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Abstract: Recent studies on self-supervised monocular depth estimation have achieved promising
results, which are mainly based on the joint optimization of depth and pose estimation via high-level
photometric loss. However, how to learn the latent and beneficial task-specific geometry representation
from videos is still far from being explored. To tackle this issue, we propose two novel schemes to
learn more effective representation from monocular videos: (i) an Inter-task Attention Model (IAM)
to learn the geometric correlation representation between the depth and pose learning networks to
make structure and motion information mutually beneficial; (ii) a Spatial-Temporal Memory Module
(STMM) to exploit long-range geometric context representation among consecutive frames both spatially
and temporally. Systematic ablation studies are conducted to demonstrate the effectiveness of each
component. Evaluations on KITTI show that our method outperforms current state-of-the-art techniques.

Keywords: self-supervised learning; monocular depth estimation

1. Introduction

Understanding the 3D structure of scenes is an essential topic in machine perception,
which plays a crucial part in applications such as autonomous driving, robot vision, visual
reality and so on [1–4]. For most scenarios, there is vast latent geometric information
existing in the input videos. One of the key challenges in this domain is how to acquire
effective task-specific geometry representation from videos to help obtain more accurate
and reliable depth information.

Recently, there have been some successful attempts [1,2,5] to execute monocular depth
estimation and visual odometry prediction together in a self-supervised manner by giving
full consideration of the transformation between consecutive frames. In this pipeline,
two networks are generally used to predict the depth and camera pose separately, which
are then jointly exploited to warp source frames to the target ones, converting the depth
estimation problem to a reprojection error minimization process, as shown in Figure 1a.

Despite various extensions of the self-supervised pipeline by adding more penalty
items [5–7] or joining with other tasks (optical flow or segmentation) [8,9], these methods
only design various high-level loss functions to combine and regularize the network
learning, neglecting to leverage valuable geometry representation from videos, e.g., inter-
task geometric correlation learning, inter-frame long-range dependency learning, and 3D
geometry consistency representation from continuous frames.

Intuitively, modeling the process of perceiving 3D structure from videos can be informed
by our human experience. According to the research in biology and neuroscience [10],
human brains process motion information during the inference of depth, and conversely,
the perceived depth information can bring significant benefits to motion estimation [11].
Inspired by this biological mechanism, we present an Inter-task Attention Module (IAM) to
guide the feature-level inter-task geometric correlation learning. It can enhance the interaction
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between the depth and pose estimation networks and is effective in making structure and
motion information mutually beneficial for improving estimation accuracy.

Figure 1. Comparison of the learning process of the general pipeline (a) and our method (b) for
self-supervised monocular depth estimation. Different from the general pipeline that learns the depth
feature FD and the pose feature FP separately using a 2D photometric loss L, we propose a new
scheme for learning better representation from videos. A memory mechanism M is devised to exploit
the long-range context from videos for depth feature learning. An inter-task attention mechanism A
is devised to leverage depth information for helping pose feature learning, which inversely benefits
depth feature learning as well via gradient back-propagation.

Furthermore, many psychologists believe that humans rely on not only immediate
sensory feedback but also perception memories from the past for understanding an environ-
ment [12,13]. Similarly, it is significant to help networks learn a representation leveraging
long-range context and memorizing historical information to disambiguate and realize
more precise perception. Therefore, we introduce a Spatial-Temporal Memory Module
(STMM) to learn spatial and temporal dependency from video clips and mimic the above
perception mechanism of human beings. We embody an STMM based on the Non-local
network [14], which is demonstrated to be effective in modeling long-range information,
after exploring various attention structures.

In summary, the learning process of our method is shown in Figure 1b, and our main
contributions are as follows:

• We devise an Inter-task Attention Module to exploit the inter-task geometric correla-
tion between depth and pose estimation networks. It learns attention maps from depth
information as guidance to help the pose network identify key regions to be targeted.
To the best of our knowledge, this is the first attempt to propose this idea for exploiting
the inter-task geometric correlation in self-supervised monocular depth estimation.

• We introduce a Spatial-Temporal Memory Module in a depth estimation network to
leverage the spatial and temporal geometric context among consecutive frames, which
is effective for utilizing historical information and improving estimation results.

• We conduct comprehensive empirical studies on the KITTI dataset, and the single-
frame inference result of our method outperforms state-of-the-art methods by a relative
gain of 6.6% based on the major evaluation metric.

