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Abstract: To achieve the goals of “carbon peaking and carbon neutrality”, this paper puts forward
the connotation and measurement method for the carbon emission intensity of urban industrial land
and conducts an empirical study with the Yangtze River Economic Belt (YREB) as an example. We
defined the carbon intensity of urban industrial land as the industrial carbon emissions per unit
area of land, which is a spatial mapping of urban industrial economic development and carbon
spillover and a key indicator for urban and territorial spatial planning oriented towards the “dual
carbon” goal. Findings: The carbon emission density of industrial land in the YREB varied greatly
between cities and exhibited significant positive spatial autocorrelation. In addition, the geographical
pattern and spatio-temporal evolution model of the urban industrial land carbon emission density
had a very complex driving mechanism, and different factors had significant synergistic effects.
Therefore, it is suggested that while striving towards the goal of “dual carbon”, the government
should incorporate the carbon emission density indicator of urban industrial land into the urban and
territorial spatial planning system, and based on the threshold of the medium suitable density, they
should design differentiated management policies according to concrete urban policies and encourage
cooperation among cities to jointly promote carbon emission management of urban industrial land.
In policy design, emphasis should also be placed on highlighting the interactive effects of foreign
direct investment, fiscal expenditure, and the number of patent authorizations as well as constructing
a combination of policies centered around them to better leverage the impacts of globalization,
government intervention, and innovation.

Keywords: carbon emission; density; industrial land; urban planning; Yangtze River Economic Belt

1. Introduction
1.1. Research Background

More and more governments, scholars, and businesses are now beginning to take
notice of global warming caused by greenhouse gas emissions. Land-use change, as a
principal element influencing global climate change and the carbon cycle, alters natural
carbon processes at the surface and also affects the rate of the carbon cycle by changing
the intensity of human energy consumption. The industrial sector is one of the most
important sources of carbon emissions, and there is a close link between the spatial layout
of industrial land and the types of industries and carbon emission density [1]. Therefore, it
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is a growing concern that strict control and the adjustment of land-use structures, especially
strengthening the management of carbon emissions from industrial land use, can effectively
mitigate global climate change. The World Cities Report 2022: Envisaging the Future of
Cities, published by UN Habitat, stresses managing urban density in the context of multiple
urban challenges as a key challenge for sustainable urban construction in the future. From
the history of urban construction in China and abroad, it has been found that density
has not only been applied to the measurement of urban form, but has also gradually
evolved into an important starting point for dealing with urban problems, controlling
urban form, and regulating the relationship between man and land in different periods [2,3].
Therefore, density research has outstanding theoretical and practical significance for urban
construction management, and it is also the core proposition related to the sustainable
construction of cities in the future.

Urban planning and land spatial planning, as the government’s public intervention on
the built environment, aim to ensure space supply, protect public interests, and overcome
market failure. For urban and land spatial planning, density is an important indicator for
measuring the coordination of land resource allocation, urbanization level, and spatial
development quality [4,5]. Carbon emission density refers to the carbon emissions per unit
land. As a new key indicator in urban and land spatial planning, the carbon intensity reflects
the spatial evolution of cities and their regions in terms of land-use intensity, the level of
economic development, and urban construction, serving as an index that represents how
much of the city’s “dual carbon” goal is achieved. The change in the carbon emission density
of urban industrial land, in essence, is the result of the continuous inflow and outflow of
urban industrial resources and enterprise clusters, employed population and human capital,
industry and innovation capital, and other factors. It is accompanied by changes in the
population density, employment density, economic density, and building density in urban
spaces. Therefore, an empirical study on the geographical pattern, evolutionary pattern,
and driving mechanism of carbon density of industrial land in urban agglomerations based
on the spatial measurement model will provide key evidence and information for urban
planning and territorial spatial planning to serve the goal of “carbon peaking and carbon
neutrality”, with a great theoretical and practical value.

1.2. Literature Review

The carbon emission density of industrial land is an emerging tool to measure the
relationship between the scale of industrial carbon emissions and the area of industrial
land occupied. Therefore, the literature review needs to take into account the research
results on carbon emissions of land use and industrial development and use the ideas and
methodological innovations from urban and territorial spatial densities, such as population
density and building density.

1.2.1. Land Use and Carbon Emissions

Carbon emissions come from a variety of sources, with carbon emissions from land use
ranking second after fossil fuel consumption. Economic development leads to changes in
land use and has a significant impact on the carbon cycle in nature. Therefore, an in-depth
analysis of the relationship between land-use carbon emissions and economic growth is
of great significance to the scientific development of energy conservation and emission
reduction programs, and it is also the key to promoting regional carbon neutrality as well
as the sustainable development of the society [6]. Since the 1970s, an increasing number of
scholars have been involved in research on land-use carbon emissions, summarized into
the following areas and features: research related to land-use carbon sources and sinks
from the perspective of the carbon cycle in terrestrial ecosystems, mainly dealing with
the accounting of land-use carbon stocks and fluxes and their influencing factors [7,8];
correlation analysis of the relationship between carbon emissions and economic growth
or factors of production based on land carbon emissions using econometric methods such
as the gray correlation model [9], the coupled coordination degree model [10], and the
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decoupling model [11]; and research related to low-carbon development policies for land
use under the “dual carbon” goal, that is, to portray the evolution models of land-use carbon
emissions through methods such as spatial autocorrelation and cold–hot spot analysis and
to further propose their policy implications. For example, Sidorczuk-Pietraszko [12] studied
the spatial differences in household carbon intensities between different regions in Poland
by means of exponential decomposition analysis (IDA); Rong [13] also found that there is
an obvious spatial correlation between land-use carbon emissions in Chinese provinces,
and thus suggested that China should strengthen the inter-provincial cooperation in order
to achieve an overall emission reduction across the country.

1.2.2. Carbon Emissions from Industries

The industrial sector, as an important source of carbon emissions from human activi-
ties, shoulders the important responsibility of energy conservation and emission reduction,
and it faces the important and urgent task of how to control and reduce carbon emissions
while pursuing the high-quality development of industry and promote the mutual harmo-
nization of economic development and resources and the environment. As a result, the
study of industrial carbon emissions has become a hot topic. At present, the research on
industry-related carbon emissions mainly focuses on the following three areas: The first
is the research on carbon emission measurement and energy conservation and emission
reduction in specific industrial sectors or industries, including the communications and
transportation industry [14,15], tourism [16], agriculture [17], services [18], and construc-
tion [19], with topics involving carbon emission measurement and prediction methodology,
influencing factors, spatio-temporal analysis, and the link between carbon emissions and
economic development. The second is the research on the influencing factors of industrial
carbon emissions, including the energy structure, industrial structure, economic output,
population size, energy intensity, urbanization rate, technological progress, and foreign
trade and is mostly based on index decomposition analysis, structural decomposition
analysis, IPAT or STIRPAT models, and other econometrics and regression analysis meth-
ods [20,21]. The third is the research on industrial carbon transfer, carbon leakage, implied
carbon emissions, and the differential responsibility for carbon reduction. With the evolu-
tion of regional economic development patterns, inter-regional industrial transfers have
become more frequent, producing different environmental effects on the transferring places.
In this context, some scholars have carried out research on the scale calculation, influencing
factors, and mechanism of industrial carbon transfer and analyzed the relevance of indus-
trial carbon emissions and its transmission network characteristics along the industrial
chain [22]. Research on the differential responsibility for carbon emission reductions has
mainly centered on the “polluter pays” principle, from which the principles of “responsibil-
ity within national territories” and “producer burden of pollution” have been derived [23].
Depending on the principles of “producer burden of pollution” and “consumer burden of
pollution”, scholars have put forward new principles such as “common sharing between
importing and exporting countries” [12], “common sharing between producers and con-
sumers” [13], and “common sharing between upstream and downstream of the industrial
chain” according to different research objects [24,25].

1.2.3. Urban and Territorial Spatial Density

In human civilizations, cities are spatial carriers where factors such as population,
resources, technology, and information are highly concentrated, and density, as a visual
representation of the degree of spatial concentration of these factors, has become a key
indicator for understanding the efficiency of the distribution of the various factors in cities
and their spatial formations in a complex mega-system. Since the emergence of urban plan-
ning and territorial spatial planning, attention has been paid to the study of urban density,
mainly on the following areas: The first is the research on the urban density measurement
indicators and evaluation mechanism. Urban density research originated from population
density analysis [26] and then expanded to building density [27], economic density [28],
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environmental density [29], employment density [30], land density [31], and road network
density [32]. The second is the research on the spatio-temporal differentiation of urban
density. Leveraging the exploratory spatial data analysis, Theil coefficient, coefficient of
variation, Markov chain, kernel density estimation, and other models, it explores and
empirically analyzes the laws of spatial differentiation, dynamic evolution, and spatio-
temporal evolution of urban density at different scales [33,34]. The third is research on
the interaction between urban density and other factors. It analyzes the impact of urban
density on the economic efficiency, technological innovation, and land-use patterns and
intensities. For example, Hong [35] found that when the urban population size is less
than 1 million, increasing the urban density promotes carbon emission reduction; on the
contrary, it will lead to more carbon emissions. Lee [36] and Li [37] analyzed the impact of
urban morphology—particularly population density and building density—on household
carbon emissions and household electricity consumption. It also explores the driving
factors and mechanisms of the dynamic evolution and spatio-temporal evolution of urban
density, revealing the key influencing factors and their pathways of action. For example,
using geographically weighted regression models and Baidu heat maps, Zhang [38] found,
in a case study of Wuhan, that residential workplaces, education levels, and the quality of
urban landscapes are key indicators of real-time urban human activity density. Of note,
the carbon emission density shares a similar concept with the population density, charac-
terized by spatial clustering and mobility. Therefore, we can define the carbon intensity
of industrial land as the ratio of the carbon emissions from the production of industrial
enterprises, as well as the carbon emissions from the liquidity of the business and product
transportation, to the area of industrial land. The measurement of carbon emissions and
industrial land use is not limited to narrowly defined production processes and carriers
but includes supporting links such as transportation and productive services [39].

