreme droughts and floods, proposing potential strategies to address them. We used the
tree-ring chronology method to reconstruct the March–August Palmer drought severity
index (PDSI38) over 480 years and reveal the periodicity of the dry–wet changes within the
region. The contributions of this work are summarized as follows: (1) We used the tree-ring
chronology method to reconstruct the PDSI38 for each year from 1540 to 2019; (2) we used
the stepwise function method to reveal the periodic law of the dry–wet changes; (3) we
offer an understanding of the periodic characteristics of the dry–wet changes in the short,
intermediate, and long term to infer the characteristics of extreme droughts and floods and
propose strategies to address them.

2. Materials and Methods
2.1. Study Area

Our study was located in Northern Hebei Province, adjacent to Liaoning (in the Inner
Mongolia Provinces along the Great Wall) (Figure 1). The Great Wall was built along the
Yanshan Mountains. The south of the Great Wall is an agricultural area, and the north is
a pastoral area. Therefore, the study area is characterized as an agriculture and pasture
ecotone that is typical of China (adjacent to the North China Plain) [23–25]. The annual
temperatures range from 7.98 ◦C to 11.07 ◦C and the annual precipitation ranges from 388
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mm to 1128 mm (Figure 2a). It is cold in winter and hot in summer, with the precipitation
concentrated in the summer (Figure 2b). The North China Plain is a typical farming area
and has a long history of farming [26]. The area is sensitive to dry–wet changes and is thus
an ideal area for the study of the occurrence of droughts and floods resulting from dry–wet
changes [27]. In the Yanshan Mountains, with a relatively small population, there are many
ancient wild Carya cathayensis trees scattered across the area. The tree-ring width growth of
Carya cathayensis is sensitive to climate change and can be used to obtain historical climate
data [28].
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2.2. Tree-Ring Sampling

From 2 July 2018 to 14 September 2018, we obtained 120 Carya cathayensis samples
(cores) from six plots in the study area. These sampling points were distributed from west
to east along the Yanshan Mountains (the Great Wall), with different elevations at different
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sampling points, forming a sampling system with several altitude gradients (Figure 1). For
each tree, in all plots, two incremental tree-ring cores perpendicular to each other were
extracted at a height of 1.2 m above the ground. The cores were sampled from 60 living trees
with a diameter at breast height (DBH) > 25 cm, to determine the tree-ring chronologies
(Table 1). Four cores (from the total of 120) that were damaged were not considered in our
analysis. Firstly, the 116 remaining cores were dried and sanded (to enhance the visibility
of the tree growth of the samples). The tree-ring widths were measured using the Velmex
ring measurement system [29]. Below, we provide a flowchart to demonstrate the process
of data gathering and method of analysis (Figure 3).

Table 1. Information about the plots considered in this study. C/T is the number of cores/trees, NCC
is the number of cores for the chronology, and RP is the recording period for Carya cathayensis.

Plot Longitude (E) Latitude (N) C/T NCC RP (Year)

1 119.162693 40.217760 18/9 18 1320–2018
2 119.446449 40.144764 20/10 18 1341–2018
3 119.530907 40.204247 20/10 20 1373–2018
4 119.561806 40.219650 24/12 22 1410–2018
5 119.620185 40.481356 16/8 16 1503–2018
6 119.742050 40.044175 22/11 22 1531–2018
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2.3. Chronology Development

All 116 cores were cross-dated by matching the patterns of relatively wide and narrow
rings to account for the possibility of ring growth anomalies, such as missing or false
rings or measurement errors [30]. The accuracy of the assigned dates regarding errors and
measurements was further checked using the computer program COFECHA [31]. The
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tree-ring series that were poorly correlated with the master series were removed from
the final dataset prior to chronology development. The remaining 91 cores were used to
obtain the chronological order, using the ARSTAN software [32]. The ring width series
were standardized using a smoothing spline with a 50% frequency–response cutoff of 67%
of the length of each series. The detrended ring width index series were then pre-whitened
by fitting an autoregressive model to remove any autocorrelation effects [33]. Finally, a
standard deviation chronology (STD) was developed to reveal the relationship between the
climate and tree growth. The mean index (MI) was greater than 0.95, the standard deviation
(SD) was 0.03, and the variance of the 1st eigenvector (PCA1) was 43.28% of the STD; this
could be used for the growth–climate analysis [34]. The mean series intercorrelation (0.36)
and first-order autocorrelation (0.46) of the chronology’s reliability indicated that the STD
was sufficient for climate change analysis [35]. The expressed population signal (EPS)
(threshold value: 0.85) was determined to reflect a valid time range for the recovery of
climate data from a chronology [36]. Therefore, the time span of the STD from 1540 to 2018
was used to analyze the climate change. During this period, the EPS was greater than 0.85
and the sample depth was 25 (Figure 4).
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the years with an expressed population signal (EPS) > 0.85.