1.3. Research Gap

In general, scholars have conducted in-depth analyses on land use and carbon emis-
sions, industrial carbon emissions, and urban density, providing valuable references for
this study. However, there are still some vulnerable spots, which are mainly as follows:

First, industrial development, land use, and carbon emissions are closely related, but
existing studies generally separate the three to specifically study carbon emissions from
industrial development or land use without incorporating them into a unified research
framework. Simply calculating the carbon emissions of the industry without taking other
factors into account often fails to provide a comprehensive understanding of the industry’s
carbon emissions, leading to the unsatisfactory implementation of carbon emission man-
agement policies for industrial land. With the factor of “land area occupied by industrial
activity space” taken, the implementation of industrial carbon emissions to the land, focus-
ing on the industrial carbon emission scale to the industrial carbon emission density, so as
to organically integrate land use, industrial development and carbon emission management
will be of great value to the policy design of energy conservation and emission reduction,
industrial development, and land use under the “dual carbon” goal.

Second, most of the existing studies regard the study area as a separate entity and rarely
discuss the spatial effect of carbon emission density from the perspective of geography
and spatial interaction. No spatial econometric model has been selected for the regression
analysis, which affects the accuracy of the results and conclusions. Cities and regions
constitute an open system where information and resources flow and are exchanged
constantly between cities or regions, and spatial elements tend to overflow. The first law
of geography states that things that are closer in space are more dependent on each other;
that is, the spatial autocorrelation of the attribute values is more significant. Wu [40] and
Dong [41] have conducted exploratory research on carbon emission density, but it should
be noted there are weaknesses in their studies. The former focused on the carbon intensity
of agricultural land rather than industrial land, and its analytical results and conclusions
are more applicable to rural planning than to urban and land spatial planning. The latter
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used the extended Kaya constant equation and the log-mean Divisia index model rather
than a spatial econometric model and failed to capture the impact of spatial effects.

1.4. Research Question

The objective of this paper is to discuss the following issues: First, in the dimensions
of urban planning and territorial spatial planning disciplines, what is the connotation
and value of the concept of carbon emission density of industrial land, and how can it be
measured quantitatively? Second, what are the regular characteristics of the geographical
pattern and spatio-temporal evolution model of carbon emission density of industrial
land? Third, what are the factors and how do they affect the carbon emission intensity of
industrial land? This article takes the YREB as an example to empirically analyze the above
issues through spatial econometric models, aiming to provide key information and a basis
for dual-carbon-goal-oriented urban industrial planning and national spatial planning.

2. Materials and Methods
2.1. Study Area

The YREB is home to 11 provincial administrative regions, including Jiangsu, Zhejiang,
Anhui, Jiangxi, Hubei, Hunan, Sichuan, Yunnan, Guizhou, Shanghai, and Chongqing,
and the administrative units of this study area include 110 cities. In the study area, 16
autonomous prefectural regions and 3 provincial counties were excluded due to a significant
amount of missing data or poor data quality, the former being Enshi in Hubei, Xiangxi in
Hunan, Aba in Sichuan, Ganzi in Sichuan, Liangshan in Sichuan, Qianxinan in Guizhou,
Qiandongnan in Guizhou, Qiannan in Guizhou, Chuxiong in Yunnan, Honghe in Yunnan,
Wenshan in Yunnan, Xishuangbanna in Yunnan, Dali in Yunnan, Dehong in Yunnan,
Nujiang in Yunnan, and Diqing in Yunnan and the latter being Xiantao, Qianjiang, and
Tianmen in Hubei (Figure 1).
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The YREB is a major strategic space for regional development at the national level,
alongside the Beijing–Tianjin–Hebei region, the Guangdong–Hong Kong–Macao Greater
Bay Area, and the Yellow River Basin, with a good industrial base and urban construction.
The YREB plays a crucial role in the construction of China’s new plan and is highly
representative in both global industrial clusters and urban agglomerations. The Chinese
central government put forward the Outline of the YREB Development Plan in 2016,
as well as the Implementation Plan for the Development of the YREB under the 14th
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Five-Year Plan and the Opinions on Several Policy Measures to Further Promote the High-
Quality Development of the YREB in 2021 and 2023. All these documents call for industry
transformation and green development in the YREB, the synergistic promotion of ecological
environmental protection, and sustainable economic development, so as to build a beautiful
China model, where human beings and nature coexist in harmony. The YREB accounts for
up to 40% of the country’s population size and economic output and more than one-third
of its carbon dioxide emissions. Therefore, strengthening the carbon emission management
of industrial land for the high-quality green development of the YREB has become a key
issue that needs to be solved urgently.

2.2. Research Methods
2.2.1. Carbon Emission Density of Industrial Land (CEDIL)

The concept of density has its origins in physics and is a measure of mass in a given
volume, measured by dividing the mass of an object by its volume. Sociology, economics,
geography, ecology, and urban and territorial spatial planning have drawn on the physical
concept of density to introduce the concepts of population density, economic density,
species density, and urban density, all using area instead of volume in the measurement
of these emerging concepts. Drawing on the measurements of emerging concepts such
as population density and economic density, this study proposes the concept of carbon
intensity, which is measured by dividing the total amount of carbon emissions in a given
area by its area. In particular, the carbon intensity of industrial land use is equal to the total
industrial carbon emissions of each city divided by the total area of industrial land use,
in tons per square kilometer. With ILAi to represent the total industrial land area (square
kilometer) of the ith city in the study area and CEIi to represent the total industrial carbon
emissions of the ith city, the carbon intensity (CEDILi) of the industrial land is calculated
as follows:

CEDILi =
CEIi
ILAi

(1)

CEDILi stands for carbon emissions per unit of industrial land area, which is a relative
concept compared to the absolute concept of total carbon emissions and represents the
average carbon emissions from industrial land within a city. Carbon intensity and carbon
emissions per capita are also common relative concepts, with the former referring to the
total carbon emissions of a region divided by its GDP and the latter referring to the total
carbon emissions of a region divided by its population. Total carbon emissions, carbon
intensity, and per capita carbon emissions are commonly used indicators in urban and
territorial spatial planning; however, they have a major drawback: weak correlation with
land. Urban and territorial spatial planning manages the land and the elements it carries
(population, buildings, businesses, etc.), and density control, especially density zoning, is a
key tool for planning. Notably, the carbon intensity is further mapped by integrating both
land and carbon emissions into a spatial zoning scheme for carbon intensity. Therefore,
CEDILi is more advantageous than the indicators carbon emission scale, intensity, and per
capita emissions and is more applicable to the preparation and management of urban and
territorial spatial planning.

2.2.2. Boston Consulting Group (BCG) Matrix

The Boston Matrix originated in the field of corporate development strategy analysis
and is a good method for quantitatively measuring the development trends of a company’s
business or product market. By integrating two indicators, such as the relative share and
growth rate of a business or products, it is possible to select the most appropriate company
plan from among four types of alternative development strategies (star, gazelle, cow, and
dog) [42]. With the average growth rate (growth rate, GRi) from 2010 to 2020 to represent
the trend of change in the time dimension, and the relative share (relative share, RSi) in
2020 to quantitatively measure the regional ecological niche of each city from a spatial
perspective, the Boston Matrix enables the quantitative portrayal of the spatio-temporal
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evolutionary pattern of CEDIL in the YREB. CEDILi−end and CEDILi−star represent the
carbon emission density of industrial land in the ith city in the end and base periods,
respectively, and CEDILmax−end represents the maximum value in the study area at the end.
GRi and RSi are calculated using the following equation [43]:

RSi = RSi (2)

GRi = GRi (3)

The median values of GRi and RSi were used as thresholds in this study, because they
can eliminate artificial interference in the analyzed results and provide a more balanced
classification scheme. According to the classification results based on the spatiotemporal
evolution model, the 110 cities in the YREB are classified into four types, with high-carbon
and high-growth cities (HCHG cities) representing the GRi and RSi of the YREB CEDILi,
which are greater than the median, indicating a very bad state. Low-carbon and low-growth
cities (LCLG cities) represent the GRi and RSi of the YREB CEDILi and are less than the
median, indicating a desirable state. High-carbon and low-growth cities (HCLG cities)
show that the GRi of the YREB CEDILi is less than the median, while the RSi is greater
than the median, with a positive trend from bad to desirable conditions. Low-carbon and
high-growth cities (LCHG cities) present a GRi for the YREB CEDILi that is greater than the
median, while the RSi is less than the median, with a tendency to change from desirable to
bad conditions.