2.4. Statistical Analysis
2.4.1. Reconstruction of PDSI38

The temperature and precipitation data were acquired from the Qinglong (118.57◦ E,
40.25◦ N), Funing (119.23◦ E, 39.88◦ N), Qinhuangdao (119.60◦ E, 39.93◦ N), and Lulong sta-
tions (118.53◦ E, 39.53◦ N) near the Great Wall, from tree-ring sampling spots for 1961–2019.
The PDSI38 calculations included three data sets (temperature, precipitation, and the local
available water content (AWC) of the soil) for each year (1961–2019) in the study area.
Gridded precipitation and temperature data were extracted from the monthly 2.5◦ × 2.5◦

dataset compiled by the Climatic Research Unit from 1961 to 2019 [37], combined with the
monthly precipitation and temperature data from five selected meteorological stations. The
soil AWC data were extracted from the Global Soil Types 1-Degree Grid [38]. Calculations
were performed on a 2.5◦ × 2.5◦ grid, chosen to achieve a trade-off between the spatial
resolution and a reduced number of grid points for data processing. The PDSI38 reconstruc-
tion was based on the monthly self-calibrated PDSI (scPDSI) grid data, with a resolution



ISPRS Int. J. Geo-Inf. 2024, 13, 191 6 of 21

of 2.5◦ × 2.5◦ for 1961–2019, which were provided by the Earth System Research Labora-
tory/National Oceanic and Atmospheric Administration (ESRL/NOAA). The correlation
coefficients (Rs) were computed to investigate the relationship between the chronology
and climatic factors from 1961 to 2018. The climatic factors included the monthly average
temperature and total precipitation from January to December of the current year. The R
was also calculated between the PDSI38 and tree-ring width. The relationship between the
PDSI38 value and the STD from 1961 to 2018 was revealed using a linear equation. The
dependent variable was the PDSI38 and the independent variable was the ring width index
of the STD (Equation (1)). The equation passed the test of the leave-one-out model. The
reduction of errors (RE) was 0.342, and the Durbin–Watson statistical coefficient (DW) was
1.720 (P (PMT and ST) < 0.05, where PMT represents the value derived using the product
mean test and ST represents the sign test) (Table 2). The results indicated that the equation
could be used to restore the values of the PDSI38 [39]. Therefore, the PDSI38 values between
1540 and 1960 were computed using Equation (1), based on the tree-ring width of the STD,
as follows:

Y = −18.545 + 19.065·x (r = 0.692, R2 = 0.479, R2adj = 0.470, p < 0.01) (1)

where the PDSI38 is represented as Y, the tree-ring width index is represented as x and
adjusted R2 is represented as R2

adj. The values of the PDSI38 from 1540 to 1960 were
computed using Equation (1). The PDSI38 records were derived from the ESRL/NOAA
data for 1961–2019. Then, we overlaid the PDSI38 from 1540 to 1960 with the PDSI38 from
the ESRL/NOAA for 1961–2019. Finally, a 480-year (from 1540 to 2019) series for the PDSI38
was reconstructed by combining the two sets of results (Figure 5).

Table 2. Calibration results of the leave-one-out (common period: 1961–2019) model. r is the
correlation coefficient, R2 is the explained variance, R2

adj is the adjusted explained variance, RE
is the reduction of error statistic, ST is the sign test, PMT is the product mean test, and DW is the
Durbin–Watson test; ** p < 0.01, * p < 0.05.

r R2 R2
adj RE ST PMT DW

Calibration 0.69 ** 0.479 0.470
Verification 0.67 ** 0.449 0.407 0.342 30+/29− * 3.534 * 1.720
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2.4.2. Period Division of the PDSI38 Related to Dry–Wet Changes
Division Using Function Fitting Methods

We used the year as the independent variable and the PDSI38 of each year as the
dependent variable for function fitting. If a function fitted well (R2 > 0.6; p < 0.05), it
indicated that the PDSI38 change followed the law of the function curve. Based on the
fluctuation characteristics of the curve, it could be divided into different dry–wet periods.
However, in the 480-year period, the fitting effects of all functions from 1 to 30 times were
not satisfactory (R2 < 0.2; p > 0.05). Therefore, using a segmentation fitting method, the
480-year period was divided into different periods for function fitting, and good fitting
functions (R2 > 0.6; p < 0.05) were extracted for the different time periods. Based on the
changes in the function curves, the variation law of the PDSI38 was analyzed within the
different periods. Well-fitting function curves can be used to divide the periodicity of the
research object with the change in time. Therefore, the relationships may be used to divide
the time series of the research object between the function curve and the mean line [40].
The periodic change in the PDSI38 was applied using the stepwise regression method
from the 4th to 6th functions. The functions were selected between the PDSI38 (dependent
variable) and the time series (independent variable) for 1540–2019. Firstly, the mean of the
PDSI38 was calculated for 1540–2019. Then, the different periods were divided using the
intersections between the function curve and the mean line. The mean of three intersections
between the three function curves and the mean line was calculated to divide the different
periods, because the three function curves from the 4th to 6th functions were similar during
the study period. The wet cycle was selected when the function curve was above the mean
line. The dry cycle was represented by the curve below the mean line. Finally, the periodic
change in the PDSI38 values was divided completely in the first step. When the p values of
the three functions were greater than 0.5 (p > 0.05), each period in the first step was divided
again, using the same method as in the first step. The next step was carried out until the
p value of the function was less than 0.05. The first step was considered as an example, to
explain the periodic division of the PDSI38.

Division Process of Function Fitting

The left-most intersection was the year of 1541 between the 4th function curve (from
1540 to 2019) and the mean line (PDSI38 = −0.001). The 5th function was the year of 1545
and the 6th function was the year of 1543. Then, the mean (1543 year) of the three years
(1541, 1545, and 1543) was considered as the first point for periodic division. The second
point was the year of 1757, and 1992 was the third point (for periodic division, using a
similar method). The PDSI38 values were divided into three cycles, from 1540 to 2019,
according to the three intersections. The first dry cycle was from 1543 to 1756, because
the three function curves (from 4th to 6th) were below the mean line (the three years from
1540 to 1542 were not considered in the study). The first wet cycle was from 1757 to 1992,
because the three function curves (from 4th to 6th) were above the mean line during this
period. The second dry cycle was from 1993 to 2019. The first step was concluded for the
periodic division of the PDSI38 change. The p values of all functions were greater than 0.5.
Therefore, a second step was needed for periodic division. Finally, periodic division was
performed successively until the 6th step in the first dry period (Figure 6a). The wet period
was divided completely by the 5th step (Figure 6b), and by the 2nd step in the second dry
period, as there were only 28 years in this period (Figure 6c).
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Figure 6. Stepwise regression of periodic change in PDSI38 values for the (a) first dry (See Table S1),
(b) first wet (See Table S2), and (c) second dry periods. The numbers represent the dry and wet
periods (see Supplementary Materials). The means, standard deviations (SDs), and durations of the
PDSI38 values were calculated for each period of each step for the first dry, first wet, and second
dry periods. The means of the PDSI38 values were analyzed from the first to the last step, using
the sixth function, to reveal the periodic characteristics of the dry–wet changes. The SDs of the
PDSI38 values were analyzed from the first to the last steps, using the sixth function, to reveal the
periodic characteristics of the dry–wet changes. The durations of the periodic dry–wet periods were
determined using the same method.