2.2.3. Global Moran’s Index and Cold–Hot Spot Analysis

Spatial effect detection is a prerequisite for the scientific selection of regression analysis
models, and if the dependent variable has strong spatial autocorrelation and heterogeneity,
the spatial measurement model is selected to have a higher accuracy than the traditional
statistical regression model. In this study, we use Moran’s I to quantify the global auto-
correlation of the total industrial land area, total industrial carbon emissions, industrial
land carbon emission density, and their spatiotemporal evolution models. Zero is a key
threshold for measuring spatial autocorrelation properties, where values greater than zero
represent positive autocorrelation. The maximum and minimum values of the Moran index
are 1 and −1, respectively, with a larger absolute value indicating stronger spatial corre-
lation. To further visualize the local spatial pattern of spatial autocorrelation, this study
uses the cold–hot spot analysis tool and introduces the Getis − OrdG*

i index to identify the
areas where high and low values are clustered. With Wij as the spatial weight matrix, 1
representing spatial adjacency, and 0 representing spatial disjacency, Moran′s I and G*

i (d)
are calculated as follows [44,45]:

Moran′s I =
n
S0

×
∑n

i=1 ∑n
j=1 Wij(CEDILi − CEDIL)(CEDILj − CEDIL)

∑n
i=1 (CEDILi − CEDIL)2 , S0 = ∑n

i=1 ∑n
j=1 = Wij (4)

G∗
i (d) =

∑n
i=1 Wij(d)CEDILi

∑n
i=1 CEDILi

(5)

2.2.4. Geodetector

Geodetector is the most commonly used spatial econometric model. Its main advan-
tage is that it can measure the driving effect of a single factor and analyze the correlations
between different factors. We employed Geodetector to analyze the driving mechanism of
the carbon emission intensity of industrial land, quantifying the influences of measurement
factors, pathways, and interactions [46]. Firstly, we discretized the source data of the
independent variable (Xi). During the research process, the quantile method using Python
was employed to divide the 110 cities in the study area into multiple zones and form
multiple zoning schemes. Secondly, we overlayed the geographical distribution pattern of
the dependent variable with the independent variable zoning scheme and analyzed the
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similarity between the two as measured using Geodetector and characterized by the q-
index. Thirdly, we took the scenario with the largest q-index as the final calculation for each
factor and conducted the impact analysis of the different factors. It should be noted that the
maximum value of the q-index is 1, with larger values representing a stronger single-factor
influence or dual-factor interaction. For example, for the driving factors Xi and Xj, q(Xi)
and q(Xi ∩ X j) represent their single-factor driving force and dual-factor interaction, while
Min(q(Xi), q(Xj)), Max(q(Xi), q(Xj)), q(Xi) + q(Xj)) represent the minimum, maximum, and
sum of their single-factor driving forces. In the analysis of the interaction, the interactions
were classified into five types by analyzing the dual-factor interaction in comparison with
the maximum value of the one-factor interaction effect, the minimum value, and the sum
of the two [47]. When q(Xi ∩ Xj) < Min(q(Xi), q(Xj)) and Min(q(Xi), q(Xj)) < q(Xi ∩ X j)
< Max(q(Xi)), q(Xj)), it is determined that the interaction between the driving factors Xi
and Xj is nonlinear weakened and single nonlinear weakened, respectively. It indicates
that there is antagonism between the two, and it is necessary to avoid the combination of
the two in the future policy design. When q (Xi ∩ Xj) > Max(q(Xi), q(Xj)) and q(Xi ∩ X j) >
q(Xi) + q(Xj), it is determined that the interaction is of bifactor enhancement and non-linear
enhancement, respectively. It indicates that the two are synergistic, and it is necessary to
encourage the combination of the two in the future policy design. When q(Xi ∩X j) = q(Xi)
+ q(Xj), it signifies that two factors are independent of each other and that factors can be
freely combined with other factors during the policy design [48,49]. The following is the
calculation formula for the relevant parameters [50]:

q = 1 − ∑l
h=1 Nhσ2

h
Nσ2 = q = 1 − ∑l

h=1 Nhσ2
h

Nσ2 (6)

SSW =
l

∑
h=1

Nhσ2
h (7)

SST = Nσ2 (8)

where h represents the number of partitions in the discretization result of the independent
variable data (the value range is an integer from 2 to 10), Nh represents the number of cities
in partition h, N = 110, σ2

h represents the variance of the dependent variable in partition h,
σ2 represents the variance of the dependent variable in the YREB study area, and SSW and
SST represent partition variance and total variance, respectively.

2.3. Indicator Selection and Data Source

The geographical pattern of carbon emission density of urban industrial land and its
change is a complex process, affected by the combined effect of economic scale, industrial
structure and industrialization level, government intervention, degree of opening up,
scientific and technological levels, and other factors. Based on the research experiences of
related scholars, we chose the gross domestic product (GDP) to represent the impact of
the scale effect of the urban economy in this paper [51,52], the proportion of the tertiary
industry (PTI) and per capita GDP (PCGDP) to represent the industrial structure and the
industrialization process [53,54], the fiscal expenditure (FE) to represent the impact of
government intervention [55], the international trade goods export (ITGE) and foreign
direct investment (FDI) to represent the influence of openness to the outside world and the
degree of globalization [56], and the number of patent authorizations (NPA) to represent
the impact of innovation [57]. It is notable that the distribution and evolution of carbon
density come close to the natural environment, especially the geomorphology [58], but they
are not included in the analytical framework of this paper due to the lack of the necessary
complete data.

Urban industrial carbon emission data came from the China City CO2 Emissions
Dataset, released by the China City Greenhouse Gas Working Group (CCG) on its website.
CCG is an urban greenhouse gas research and cooperation platform initiated and organized
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by the Center for Climate Change and Environmental Policy Research of the Academy of
Environmental Planning of the Ministry of Ecology and Environment (MEP), established
in June 2017. It regularly releases long time-series, full-caliber, and full-coverage data on
greenhouse gas emissions from Chinese cities. The industrial carbon emission list covers
carbon emissions from the ore, chemical, metal, and electronics industries, as well as carbon
emissions related to the production and use of other products, including industrial energy
consumption and industrial process emissions. The data on urban industrial land use
came from the China Urban Construction Statistical Yearbook, released by the Ministry
of Housing and Urban-Rural Development, which provides statistical data on urban
construction land use over a long time series and across all land types. Urban industrial
land is defined as land used for independently established factories, workshops, handicraft
workshops, production sites for construction and installation, and slag (ash) discharge
sites. There are three classes of industrial land according to the degree of disturbance to
the residential and public environment, the degree of pollution, and the degree of safety
hazards. And some cities, to meet the demand for the transformation and upgrading of
traditional industries into a high-tech, synergistic production space, combined production
space, and headquarters economy, have allocated land for new industries integrating
research and development, creativity, design, pilot testing, non-polluting production, and
other innovative industrial functions and their ancillary services to industrial land as well.
The impact factor data came from the China Urban Statistical Yearbook and were released
by the Department of Urban Socio-economic Survey of the National Bureau of Statistics
(Appendix A).

3. Results
3.1. Geographical Pattern Analysis
3.1.1. Industrial Carbon Emissions

From 2010 to 2020, the city with the highest industrial carbon emissions in the YREB
shifted from Shanghai to Suzhou-JS, with a decrease from 190.77 million to 143.67 million
tons. Huangshan has been the city with the smallest industrial carbon emissions, with a
decrease from 620,000 to 260,000 tons. Different from the decreasing trend of the maximum
and minimum values, the average and median industrial carbon emissions in the YREB both
increased to a certain extent, from 24.6636 and 17.2250 tons to 26.5923 and 20.3150 million
tons, respectively. It should be noted that the coefficient of variation of industrial carbon
emissions in the YREB decreased from 1.20 to 0.99, much higher than 0.36, showing high
spatial heterogeneity despite the decline [59] (Table 1).

Table 1. Descriptive statistics on ICE, UIL, and CEDIL in the YREB.

Parameter
Industrial Carbon Emissions Urban Industrial Land Carbon Emission Density of Industrial Land

2010 2020 2010 2020 2010 2020

MAX 19,077 14,367 739 538 5971 1655
MIN 62 26 0.14 0.49 10.44 2.47
AVG 2466.36 2659.23 31.61 37.06 201.65 157.06

Median 1722.50 2031.50 15.26 22.50 91.87 97.08
CV 1.20 0.99 2.41 1.74 2.86 1.48

The geographic distribution pattern of industrial carbon emissions in the YREB was
visualized through quartile spatial clustering analysis using GIS software(ArcGIS 10.4
produced by Esri company). It was found that in 2010, high-carbon cities formed four
agglomerations in the Yangtze River Delta (YRD) city cluster, Chengdu–Chongqing city
cluster, and southern Hunan, including Shanghai, Suzhou-JS, Chongqing, Ningbo, Wuxi,
Wuhan, Nanjing, Xuzhou, Qujing, Bijie, and Liupanshui. However, low-carbon cities were
agglomerated in western Yunnan, Anhui, and northern Sichuan, including Lu’an, Bozhou,
Ya’an, Ziyang, Lincang, Baoshan, Nanchong, Fuzhou, Suining, Suizhou, Bazhong, Zhangji-
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ajie, and Huangshan. The geographical distribution patterns of high-carbon cities showed
that in 2020, the YRD urban cluster rapidly expanded to northern Jiangsu, and the carbon
emissions of cities in central Zhejiang decreased rapidly; the Chengdu–Chongqing urban
cluster was connected to the northern Hubei, with cities such as Shiyan and Xiangyang
having transformed from low-carbon cities to high-carbon cities. Most of the high-carbon
cities in Hunan, Yunnan, and Guizhou were transformed into low-carbon cities. In 2020,
low-carbon cities were mainly found in the peripheral areas of provinces, especially in their
border areas, including southwestern Yunnan, the northeast of Sichuan, the west and south
of Hunan, the Yunnan–Sichuan–Guizhou border area, and the Jiangsu–Zhejiang–Anhui
border area (Figure 2).
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3.1.2. Urban Industrial Land

From 2010 to 2020, Shanghai remained the largest user of industrial land in the YREB,
despite a decrease from 739 to 538 km2. The city with the smallest industrial land use
changed from Tongren to Pu’er, increasing from 0.14 to 0.49. The average and median
industrial land in the YREB showed some growth, from 31.61 and 15.26 to 37.06 and
22.50 km2, respectively. The coefficient of variation of industrial land in cities in the
YREB decreased from 2.41 to 1.74 from 2010 to 2020, showing a spatial heterogeneity
trend consistent with industrial carbon emissions, but with a higher degree of spatial
differentiation (Table 1).