Analysis Methods

The means, STDs, and durations of the PDSI38 were calculated for the average of each
period within each of the first dry, the first wet, and the second dry periods, respectively.
Regarding the results of the mean PDSI38 for each step, the PDSI38 change of each period
was analyzed using the 6th function in order to reveal the periodic characteristics of the
dry–wet change. Regarding the results of the STDs of the PDSI38 for each period, the
fluctuation law of the PDSI38 was analyzed for each step using the 6th function in order
to reveal the periodic characteristics of the dry–wet change. The duration of the periodic
dry–wet change was understood in the same way.
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3. Results

The chronology was strongly correlated with the temperature and precipitation from
June to August of the current year (the year corresponding to climate factors was the same as
the year of tree-ring width growth) (p < 0.05 and p < 0.05) (Figure 10a,b), indicating that the
tree-ring growth responded very positively to changes in the temperature and precipitation
in the active growth period. In addition, the R between the ring width chronology and
PDSI38 was 0.692 (p < 0.01). The tree growth was sensitive to dry–wet changes.

3.1. First Dry Period
3.1.1. Change in the Mean of the PDSI38 in All Periods

The averages of the mean PDSI38 values in all periods were −0.20 (first step), 0.12
(second step), −0.05 (third step), −0.35 (fourth step), −0.58 (fifth step), and −0.69 (sixth
step) for all steps, respectively, for the long (the first step), intermediate (the second and
third steps), and short (the fourth, fifth, and sixth steps) periods, indicating an initial
trend of increasing followed by a decrease. The change range of the PDSI38 was 0.81 [0.12
(maximum)–−0.69 (minimum)], with fluctuations above and below the mean line (−0.001).
The results indicated that the regional climate can maintain the relative stability of the
dry–wet period, which reflected the region’s potential to become the first agricultural area
in China. The SDs of the mean PDSI38 values in all periods were 0.51, 0.85, 1.19, 1.23, 1.43,
and 1.54 from the first to the sixth steps, respectively, indicating a gradual increase; thus,
the differences between the periods increased gradually, and the fluctuations increased
from the long to the short periods. All function curves exhibited a single concave shape; the
concavity of the shape increased and the maximum values were found at the curve edges
(at 1550–1581 and 1725–1749) from the long to the short periods (Figure 7A). The results
indicated that the region had certain wet season characteristics when entering and exiting
a dry period. The minimum values occurred in the middle (at 1636–1659) of the curve
(Figure 7A), indicating that the strongest drought appeared in the middle of the period.ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 10 of 24 
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Figure 7. Sixth function curves of the (A) means, (B) standard deviations (SDs), and (C) durations of
all periods of the PDSI38 in the first dry period from the first step to the sixth step, where (a–f) denote
the first to sixth steps. The numbers indicate the minimum and maximum values of all function
curves. The solid lines are the function curves with the biggest R2, and the dots are the index values
of the vertical axis in the figures.

3.1.2. Change in the Standard Deviation (SD) of the PDSI38 in All Periods

The averages of the SDs of the PDSI38 values in all periods were 24, 23, 22, 22, 19,
and 18 from the first to the sixth steps, respectively, indicating a gradual downward trend,
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and the duration of the dry period decreased from the long to the short periods. The SDs
of the PDSI38 values in all periods were 1, 9, 13, 11, 11, and 11 for the first to sixth steps,
respectively, with a gradual upward trend, indicating that the dry difference among all
periods increased gradually from the long to the short periods. The results indicated that
the dry period relieves or even transforms into a wet period in the next period, to maintain
the dry–wet balance, when the dry period within one cycle is long. The function curves
presented a double concave shape in the intermediate and long periods (Figure 7B(b–d)),
indicating that the fluctuations were small at the beginning and the end of the dry period,
and the regional climate fluctuated relatively little in the early (approximately 1550–1581)
and late periods (approximately 1725–1749) of the dry period. However, the dry fluctuation
was the largest in the middle period (approximately 1636–1659) of the dry period, with
the most severe droughts (Figure 7B(a–d)), which indicated that the regional climate
tended to adjust itself as much as possible to overcome the drought in the long and
intermediate periods. In the short periods, the function curves exhibited a single depression
(Figure 7B(e,f)), indicating that the region could not change the severe drought conditions
during 1633–1645.