Most of the cities with a high value of industrial land in 2010 were clustered in the YRD,
while Chongqing and the Yunnan–Guizhou border area were also the centers of industrial
land clustering in the region, including Shanghai, Chongqing, Nanjing, Suzhou-JS, Wuhan,
Ningbo, Chengdu, Kunming, Hefei, Hangzhou, and Wuxi. Cities with low industrial land
value were mostly in Yunnan, southwestern Hunan, and northern Sichuan, including Huai-
hua, Lishui, Yibin, Shaoyang, Ya’an, Yingtan, Pu’er, Yuxi, Zhaotong, Baoshan, Zhangjiajie,
Lijiang, Bazhong, Lincang, and Tongren. During the 2010–2020 period, the YREB pushed
hard for industrial structure adjustment and upgrading, and Shanghai even proposed a
development strategy based on resource reduction, prompting major changes in the distri-
bution pattern of urban industrial land. Most of the cities with a high value of industrial
land in 2020 were concentrated in the border areas of Sichuan, Yunnan, and Guizhou, in-
cluding Shanghai, Chongqing, Wuhan, Chengdu, Ningbo, Nanjing, Suzhou-JS, Hangzhou,
Changzhou, Hefei, and Nantong. Most of the low-value cities with industrial land were
clustered in the northern Jiangsu–Anhui border area and the Chengdu–Chongqing urban
cluster, including Dazhou, Zhaotong, Shaoyang, Yuxi, Lishui, Liupanshui, Ezhou, Ziyang,
Zhangjiajie, Huaihua, Lijiang, Baoshan, Bazhong, Lincang, and Pu’er (Figure 2). Of note,
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the comparison between Figures 2 and 3 shows that the distribution pattern of industrial
carbon emissions is inconsistent with the industrial land in the YREB, and there is a large
spatial mismatch between the two. The results of the independent analysis separating the
two do not well reveal the real condition of carbon emissions from industrial land.
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3.1.3. Carbon Emission Density of Industrial Land

From 2010 to 2020, the city with the largest industrial carbon emission density in the
YREB changed from Tongren to Pu’er, with the value decreasing from 59.71 to 16.55 million
tons/km2. Huangshan remained the city with the lowest industrial carbon emissions,
dropping from 104,400 to 24,700 tons/km2. The average industrial carbon emission density
in the YREB decreased from 2.0165 to 1.5706 million tons/km2, while the median increased
from 918,700 to 970,800 tons/km2. It should be noted that the variation coefficient of
industrial carbon emission density in the YREB decreased from 2.86 to 1.48, and the spatial
heterogeneity level was much higher than that of industrial carbon emission and industrial
land use (Table 1).

Most of the cities with a high carbon emission intensity of industrial land use in
2010 were concentrated in the YRD urban cluster, including Tongren, Bijie, Qujing, Yuxi,
Lijiang, Lincang, Yibin, Liupanshui, Loudi, Shaoyang, Yichun, Huanggang, Neijiang, and
Huainan. High-value cities in 2020 shifted from the east to the central and western regions,
mostly concentrated in the border areas of Yunnan and southwestern Hunan, as well
as Yunnan and Guizhou, including Pu’er, Liupanshui, Yuxi, Ezhou, Qujing, Loudi, Bijie,
Dazhou, Leshan, Baoshan, Shangrao, Chizhou, Wenzhou, Lincang, and Huainan. In 2010,
the low-carbon intensity cities of industrial land use were mainly in west–central Yunnan
and Hunan, the border areas of Yunnan, Guizhou, Sichuan, and Chongqing, and central
Jiangxi (and expanding to Anhui and Zhejiang), including Shiyan, Zigong, Bengbu, Suqian,
Yancheng, Lianyungang, Bozhou, Nanchang, Chengdu, Shanghai, Ziyang, Fuzhou, Hefei,
Lu’an, Suining, Nanchong, Suizhou, and Huangshan. Most of the low-value cities in 2020
were concentrated in the Chengdu–Chongqing urban area, with a relative concentration in
the fringes of western Anhui and northern Hubei, including Xiangyang, Luzhou, Lu’an,
Guiyang, Kunming, Deyang, Wuhan, Hangzhou, Shanghai, Shiyan, Nanchang, Suqian,
Chengdu, Zigong, Suining, Nanchong, Suizhou, and Huangshan (Figure 4).
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3.2. Spatiotemporal Evolution Model Analysis

From the perspective of industrial carbon emissions, the median relative share and
growth rate were 0.14 and 12.46%, respectively. The classification based on these as
thresholds showed that high-carbon and high-growth cities (HCHG cities) were mostly in
the lower and middle reaches of the YREB, including Nanjing, Changzhou, Lianyungang,
Yancheng, Yangzhou, Zhenjiang, Wenzhou, Jiaxing, Huzhou, Shaoxing, Hefei, Wuhu,
Xuancheng, Jiujiang, Ganzhou, Yichun, and Shangrao. Low-carbon and low-growth cities
(LCLG cities) developed into three agglomerations in eastern Sichuan, northwestern Hubei,
and the border area of Hunan and Jiangxi provinces, including Suqian, Lishui, Huangshan,
Fuyang, Pingxiang, Ji’an, Shiyan, Xiangyang, Xiaogan, Huanggang, Suizhou, Changsha,
and Zhuzhou. High-carbon and low-growth cities (HCLG cities) were concentrated in
the central part of Zhejiang, southern Jiangsu, the border areas of Yunnan and Guizhou,
Chongqing, and its neighboring areas, including Wuxi, Xuzhou, Suzhou, Nantong, Huai’an,
Ningbo, Quzhou, Huaibei, and Anqing. Low-carbon and high-growth cities (LCHG
cities) were scattered in distribution except for some that were concentrated only in the
southwest of Yunnan, including Zhoushan, Bengbu, Suzhou, Lu’an, Bozhou, Nanchang,
Jingdezhen, Yingtan, Fuzhou, Jingzhou, Xianning, Shaoyang, Zhangjiajie, Yiyang, and
Yongzhou (Figure 5).
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From the perspective of urban industrial land, the median relative share and growth
rate were 0.04% and 35.82%. The classification based on these as thresholds showed
that most of the high-carbon and high-growth cities (HCHG cities) were concentrated
in the Chengdu–Chongqing urban cluster, including Xuzhou, Changzhou, Lianyungang,
Yangzhou, Zhenjiang, Suqian, Hangzhou, Shaoxing, Jinhua, Quzhou, Tongling, Chuzhou,
Nanchang, Ganzhou, Fuzhou, Wuhan, Shiyan, and Xiangyang. Low-carbon and low-
growth cities (LCLG cities) were in the middle reaches of the YREB, especially in the central
region of Jiangxi, including Wenzhou, Zhoushan, Lishui, Huainan, Huaibei, Suzhou, Lu’an,
Chizhou, Pingxiang, Xinyu, Shangrao, Ezhou, and Jingmen. Most of the high-carbon
and low-growth cities (HCLG cities) were clustered in the YRD, especially in the Jiangsu
and Anhui provinces, including Shanghai, Huai’an, Nanjing, Ningbo, Wuxi, Nantong,
Jiaxing, Huzhou, Yancheng, Hefei, and Wuhu. Low-carbon and high-growth cities (LCHG
cities) were scattered in the provincial fringe areas, including Huangshan, Fuyang, Bozhou,
Xuancheng, Yingtan, Ji’an, Yichun, Xiaogan, Suizhou, Shaoyang, Zhangjiajie, Yongzhou,
Guangyuan, Suining, and Neijiang (Figure 5).

From the perspective of carbon emission density of industrial land, the median relative
share and growth rate were 0.06 and −15.78%, respectively. The classification based on
these as the thresholds showed that high-carbon and high-growth cities (HCHG cities)
were mostly concentrated in the middle and upper reaches of the YREB, including Jingmen,
Xianning, Xiangtan, Yueyang, Changde, Yiyang, Chenzhou, Yongzhou, Huaihua, Loudi,
Panzhihua, Leshan, Dazhou, Bazhong, Liupanshui, Yuxi, Baoshan, and Zhaotong. Low-
carbon and low-growth cities (LCLG cities) were mostly concentrated in the Chengdu–
Chongqing urban cluster and the central part of Zhejiang, including Changzhou, Nantong,
Suqian, Hangzhou, Ningbo, Shaoxing, Jinhua, Lishui, Anqing, Huangshan, and Fuyang.
High-carbon and low-growth cities (HCLG cities) were in the north of Guizhou, including
Yichun, Huangshi, Xiaogan, Huanggang, Shaoyang, Neijiang, Guang’an, Zunyi, Anshun,
Bijie, Tongren, and Qujing. Low-carbon and high-growth cities (LCHG cities) were mostly
clustered in the southeast of Anhui, Jiangsu, and Jiangxi, including Nanjing, Lianyungang,
Huai’an, Yancheng, Yangzhou, Huzhou, Hefei, Bengbu, Chuzhou, Lu’an, Bozhou, and
Jingdezhen (Figure 5).

3.3. Driving Mechanism Analysis
3.3.1. Spatial Effects Detection

Table 2 shows that Moran’s I is greater than zero for all indicators, indicating that
the geographic patterns and spatial and temporal evolution patterns of industrial carbon
emissions, industrial land use, and industrial carbon intensity in the YREB are in significant
positive spatial autocorrelation. The spatio-temporal evolution patterns of industrial
carbon emissions from 2010 to 2020 and the geographic patterns of industrial carbon
emissions in 2010 and 2020 showed a high autocorrelation index. From the industrial carbon
perspective, the hot spots in 2010 and 2020 were concentrated in the Shanghai metropolitan
area, with a shrinking spatial scope. In 2010, most of the cold spot cities were in eastern
Sichuan and southwestern Yunnan, and in 2020, the cold spot cities expanded significantly,
covering most of the YREB. They formed a large agglomeration in the middle reaches of
the Yangtze River, centered on Hunan and Jiangxi, and extended into the lower reaches in
western Anhui and southern Zhejiang. In addition, they formed a second agglomeration
in the upper reaches of the Yangtze River, centered in Yunnan, Sichuan, and Guizhou
and extending into southwestern Yunnan. The hot spots of the spatio-temporal evolution
pattern from 2010 to 2020 were concentrated in the border area of Jiangsu province, Anhui
province, and Zhejiang province (around Nanjing metropolitan area), while the cold spots
formed three small clusters in eastern Sichuan, northern Hubei, and southern Hunan. The
spatial pattern of “center-periphery” is formed by sub-cold and cold spots and sub-hot and
hot spots in combination. It is worth noting that the sub-hot spots expanded in a beaded
pattern by leaps to the middle and upper reaches of the Yangtze River region, forming a
spatial structure of core-edge circles (Figure 6).
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Table 2. Spatial autocorrelation analysis on ICE, UIL, and CEDIL in the YREB.

Dimension Indicator Moran’s I P Z

Geographical patterns

Industrial carbon emissions in 2010 0.15 0.003 3.91
Industrial carbon emissions in 2020 0.21 0.001 5.17
Urban industrial land in 2010 0.08 0.006 3.44
Urban industrial land in 2020 0.07 0.036 2.29
Carbon emission density of industrial land in 2010 0.02 0.07 1.56
Carbon emission density of industrial land in 2020 0.17 0.001 4.96

Spatiotemporal
evolution models

Industrial carbon emissions in 2010–2020 0.26 0.001 6.56
Urban industrial land in 2010–2020 0.09 0.026 2.16
Carbon emission density of industrial land in 2010–2020 0.06 0.069 1.52
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According to the industrial land use, hot and sub-hot cities in 2010 were relatively
concentrated in the lower reaches of the YREB, especially in the border areas of Jiangsu,
Zhejiang, and Anhui. There were hot spot clusters formed in 2020, and most of the sub-hot
spot cities were distributed in Yunnan, with hot spots and sub-hot spots concentrated
in the upper reaches of the YREB. Cold spot cities in 2010 were scattered, forming small
clusters only in eastern Sichuan. Cold spot cities were mostly concentrated in the YRD
urban cluster in 2020, while sub-cold spots were mostly concentrated in the middle reaches
of the YREB and extended upward to the Chengdu–Chongqing urban cluster. The spatial
pattern of hot and cold spots was characterized by an upstream and downstream gradient
rather than a circle-edge structure. Most of the hot spot cities in the evolution model of
urban industrial land use from 2010 to 2020 were concentrated in the YRD urban cluster,
especially in Jiangsu province, while the cold spots were relatively concentrated in Jiangxi
and Yunnan provinces (Figure 6).

In terms of the carbon intensity of industrial land use, the hot spots in 2010 were fewer
and located in and around the Shanghai metropolitan area, while the sub-hot spots were
spread out in their neighboring areas. The hot spots and sub-hot spots shifted from the
lower to the upper YREB in 2020, mostly concentrated in Yunnan and its border area with
Guizhou, with a slight increase in the number of hot cities. Cold spots in 2010 covered most
areas and were mostly concentrated in the middle reaches of the Yangtze River, centered
in Jiangxi and Hunan, extending upstream to northern Guizhou and eastern Sichuan and
downstream to western Anhui and the southwest corner of Zhejiang. Cold spot cities
in 2020 shrank significantly, mostly concentrated in the YRD urban cluster, with a small
number concentrated in eastern Sichuan. Most of the hot spots in the spatio-temporal
evolution model from 2010 to 2020 were concentrated in Hunan in the middle reaches of
the Yangtze River, with a small part in the upper reaches in Yunnan and the sub-hot cities
distributed in their periphery. There were few cold spots, mostly in eastern Sichuan, with a
few in the central part of Zhejiang and southeastern Jiangxi.

3.3.2. Single Factor Driving Force

In terms of the geographic pattern, the FDI and FE showed the strongest influence on
the carbon emission intensity of industrial land as key factors. The NPA, ITGE, PCGDP,
and GDP were not less influential, and they were important factors. The PTI had a weak
and not statistically significant influence as an auxiliary factor. In terms of spatio-temporal
evolution patterns, the FE and NPA had the strongest influence on the carbon emission
density of industrial land as key factors. The ITGE, PCGDP, FDI, and GDP had comparable
influences as important factors. The PTI had the lowest influence as an auxiliary factor. Of
note is that the FDI was not statistically significant, and both the PCGDP and GDP were
not significant (Table 3). To sum up, there were significant differences in the influences
of different factors on the carbon emission density of industrial land. From a similarity
perspective, the FE was a key factor common to both geographic and spatio-temporal
evolution patterns, while the NPA, FE, ITGE, and GDP were important factors, and the PTI
was an auxiliary factor common to them. From the perspective of differences, the PCGDP
and FDI had more significant influence on the geographical pattern than spatio-temporal
evolution, while the PTI was just the opposite. In addition, most factors, including the
PCGDP, FE, ITGE, and FDI, showed greater influence on the geographical pattern than the
spatio-temporal evolution pattern. The PTI was the opposite of them, while the influence
of the GDP and NPA on both remained stable overall.
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Table 3. The impact of single factors on the geographical pattern and spatiotemporal evolution
pattern of CEDIL in the YREB.

Indicator
Geographical Patterns Spatio-Temporal Evolution Models

q p q p

GDP 0.10 0.02 0.10 0.07
PTI 0.03 0.33 0.08 0.04

PCGDP 0.13 0.04 0.11 0.10
FE 0.21 0.02 0.16 0.04

ITGE 0.16 0.00 0.12 0.03
FDI 0.24 0.01 0.10 0.28
NPA 0.16 0.04 0.15 0.01

3.3.3. Multifactor Interaction Effect

Regarding the interaction type, most of the factor pairs were of nonlinear enhancement,
with a few of bifactor enhancement, and there was a significant synergy between different
factors. This suggests that the current pattern and change in the carbon emission density of
industrial land is the result of a combination of factors. That is, different factors reinforce
each other, and each factor has a significant direct impact on the carbon emission density.
The additive effects produced by the interaction of different factors cannot be ignored. For
geographical patterns, there was a large number of factor pairs of bifactor enhancement,
including GDP and ITGE, GDP and FDI, GDP and NPA, PCGDP and ITGE, ITGE and
FDI, ITGE and NPA, and NPA and FDI. However, for spatiotemporal evolution patterns,
there was a very small number of factor pairs, only NPA and GDP and NPA and ITGE
(Tables 4 and 5). In terms of interaction intensity, FE and FDI showed the strongest
interaction on geographic pattern, followed by FE and ITGE and FE and GDP showing
significant interactions, with a comprehensive force exceeding 0.8 or even 0.9, far higher
than other factor pairs, considered as super-factor pairs. FE and NPA, PCGDP and FE,
PCGDP and FDI, PCGDP and NPA, PTI and FE, and PTI and FDI also showed high levels
of interaction and should therefore be taken into account together in future policy designs.
Multifactor pairs showed weaker interactions on spatio-temporal evolutionary patterns
than geographic patterns, with FE and FDI, FDI and PCGDP, PCGDP and FE, and PTI
and FE leading the way in the interacting force, which can be considered as super-factor
pairs. It is important to note that NPA and PCGDP, NPA and FE, NPA and FDI, and GDP
and PCGDP also showed non-weak interaction forces, and they are factor combination
options that should not be ignored in the policy design. Overall, multifactor interactions
are dominated by nonlinear enhancements with significant synergistic effects, and more
and more super-factor pairs are emerging. In particular, the interaction of FDI, FE, and
NPA with other factors showed a leading advantage, and they are the factors that should
be emphasized and prioritized during the portfolio policy design.