3.1.3. Change in the Duration of the PDSI38 in All Periods

The average durations of all periods were 71, 21, 9, 5, 3.7, and 3.6 years from the
first to the sixth steps, respectively. The duration of the long period was 71, those of the
intermediate periods were 21 and 9 years, and those of the short periods were 5, 3.7, and
3.6 years. The results were consistent with the historical data, i.e., during this period,
disasters had periodic characteristics of 3–5, 20, and 70 years [41], which were influenced
by the cyclical changes in the solar activity cycle and the cycle of the El Nino Southern
Oscillation (ENSO) [42,43]. The SDs of the duration of the PDSI38 in all periods decreased
from 59, 40, 12, 3.6, 1.3, and 1.0 years (from the first step to the sixth step, respectively),
indicating that the difference in the duration of each period in the long period was the
largest; the difference was only one year for each period in the short period. The dry
situation changed once every 3–5 years. The function curves showed a single peak in
the intermediate and long periods (Figure 7C(a–d)), indicating that the durations of the
different periods were long in the intermediate and long periods. Some short periods with
high PDSI38 values were interspersed to adjust the regional climate, so as to reduce the
duration of a severe drought as far as possible. However, the function curves fluctuated
very little in the short periods (Figure 7C(e,f)), indicating that the droughts were completely
contained within the short periods.

3.2. First Wet Cycle
3.2.1. Changes in the Mean PDSI38 in All Periods

The averages of the mean PDSI38 values in all periods were 0.23, 0.13, 0.05, 0.12, and
0.17 from the first to the fifth steps, respectively. The difference in the PDSI38 was only
0.18 [0.23 (maximum)–0.05 (minimum)] between the long (the first step), intermediate (the
second step), and short (the third, fourth, and fifth steps) periods. Notably, all periods
were relatively stable. Northern China is one of the most important grain-producing areas
in China, and the planting structure is dominated by dry fields. The SDs of the mean
PDSI38 in all periods were 0.24, 0.64, 0.95, 1.13, and 1.25 from the first to the fifth steps,
respectively, indicating a gradual increase, and the wet difference among all periods became
larger as the period became shorter. The function curves were almost double concaves,
progressing from the long to the intermediate and short periods (Figure 8A(a–e)), which
indicated that the PDSI38 was rather low at the beginning (1807–1839) and end (1938–1955)
of the wet period. The regional climate tended to be dry in the early and late stages of the
wet period. Meanwhile, the PDSI38 was high in the middle of the period (approximately
1876–1904), which indicated that the flood with the wettest characteristics appeared during
the wet period.
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Figure 8. Sixth function curves of the (A) means, (B) standard deviations (SDs), and (C) durations of
all periods in the first wet period from the first to the fifth steps, where (a–e) denote the first to fifth
steps. The numbers on the graph indicate the minimum and maximum values of all function curves.
The solid lines are the function curves with the biggest R2, and the dots are the index values of the
vertical axis in the figures.

3.2.2. Changes in the SD of the PDSI38 in All Periods

The average SDs of the PDSI38 values in all periods were 2.14, 1.94, 1.75, 1.58, and 1.53
from the first to the fifth steps, respectively, with a gradual downward trend, indicating that
the wet period decreased from the long period to the short period. However, the SD values
of all periods were 0.67, 0.89, 0.94, 0.96, and 0.98 (for the first to fifth steps, respectively),
with a gradually increasing trend, indicating that the wet difference between the internal
periods increased gradually. The function curves were double concaves from the long to
the short periods, and the second concave was relatively flat (Figure 8B(a–e)), indicating
that the PDSI38 value fluctuated minimally and was relatively stable during the entire wet
period, after a short period of adjustment at the beginning (1763–1768) of this period. The
results indicated that the region maintained a relatively stable dry–wet state, which could
provide suitable climatic conditions for agricultural production in wet periods.

3.2.3. Change in the Duration of the PDSI38 in All Periods

The average durations of all periods were 47, 13, 5, 3, and 3 years from the first step
to the fifth step, respectively. The duration of the long period was 47 years, that of the
intermediate period was 13 years, and that of the short period was 3 years. The results were
consistent with the changes in the drought and flood disasters in the Han River Basin over
the past few hundred years. In addition, during this period, the number of floods (25 times)
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was greater than the number of droughts (13 times), indicating that the overall climate was
relatively humid in this period [44]. The SDs of the duration of the PDSI38 values of all
periods decreased from 33, 12, 3.6, and 1.3 to 0.8 years, from the first step to the fifth step,
respectively, indicating that the difference in duration was small in the short period. The
function curves consisted of a single peak in the long periods (Figure 8C(a)), indicating that
the duration was long in the middle stage (1842–1926). The curve had a small single peak
at the back (Figure 8C(c)), indicating that the duration of each small period was not notably
different in the short period. There was only one small single peak in the function curve
in the initial stage of the short cycle, following which the shape was linear (Figure 8C(e)),
indicating that the durations were relatively stable during the short cycles.

3.3. Second Dry Period

The function curves for the mean PDSI38 values of all periods consisted of double
concaves; however, the right concave was small, indicating an upward trend (Figure 9a,b),
illustrating that the regional climate had a certain rectifying effect in the early part of
the dry period, which caused the dry conditions to change to normal conditions. The
function curve for the SDs of the PDSI38 values of all periods was very complex (Figure 9d),
indicating that the dry fluctuation increased at the beginning of the period. The function
curve for the duration presented a double-concave shape (Figure 9f), indicating that the
ability of the region to achieve climate adjustment and dry rectification was strong as the
period began.
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4. Discussion
4.1. Climate Responses

The Rs between the monthly average temperature and STD from June to August were
0.35 (JUN, p < 0.01), 0.49 (JUL, p < 0.01), and 0.28 (AUG, p < 0.05), respectively (Figure 10a),
indicating that, during the growing season, changes in temperature yielded a positive effect
on tree growth [45]. From 1961 to 2019, the average monthly air temperature in the studied
area was 22 ◦C in June, 25 ◦C in July, and 24 ◦C in August (Figure 10b). The temperatures
were high and the conditions were favorable. The trees began their most active growth
period, experiencing increased cell growth and radial expansion, indicating that the active
growth period is crucial for tree-ring width growth. The STD was highly correlated with
the precipitation from June to August of the current year (p < 0.01 and p < 0.05). The study
by Stjepanovic et al. (2018) found that the growth of Carya cathayensis was affected by
the precipitation, with significant differences observed when there was a lack of rainfall
(p < 0.05) [46]. A drought during the growth period also contributed to reduced growth.
The precipitation was highest in June, July, and August, with 100 mm, 231 mm, and 175 mm
of rainfall, respectively (Figure 2b). The period was characterized by both high heat and
high water availability in the region. Based on the findings of Li et al. (2016), trees grow
better at higher temperatures when adequate water is available [45]. During the growth
season, the tree rings widen in response to the temperature and rainfall. Moreover, there
was a significant (p < 0.05) correlation between February’s mean temperature and the
ring width index. According to the lag characteristics of trees when adapting to cold
conditions [47], the growth of the trees was related to the coldest temperature during
January (−7.24 ◦C). To cope with low temperatures, the trees had to use their stored
resources, which resulted in less growth. The Rs values between the STD and either
the temperature or precipitation did not reach significant levels (p > 0.05), as shown in
Figure 10a,b. Thus, the lack of extreme heat limited the growth of the trees. During the
previous year’s growing season, the trees accumulate storage reserves, utilizing carbon
allocation to endure the harsh non-growing season [48]. Therefore, the cold temperatures
(except during the coldest month) and low rainfall did not have a significant impact.
The R value of 0.692 between the STD and PDSI38 (p < 0.01) indicated that tree growth
requires less water in agricultural and pastoral ecoregions [49], due to a combination
of increased precipitation and the accelerated depletion of the water supply by warmer
temperatures [48]. Thus, the water availability is influenced by these factors.
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4.2. Drought Threat