Table 4. The multifactor interaction effect on the geographical pattern of CEDIL in the YREB.

Indicator GDP PTI PCGDP FE ITGE FDI NPA

GDP 0.10
PTI 0.15 0.03

PCGDP 0.31 0.25 0.13
FE 0.81 0.39 0.59 0.21

ITGE 0.19 0.22 0.29 0.86 0.16
FDI 0.30 0.37 0.44 0.91 0.33 0.24
NPA 0.20 0.30 0.40 0.62 0.27 0.38 0.16
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Table 5. The multifactor interaction effect on the spatio-temporal evolution pattern of CEDIL in the
YREB.

Indicator GDP PTI PCGDP FE ITGE FDI NPA

GDP 0.10
PTI 0.29 0.08

PCGDP 0.42 0.33 0.11
FE 0.33 0.47 0.49 0.16

ITGE 0.30 0.28 0.32 0.38 0.12
FDI 0.38 0.36 0.51 0.58 0.30 0.10
NPA 0.26 0.30 0.44 0.43 0.28 0.40 0.15

4. Discussion

The analysis shows that there is not a synchronous linear relationship between indus-
trial land and its carbon emissions. Introducing the concept of carbon emission intensity
can well reveal the coupling relationship between the two, while better meeting the needs of
enabling carbon peaking and carbon neutrality through spatial planning. The comparison
of Figures 2–4 shows a large difference between industrial carbon emissions, industrial
land use, and industrial land carbon emission density. For example, in 2020, Shanghai was
the city with the largest industrial land use in the Yangtze River Economic Belt, but it was
not the city with the highest carbon emissions. Instead, Suzhou had the highest carbon
emissions, and Pu’er had the largest carbon emission density. The difference is universal,
not an exception. For example, in the YRD city cluster, except Shanghai, all other cities have
a high level of industrial land use, generally a medium or low level of industrial carbon
emissions, and low or medium level of carbon emission densities. These three are not only
different in their current patterns, but also increasingly in their evolution. For example, the
evolution of industrial carbon emissions, industrial land use, and industrial land carbon
intensity in Lincang present LCHG, LCLG, and HCHG patterns, respectively, completely
differently. This result suggests that for the goal of carbon peaking and carbon neutrality, it
is not enough to limit spatial planning to industrial land and the management of carbon
emission scale, and a new concept of carbon emission density needs is needed.

The analysis shows that there is a significant spatial difference in the carbon emission
density of industrial land in the YREB, with strong correlations between neighboring cities,
and the evolution of density emerges in different patterns, including HCHG, HCLG, LCHG,
and LCLG. Additionally, the spatial pattern and evolutionary pattern of carbon emission
density of industrial land is the result of the joint action of factors. The FDI and FE play
a key role in shaping spatial patterns, while the FE and NPA are key factors influencing
evolution patterns. Different factors interact with each other to amplify their effects, so the
final determination of the force of the factors should take into account rather than the direct
force of a single factor, as well as the influence of the association between other factors,
especially the strong interaction of the FE and FDI with other factors. It provides a scientific
basis for combining strategies in the policy design.

Urban density gained attention as a major issue for cities after the Industrial Revolu-
tion [60]. To alleviate the problems of dirtiness and overcrowding in Western industrial
cities, scholars from the early 20th century to the 1960s developed two schools of thought in
the study urban density: decentralization and centralization [61]. The former, represented
by Howard’s Garden City, created the idea of low density, while the latter, represented by
Corbusier’s Radiant City, created the idea of high density by advocating higher building
heights, more green space, and increased road widths. In the face of challenges such as
suburban sprawl, inner-city decay, and urban disease, the 1970s and 1990s saw the rise
of “new urbanism”, “smart growth”, and “compact city” concepts, with higher densities
dominating urban development [62]. City governments hope to address urban disease by
promoting the rebirth and revitalization of urban centers through high-density develop-
ment, mixed-use land use, and transit-oriented development to conserve land and reduce
energy consumption [63]. Since the beginning of the 21st century, scholars have begun to
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pay attention to and gradually attach importance to the negative effects of high-density
urban development, such as traffic congestion caused by excessive high-density urban
development, the declining living environment quality, insufficient green space, and serious
air pollution [64]. Based on the value trade-off between “economy, environment and peo-
ple” and the historical reflections on the development of cities with low and high densities,
the inverted U-shaped relationship between urban density and urban development benefits
has gradually become the consensus of academia and industry [65].

Carbon emission density is an important dimension of urban density, and based on
the results of the above analysis, we believe that it is also consistent with parabolic theory.
That is, the carbon emission density increases gradually in the early stage and begins to
decrease after reaching a peak (critical value). Both too high and too low carbon emission
densities pose problems for the sustainability of urban industrial land use, with a medium
density being superior to high and low densities [66,67]. Medium-suitable density can
balance the weaknesses of both high density and low density to maximize the economic,
environmental, and human benefits of urban industrial land management. There are two
possible reasons for the low carbon emission density of industrial land. First, the small
scale of industrial carbon emissions as a molecule indicates a high level of development of
greening and low carbonization of the industrial system. Significantly, for Chinese cities at
the current stage, the excessive pursuit of low carbonization or even zero carbonization in
industrial development implies high development costs and prices, which goes against the
healthy development of industries and cities. Second, the large size of industrial land use
as the denominator indicates extensive industrial land development. The non-intensive use
of industrial land will lead to a waste of land resources, as well as increased transportation
costs, high construction costs of supporting facilities and low interest rates. On the contrary,
a high carbon emission density in industrial land may also lead to two unhealthy situations.
On the one hand, the large scale of industrial carbon emissions as a numerator indicates that
high-emission, high-energy-consumption, and high-pollution industrial sectors account
for a high proportion of the industrial system, hindering industrial upgrading and high-
quality urban development. On the other hand, the small size of industrial land use as
the denominator indicates that the supply of industrial land resources is insufficient. In
this context, enterprises can only seek to meet the demand by increasing the land plot
ratio, and therefore, they put up high-rise buildings in large quantities, boosting the cost
of development.

It is important to note that the medium density is not a specific and fixed number
but a dynamic range, and the upper and lower limits may not be exactly the same across
regions and cities (Figure 7a). The values at the two ends of the medium density can be
determined in single-city sample studies using a time-series analysis; in large multi-city
sample studies, they need to be obtained using regional comparative analysis. In addition
to observing the pattern of change in the carbon intensity, the determination of values
should also take into account the local development characteristics and stage needs of the
study area. In addition, zoning can be traced back to the theory of locality and is a common
tool for spatial planning of cities and territories [68]. It is of great value to quantitatively
draw the carbon emission density planning zoning of urban industrial land and design and
implement differentiated management policies under the goal of “carbon neutral carbon
peak” for controlling the carbon emissions of urban industrial land. For specific study
areas, their internal members can be divided into several planning zonings using quantile
spatial clustering analysis, and the government needs to focus on ultra-high or ultra-low
density urban governance. It should be noted that the number of members in different
zonings should be in an olive-shaped structure of “small at both ends and large in the
middle”, and if, on the contrary, there is a dumbbell-shaped structure of being “large at
both ends and small in the middle”, it indicates unreasonable planning zoning of the carbon
emission density of industrial land (Figure 7a). In the process of introducing the concept
and algorithm of carbon density into spatial planning, planners need to pay attention to
the differences between planning systems of different countries and regions, as well as
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the regional characteristics of different study areas, especially the industrial supporting
features (transportation, logistics, and other productive services) [69].
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The greatest contribution of this paper is to put forward the concept and measurement
method of urban industrial land carbon emission density and discuss its connotation and
application value from the theoretical level. Many studies in the past have discussed the
relationship between urban density and carbon emissions [70,71]. For example, Norman
and Ishii argued that the medium density is most conducive to reducing carbon emis-
sions [72,73]. However, the variable used in these studies was total carbon emissions rather
than density. From the previous analysis, it can be seen that total carbon emissions and
density are two completely different concepts, and their geographical patterns and spatio-
temporal evolution also have significant differences. In traditional studies, we pay more
attention to the scale and intensity of carbon emissions (the relationship with economy)
while neglecting the connection between carbon emissions and space (i.e., carbon emission
density). Spatial planning requires us to find and solve problems from the perspective
of space. The carbon emission scale and intensity indicators do not match the needs of
spatial planning, while the carbon emission density solves the problem. To a certain extent,
proposing the concept of carbon emission density and its measurement method and estab-
lishing the direct relationship between carbon emissions and space is of great academic
innovation for spatial planning research. Therefore, the design of policies based on total
carbon emissions alone is incomplete, as the insufficient consideration of carbon intensity
is likely to cause failure in urban land-use planning under the “dual-carbon” goal. The
introduction of spatial econometric modeling to improve the accuracy of the analytical
results and conclusions is another marginal contribution of this paper. The industrial
carbon emissions, urban industrial land, and carbon emission density of industrial land
all have significant spatial effects, while most of the past studies chose linear regression
and other traditional statistical models, ignoring the influence of spatial heterogeneity and
autocorrelation on variables and their relationships.