There is one additional step in the first dry period (consisting of six steps) (Figure 6b)
compared to the first wet period (consisting of five steps) (Figure 6c), and the number of
cycles in each step of the first wet period was greater than that in the corresponding step of



ISPRS Int. J. Geo-Inf. 2024, 13, 191 16 of 21

the first dry period (Figure 6b,c). The results indicated that droughts were relatively more
concentrated and prominent, while floods were relatively scattered; thus, the floods were
less severe than the droughts. The regional climate could not be effectively regulated in
some periods, which could have had a serious impact on agriculture when severe droughts
occurred. For example, the most severe drought in the first period occurred between 1640
and 1642, with the mean PDSI38 value being only −4.68. Therefore, we could conclude that
the region was experiencing an extreme drought at that time, when the value of the PDSI38
was <−4 [50]. In addition, the mean PDSI38 values of the two periods (1633–1635 and
1636–1639) were −1.71 and −3.35, respectively, which indicated that the droughts were
mild and severe in these two periods [50]. According to historical records, this time period
coincided with the reign of the late Ming Dynasty. During this period, successive droughts
caused agricultural failures, resulting in a lack of agricultural production in Northern
China [51]. In the first two drought periods (1633–1635 and 1636–1639), agricultural
production was reduced significantly, and the population consumed all of the available
food. At the end of the Ming Dynasty in 1644, the most severe drought (1640–1642) occurred
in the region; there was no food to eat, and severe starvation and social unrest occurred [52].
Then, the Qing Dynasty gradually began its reign over China. Notably, there was no
drought in China between 1646 and 1647 [53]. This was roughly consistent with the results
of our study (1646–1647: PDSI38 = 0.44, normal) [54]. During this period, i.e., around
the middle of the 17th century, extreme droughts occurred in many parts of the world.
For example, extreme droughts occurred in South Asia in 1615–1626 [55], South America
in 1620–1630 [56], Europe in 1625–1632 [57,58], Australia in 1636–1645 [59], South Africa
in 1640–1660 [60], and North America in 1655–1675 [61]. Therefore, many parts of the
world experienced severe droughts in different years during this stage (1633–1642) (or near
this stage).

4.3. Strategies to Address Severe Droughts

In the first dry period, from 1633 to 1645, four periods (1633–1635 (PDSI38 = −1.71),
1636–1939 (PDSI38 = −3.35), 1640–1642 (PDSI38 = −4.68), and 1643–1645 (PDSI38 = −2.92))
with low PDSI38 values occurred successively, and severe droughts lasted 13 years. We
speculate that there will be a severe drought in the early part of the 22nd century, based
on the Chinese calendar of dry–wet changes that we have studied, where the duration
of the first drought period was 214 years. In the middle of the period, the most severe
drought occurred, with a half period of 108 years. The time point at which the second
drought period began was 1992. According to this time point, it is speculated that 2100
will be the driest year in the future, occurring 108 years later. At the same time, according
to the IPCC [62], at the end of the 21st century, sudden changes in climate factors such as
temperature and precipitation may cause extreme droughts on a large scale throughout the
world. Therefore, appropriate risk management measures should be planned accordingly.
In addition, building water conservancy facilities and storing water and grain would
provide active assistance in locations where severe droughts may occur in the future. The
agricultural planting scheme should also be changed according to the actual dry–wet
conditions in different regions. For example, according to historical records, there were
11 droughts in Sichuan during 1625–1645, with the average value of the PDSI38 being
−2.03 for all periods, based on the results of this study (the lowest of the research years).
In order to survive this difficult period, the region was forced to transition from paddy
fields to dry fields [63]. During 1646–1682, grain production increased gradually; finally, it
led to large harvests for three consecutive years during 1680–1682 [63]. Therefore, some
traditional rice-producing areas changed to dry land and planted food crops with higher
yields. In the Yangtze River Basin, from 1633 to 1645, drought and wind disasters reached
an average annual frequency of 2.6 times. Under the pressure of such drastic climate
changes, millions of people moved from the Yangtze River Basin to the south of the Nanling
Mountains (Pearl River Basin) [64], indicating that the impact of the drought on Guangdong
and Guangxi was small. During this period, other tropical regions in the world were also
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insignificantly affected by extreme droughts [65–67]. Since China once purchased rice from
the Indochina Peninsula and extreme droughts did not occur simultaneously worldwide,
the time differences of the drought period could be used when purchasing different grains
from different regions. For example, an extreme drought in South America (1620–1630)
occurred earlier than that in North America (1655–1675). Owing to this asynchronism with
North America, South America could have first purchased grains from South America; then,
when North America entered the drought period, North America could have purchased
grains from South America. Australia, South Asia, Europe, and East Asia could also have
followed this method. In addition, the droughts in tropical areas are not serious; thus,
the surplus produce from these regions could be exported to other parts of the world.
Therefore, the threat of extreme drought can be minimized through global cooperation.

4.4. Period of Dry–Wet Change

The dry–wet change occurs in a cycle of 12 years or multiples of 12, and the first
wet period (1757–1992) lasted a total of 236 years. By merging the period of 1985–1992
with the previous period of 1927–1984, we initially divided the first wet period into four
periods (long cycle) (Figure 6c). The average length of the initial wet period’s long intervals
was 59 years, which was nearly a 60-year interval. The average duration (13 years) of
all intermediate periods (the fourth step) in the initial wet period was comparable to the
12-year duration of the initial wet period. However, the duration of each interval in the dry
period was slightly shorter than 12 years. The first dry period lasted 214 years (1543–1756),
which is 26 years shorter than 240 years, and each period lasted 2 years less than two 12-year
periods. The average length of the long periods (first step) during the first dry period was
71 years, one year less than the 72-year period of the sum of the 60- and 12-year periods.
The average length of all intermediate periods (third step) during the first dry period was
9 years, or 3 years less than the 12-year average. These outcomes could reflect a 12-year
change that is influenced by both the lowest point of the solar cycle and ENSO [68,69].
The dry–wet change over 60 years might be impacted by the Pacific Decadal Oscillation
(PDO) [70], and the 120-year change could be linked to centennial-scale solar cycles [71].
Thus, the years of the dry–wet change can be roughly inferred using a 12-year or multiple
12-year cycle. The duration of the short period was 3–5 years in all dry and wet periods;
this finding was in agreement with several previous studies. For example, the droughts in
the region presented a 4-year periodic oscillation from 1961 to 2009 [72]. The main period
of dry–wet changes in China lasted 4.4 years [73]. Even in Southern Africa, floods also
occurred in one period with four years [74]. These periodic changes are all related to the El
Nino and La Nina phenomena [75]. Therefore, that the shortest period of dry–wet changes
in the region, and even in China, lasts 3–5 years indicates that China is deeply affected by
these two phenomena.

5. Conclusions

The tree-ring data of Carya cathayensis were used to establish a chronology and restore
the PDSI3 of the ecotone between farming and animal husbandry along the Great Wall for
the period of 1540–2019. The stepwise function method was used to study the periodicity
of the dry–wet changes. There were two dry cycles and one wet cycle during the 477 years
considered in this study. Each dry–wet period was divided into different levels, including
long (decades), intermediate (10 years), and short periods (several years, less than 10 years).
In the first dry period, the change range of the PDSI38 value was not high for all periods
(from the first to the fifth steps), indicating that the region maintained a stable dry–wet
status. However, in the short period (the sixth step), there were periods of severe drought
(1633–1645). In the first wet period, the fluctuations in the PDSI38 values were very small
in each individual period. The capacity for the regulation of regional floods was stronger
than that of regional droughts, and the values of the PDSI38 changed smoothly during
this period; thus, the conditions were favorable for agricultural production. In the second
drought period, only the initial stage of the drought was analyzed. During this period, the
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changes in the dry–wet period were corrected and, thus, the region maintained a relatively
stable status. Compared with floods, droughts pose a greater threat, not only in China but
throughout the entire world. Therefore, we should plan and implement effective measures
to prepare for the severe droughts that may occur in the future. Notably, the durations of
the long, intermediate, and short periods of the dry–wet periods were consistent with those
indicated in a 12-year or multiple 12-year cycle; thus, the information in the sexagenary
can be used to predict the occurrence of droughts and floods in China.
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