As mentioned earlier, medium densities are more suitable for sustainable urban
development than high and low densities, and therefore, carbon emission control on
the YREB industrial sites should focus on both the low- and high-density ends. The
identification of interval thresholds for medium density is a prerequisite for policy design.
According to the numerical distribution structure of carbon emission density of industrial
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land in the YREB in 2020 and the balance of the number of members of different zoning
schemes (small at both ends, large in the middle), the suggestion is to set the upper
threshold to 1.5 million tons/km2 and the lower threshold to 500,000 tons/km2. Therefore,
the proportion of 28.18%, 42.73%, and 29.09% of high-, medium-, and low-density cities in
the YREB suggests that the distribution structure conforms to the “olive shape”, which is
reasonable (Figure 8).
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Figure 8. Threshold selection of CEDIL in the YREB.

For low-density cities including Nantong, Bozhou, Lishui, Bengbu, Jingzhou,
Chongqing, Ya’an, Ziyang, Fuyang, Zhuzhou, Mianyang, Hefei, Shaoxing, and Xiangyang,
they are faced up with a low-density spread of industrial land (Table 6). They need to
be guided by the concept of compact cities and smart growth in the future to moderately
control the spread and expansion of industrial land, coupled with industrial upgrading
and transformation, to gradually increase the carbon emission density of industrial land.
In particular, Chengdu, Zigong, Suining, Nanchong, Suizhou, and Huangshan have exces-
sively low carbon densities, and they urgently need to control the spread of low densities
on industrial land. In addition, low-density cities should be active in participating in
the regional carbon emission trading for industrial land and enhance their capacity for
sustainable development through inter-city ecological compensation transfers.

Table 6. The planning zoning of CEDIL in the YREB.

Zoning Cities

High
Density

Pu’er, Liupanshui, Yuxi, Ezhou, Qujing, Loudi, Bijie, Dazhou, Leshan, Baoshan, Shangrao, Chizhou, Wenzhou, Lincang, Huainan,
Xinyu, Shaoyang, Zhaotong, Wuhu, Yichun, Chenzhou, Pingxiang, Huaihua, Zhoushan, Tongling, Bazhong, Huanggang, Jingmen,
Xuzhou, Maanshan, Lijiang, Tongren

Medium
Density

Huaibei, Huangshi, Yongzhou, Guang’an, Jiujiang, Xianning, Yiyang, Xuancheng, Neijiang, Xiaogan, Yueyang, Changde, Xiangtan,
Suzhou-JS, Panzhihua, Zunyi, Jiaxing, Wuxi, Quzhou, Zhenjiang, Anshun, Suzhou-AH, Taizhou-JS, Huzhou, Taizhou-ZJ, Meishan,
Yangzhou, Jinhua, Yingtan, Yancheng, Nanjing, Ji’an, Guangyuan, Yichang, Chuzhou, Anqing, Ganzhou, Lianyungang, Huai’an,
Changsha, Ningbo, Jingdezhen, Zhangjiajie, Yibin, Hengyang, Changzhou, Fuzhou

Low
Density

Nantong, Bozhou, Lishui, Bengbu, Jingzhou, Chongqing, Ya’an, Ziyang, Fuyang, Zhuzhou, Mianyang, Hefei, Shaoxing, Xiangyang,
Luzhou, Lu’an, Guiyang, Kunming, Deyang, Wuhan, Hangzhou, Shanghai, Shiyan, Nanchang, Suqian, Chengdu, Zigong, Suining,
Nanchong, Suizhou, Huangshan

For high-density cities including Zhoushan, Tongling, Bazhong, Huanggang, Jingmen,
Xuzhou, Maanshan, Lijiang, and Tongren, they are characterized by high energy consump-
tion and high emissions in industry types (Table 6). Therefore, the focus in the future is
to increase the transformation of industrial structure and build a safe and clean energy
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system. Notably, Pu’er, Liupanshui, Yuxi, Ezhou, and Qujing have excessively high carbon
intensities, especially Pu’er, which, as a tourist city, should push the low-carbon transfor-
mation of existing industries. For high-density cities, priority should be given to adjusting
the land-use structure, promoting low-carbon and zero carbonization transformation of
industrial space, and quickly building a circular economic system and spatial pattern. The
influence of human economic behaviors on regional carbon emissions is to a large extent
based on the changes to the way industries are spatially planned, with land use as the
carrier. Meanwhile, they should also vigorously develop eco-industries and green services
and promote the gradual utilization of energy between industries while reducing fossil
energy consumption.

In addition, we suggest that all cities in the YREB include the carbon emission density
of industrial land in their land transfer standards to strengthen their direct control over
carbon emissions. The current criteria for the granting of industrial land in the YREB cities
focuses mainly on economic efficiency and is not sufficiently responsive to “dual-carbon”
objectives. For example, the policy provided in the “Standard Land” Control Indica-
tors for Industrial Land in Mianyang City takes the intensity of fixed assets investment
(104 yuan/mu), the average output value per mu (104 yuan/mu), the average tax per mu
(104 yuan/mu), and the plot ratio of industrial land as mandatory indicators, and it has no
environmental constraints related to carbon emissions. Therefore, it is recommended that
all cities incorporate the density and total amount of carbon emissions from industrial land
into land transfer standards and management policies as soon as possible, as a binding
indicator for the selection of urban industries and structural optimization, so as to promote
the low carbonization of the industrial system and economic development.

It is worth to note that close cooperation between different cities in the YREB has
been established, and as a world-class urban agglomeration, the YREB is closely linked to
other cities around the world [74]. And the analysis above shows that the carbon emission
density of industrial land in the YREB shows significant spatial heterogeneity and auto-
correlation. Therefore, it is necessary to develop policies to promote carbon peaking and
carbon neutrality in an orderly manner based on the differences in the carbon emission
densities of industrial land in different cities and to emphasize collaboration between differ-
ent cities in achieving the goals, including carbon emission trading between internal cities
and exchange and cooperation between external cities. Regional cooperation to promote
the low-carbon transformation of industrial structure is to fully leverage the comparative
advantages of each region under the constraint of carbon emission density, promote inter-
regional industrial transfer and integrated development, jointly cultivate innovative and
green industries, and optimize the combination of production and innovation factors in a
larger spatial range.

In the end, we suggest that all cities in the YREB should highlight the synergy
among multiple factors in designing policy systems and organically combine the poli-
cies to strengthen the indirect management of carbon emissions. For example, the FDI,
FE, and NPA, as super-interacting factors, have a leading advantage in interacting with
other factors, and significantly amplify their influence on the carbon emission intensity of
industrial land. Therefore, for globalization, government intervention, and technological
innovation represented by the FDI, FE, and NPA [75,76], it is necessary to design dedi-
cated supporting policies, and more importantly, to highlight their combined relationship
with related policies such as investment density, urban planning, and plot ratio control to
optimize management performance [77,78].

5. Conclusions

Industry is one of the largest sources of carbon emissions, and the management of
carbon emissions from industrial land is a key part to achieve the goal of “double carbon”.
This study conducted an empirical research based on the 2010–2020 carbon emission dataset
of urban industrial land use in the YREB and proposed the concept of carbon emission
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density of urban industrial land use and its measurement method from the perspective of
urban and territorial spatial planning. The findings are as follows:

First, the geographic patterns of industrial carbon emissions, urban industrial land,
and carbon emission density of industrial land did not agree with their spatio-temporal
evolution. The management of industrial land under the goal of “carbon neutrality and
carbon peaking” is incomplete if it is only concerned with the total amount of carbon
emissions, and it is necessary to incorporate the carbon emission intensity of industrial land
into the control system as soon as possible. Second, the carbon emission density of urban
industrial land showed significant spatial heterogeneity, with large differences between
different cities. This suggests that the design of carbon emission intensity control systems
for industrial land use needs to be city specific, with differentiated management policies
for different zonings. Third, the carbon emission intensity of urban industrial land showed
significant positive spatial autocorrelation. This demonstrates the need to strengthen
intercity cooperation in carbon intensity management, with a focus on pushing spatial
synergy in the upper, middle, and lower reaches of the YREB, especially in urban clusters,
metropolitan areas, and interprovincial border areas. Fourth, the geographical pattern
and spatio-temporal evolution model of urban industrial land carbon emission density
had a very complex driving mechanism, with prominent features of diversification and
ranking of influencing factors, and significant interaction effects among multiple factors.
Therefore, in the scheme design of the control system, the influence of key factors should be
emphasized, and attention should be paid to the coordination of multiple factors to realize
the “organic combination of policies”.

It should be noted that due to the difficulty of data quantification and the limitation of
data availability, we neglected the empirical analysis of single-city cases at the micro-scale
in this study when analyzing the geographic pattern, spatial, and temporal evolutionary
patterns of carbon emission intensity of the YREB’s multi-city industrial land at the macro-
scale, as well as its spatial effects and driving mechanisms. Additionally, the dynamics of
carbon reduction capacity are closely related to national, local, and urban strategies, but
they have not been empirically analyzed due to the lack of suitable quantitative indicators.
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Appendix A. Normalized Data on Industrial Land, Carbon Emissions, and Its Density

Urban Industrial Land Industrial Carbon Emissions Carbon Emission Density

2010 2020 2010 2020 2010 2020

Shanghai 0.0703 0.0461 0.2126 0.1319 0.0012 0.0015
Nanjing 0.0295 0.0314 0.0465 0.0310 0.0022 0.0042
Wuxi 0.0298 0.0256 0.0163 0.0176 0.0064 0.0061
Xuzhou 0.0290 0.0288 0.0101 0.0123 0.0101 0.0097
Changzhou 0.0134 0.0162 0.0118 0.0221 0.0040 0.0030
Suzhou-JS 0.0514 0.0491 0.0451 0.0305 0.0040 0.0067
Nantong 0.0145 0.0124 0.0162 0.0179 0.0031 0.0029
Lianyungang 0.0044 0.0109 0.0098 0.0128 0.0016 0.0036
Huai’an 0.0073 0.0073 0.0133 0.0086 0.0019 0.0035
Yancheng 0.0039 0.0096 0.0083 0.0093 0.0016 0.0043
Yangzhou 0.0098 0.0124 0.0080 0.0097 0.0043 0.0053
Zhenjiang 0.0125 0.0188 0.0103 0.0131 0.0043 0.0060
Taizhou-JS 0.0080 0.0114 0.0082 0.0084 0.0034 0.0056
Suqian 0.0023 0.0021 0.0047 0.0075 0.0017 0.0012
Hangzhou 0.0152 0.0108 0.0183 0.0303 0.0029 0.0015
Ningbo 0.0360 0.0265 0.0358 0.0326 0.0035 0.0034
Wenzhou 0.0080 0.0086 0.0100 0.0019 0.0028 0.0191
Jiaxing 0.0115 0.0127 0.0079 0.0085 0.0051 0.0062
Huzhou 0.0091 0.0105 0.0101 0.0078 0.0032 0.0056
Shaoxing 0.0075 0.0087 0.0080 0.0164 0.0033 0.0022
Jinhua 0.0104 0.0074 0.0046 0.0062 0.0079 0.0050
Quzhou 0.0099 0.0102 0.0053 0.0071 0.0065 0.0060
Zhoushan 0.0015 0.0046 0.0021 0.0015 0.0024 0.0123
Taizhou-ZJ 0.0094 0.0093 0.0133 0.0072 0.0025 0.0053
Lishui 0.0012 0.0007 0.0010 0.0011 0.0043 0.0027
Hefei 0.0055 0.0116 0.0189 0.0214 0.0010 0.0023
Wuhu 0.0102 0.0196 0.0080 0.0056 0.0045 0.0146
Bengbu 0.0033 0.0042 0.0061 0.0065 0.0019 0.0027
Huainan 0.0168 0.0176 0.0045 0.0046 0.0132 0.0159
Maanshan 0.0134 0.0204 0.0092 0.0088 0.0051 0.0096
Huaibei 0.0179 0.0098 0.0055 0.0048 0.0115 0.0085
Tongling 0.0086 0.0162 0.0027 0.0059 0.0113 0.0114
Anqing 0.0077 0.0070 0.0069 0.0076 0.0039 0.0038
Huangshan 0.0002 0.0001 0.0017 0.0026 0.0005 0.0001
Chuzhou 0.0031 0.0070 0.0056 0.0074 0.0019 0.0039
Fuyang 0.0036 0.0029 0.0026 0.0051 0.0049 0.0024
Suzhou-AH 0.0030 0.0054 0.0038 0.0040 0.0028 0.0057
Lu’an 0.0010 0.0015 0.0035 0.0033 0.0010 0.0019
Bozhou 0.0010 0.0024 0.0023 0.0036 0.0015 0.0027
Chizhou 0.0045 0.0073 0.0015 0.0015 0.0104 0.0198
Xuancheng 0.0069 0.0074 0.0030 0.0044 0.0081 0.0070
Nanchang 0.0038 0.0048 0.0108 0.0150 0.0012 0.0013
Jingdezhen 0.0033 0.0051 0.0054 0.0063 0.0021 0.0034
Pingxiang 0.0063 0.0066 0.0022 0.0021 0.0101 0.0128
Jiujiang 0.0081 0.0152 0.0067 0.0076 0.0042 0.0083
Xinyu 0.0096 0.0084 0.0032 0.0022 0.0106 0.0158
Yingtan 0.0018 0.0026 0.0008 0.0024 0.0078 0.0046
Ganzhou 0.0039 0.0076 0.0043 0.0084 0.0032 0.0038
Ji’an 0.0038 0.0038 0.0021 0.0038 0.0062 0.0042
Yichun 0.0080 0.0107 0.0020 0.0031 0.0138 0.0145
Fuzhou 0.0006 0.0040 0.0019 0.0057 0.0010 0.0030
Shangrao 0.0059 0.0073 0.0016 0.0015 0.0127 0.0199
Wuhan 0.0295 0.0192 0.0445 0.0535 0.0023 0.0015
Huangshi 0.0136 0.0121 0.0056 0.0060 0.0086 0.0084
Shiyan 0.0028 0.0029 0.0052 0.0083 0.0019 0.0014
Yichang 0.0092 0.0093 0.0091 0.0097 0.0035 0.0040
Xiangyang 0.0071 0.0068 0.0077 0.0128 0.0032 0.0022
Ezhou 0.0081 0.0073 0.0037 0.0009 0.0077 0.0320
Jingmen 0.0076 0.0077 0.0036 0.0031 0.0076 0.0103
Xiaogan 0.0056 0.0057 0.0018 0.0035 0.0112 0.0068
Jingzhou 0.0029 0.0035 0.0047 0.0054 0.0022 0.0027
Huanggang 0.0061 0.0039 0.0016 0.0015 0.0137 0.0105
Xianning 0.0032 0.0065 0.0037 0.0036 0.0030 0.0076
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Suizhou 0.0004 0.0004 0.0026 0.0054 0.0005 0.0003
Changsha 0.0072 0.0047 0.0087 0.0057 0.0029 0.0034
Zhuzhou 0.0069 0.0050 0.0068 0.0088 0.0036 0.0024
Xiangtan 0.0066 0.0126 0.0089 0.0078 0.0026 0.0067
Hengyang 0.0122 0.0054 0.0062 0.0073 0.0069 0.0031
Shaoyang 0.0041 0.0045 0.0010 0.0012 0.0148 0.0157
Yueyang 0.0064 0.0081 0.0049 0.0049 0.0045 0.0068
Changde 0.0052 0.0073 0.0054 0.0045 0.0034 0.0068
Zhangjiajie 0.0003 0.0006 0.0003 0.0007 0.0040 0.0033
Yiyang 0.0029 0.0041 0.0037 0.0023 0.0027 0.0073
Chenzhou 0.0101 0.0055 0.0073 0.0017 0.0049 0.0134
Yongzhou 0.0019 0.0040 0.0017 0.0020 0.0038 0.0084
Huaihua 0.0030 0.0016 0.0014 0.0005 0.0073 0.0125
Loudi 0.0133 0.0175 0.0029 0.0029 0.0164 0.0246
Chongqing 0.0504 0.0462 0.0578 0.0734 0.0031 0.0026
Chengdu 0.0088 0.0069 0.0259 0.0347 0.0012 0.0008
Zigong 0.0032 0.0014 0.0059 0.0072 0.0019 0.0008
Panzhihua 0.0095 0.0088 0.0070 0.0058 0.0048 0.0063
Luzhou 0.0056 0.0034 0.0041 0.0068 0.0049 0.0021
Deyang 0.0044 0.0024 0.0046 0.0061 0.0034 0.0016
Mianyang 0.0058 0.0043 0.0078 0.0079 0.0026 0.0023
Guangyuan 0.0020 0.0028 0.0017 0.0029 0.0041 0.0041
Suining 0.0005 0.0006 0.0022 0.0033 0.0008 0.0007
Neijiang 0.0076 0.0069 0.0020 0.0042 0.0134 0.0069
Leshan 0.0095 0.0107 0.0031 0.0022 0.0109 0.0201
Nanchong 0.0007 0.0006 0.0033 0.0058 0.0007 0.0005
Meishan 0.0034 0.0023 0.0016 0.0018 0.0075 0.0053
Yibin 0.0060 0.0060 0.0010 0.0080 0.0215 0.0031
Guang’an 0.0061 0.0060 0.0016 0.0030 0.0130 0.0084
Dazhou 0.0098 0.0071 0.0033 0.0014 0.0105 0.0206
Ya’an 0.0009 0.0014 0.0008 0.0023 0.0039 0.0026
Bazhong 0.0004 0.0012 0.0002 0.0004 0.0072 0.0113
Ziyang 0.0008 0.0005 0.0027 0.0008 0.0011 0.0026
Guiyang 0.0073 0.0066 0.0093 0.0147 0.0028 0.0018
Liupanshui 0.0216 0.0210 0.0043 0.0010 0.0176 0.0911
Zunyi 0.0074 0.0092 0.0023 0.0061 0.0113 0.0063
Anshun 0.0033 0.0040 0.0014 0.0028 0.0079 0.0059
Bijie 0.0250 0.0169 0.0020 0.0030 0.0450 0.0237
Tongren 0.0031 0.0039 0.0000 0.0019 0.2692 0.0087
Kunming 0.0156 0.0060 0.0211 0.0140 0.0026 0.0018
Qujing 0.0272 0.0169 0.0026 0.0024 0.0362 0.0295
Yuxi 0.0049 0.0090 0.0006 0.0011 0.0301 0.0332
Baoshan 0.0007 0.0022 0.0004 0.0005 0.0073 0.0199
Zhaotong 0.0013 0.0046 0.0006 0.0013 0.0084 0.0153
Lijiang 0.0018 0.0011 0.0003 0.0005 0.0226 0.0088
Pu’er 0.0011 0.0028 0.0007 0.0001 0.0059 0.0958
Lincang 0.0007 0.0018 0.0001 0.0004 0.0225 0.0171
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