2. Related Work
2.1. Inter-Task Monocular Video Learning

Ref. [1] proposed a fully unsupervised end-to-end network for training with monocu-
lar videos that can jointly predict the depth and pose transformation between consecutive
frames. The core technique is a spatial transformer network [15] to synthesize target frames
from source frames, which converts the depth estimation problem to a reprojection error
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minimization process. This pipeline was then extended by plenty of researchers. Ref. [6]
added a feature-based warping loss upon the original photometric loss and trained the
networks with stereo image pairs to resolve the scale ambiguity. Ref. [2] further proposed
an auto-masking strategy to handle situations where the camera is static or objects move at
the same speed as the camera, yielding more accurate results. Moreover, some works com-
bined depth and pose estimation with other tasks, e.g., normal, segmentation, and optical
flow estimation. Ref. [7] implemented the estimation of normal in scenes and incorporated
an edge-aware depth-normal consistency constraint. Ref. [16] used the Mask R-CNN [17]
model to extract semantic information and obtain pre-computed object masks to filter out
moving objects. Ref. [8] defined a cascaded network to jointly learn depth, pose, and optical
flow for handling rigid motions and moving objects separately, using a forward-backward
coherence loss. Ref. [18] also presented an architecture to simultaneously learn depth,
ego-motion, and optical flow and focused on enforcing cross-task consensus between depth
and optical flow. JPerceiver [19] jointly learn depth estimation, visual odometry, and Bird’s-
Eye-View segmentation. Despite the progress made by these methods, almost all of them
follow the pipeline in [1] that uses separate networks to learn depth, pose, and other tasks
without any interactions before being combined into the final loss. By contrast, we propose
an IAM to learn geometry information from the depth network as guidance to help the pose
network learn more valuable representation for pose estimation. Notably, the two tasks are
joint-optimized via high-level photometric error, which enables an interaction between two
networks via gradient back-propagation, meaning that depth tasks can also benefit from
the IAM and learn more useful representation to improve the estimation results.

2.2. Long-Range Representation Learning

Taking videos instead of single images as input is extremely important for many applica-
tions, such as autonomous driving, robotic vision, and drones. However, the rich long-range
dependency, including spatial and temporal correlations, is still far from being fully utilized to
eliminate ambiguity and obtain more consistent estimation. UnDeepVO [20] was proposed
as the first end-to-end visual odometry by combining CNNs and two stacking LSTMs to
achieve simultaneous representation learning and sequential modelling of the monocular VO.
Kumar et al. [21] proposed a convolutional LSTM-based network architecture for depth to
capture inter-frame dependencies and variations. Wang et al. [22] also adopted ConvLSTM
architecture, multi-view reprojection, and forward-backward consistency constraints to utilize
the temporal information effectively. These research efforts demonstrated that utilizing long-
range information from videos is helpful in learning more effective representation for both
depth and pose networks and improving the estimation accuracy. However, convolutional and
recurrent operations both process a local neighborhood, either in space or time [14]. And, all
these RNN methods focused only on temporal dependency learning without long-range spa-
tial context, which is not that useful for single image inference. Recently, Transformer-based
methods [23–27] are attracting researcher’s attention to use the stronger backbone to extract
better visual representation. MonoViT [26] introduces a Vision Transformer-based encoder
for self-supervised monocular depth estimation, leveraging both local and global reasoning
capabilities to achieve state-of-the-art performance on the KITTI dataset. PixelFormer [25] was
proposed as a novel pixel query refinement approach for monocular depth prediction, using
a Skip Attention Module to effectively fuse global and local features. MonoFormer [27] was
introduced as a deep analysis of self-supervised monocular depth estimation models, and
the authors proposed methodological enhancements to improve their generalization across
various environments. These Transformer-based methods achieve impressive performance
but require larger network structures and consume more computational resources. In this
paper, aligning with our lightweight network design, we introduce an STMM module to learn
long-range geometric relationships both spatially and temporally among pixels in consecutive
frames. We embody STMM based on the Non-local network [14] after exploring various
attention structures. STMM is demonstrated to be beneficial for both multi-frame training and
single-frame inference.
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3. Method
3.1. Problem Definition

A typical self-supervised monocular depth estimation pipeline is mainly built upon the
perspective projection among consecutive frames. Taking <It, It+1, . . . , It+n> as a training
video within time window N, once the depth Dt+n and camera transformation Tt+n→t are
obtained, we can warp the source frame It+n to reconstruct the target frame Ît+n→t using
the differentiable bilinear sampling approach [15], which can be formulated as

Dij
t Iij

t = KRK−1Dij
t+n Iij

t+n + Kt, (1)

where Iij
t+n is the homogeneous coordinate given image It+n and Dij

t+n denotes the depth
value of the view It+n. Given a rotation matrix R, translation vector t, and camera intrinsics
K, the transformed homogeneous coordinate Iij

t and depth Dij
t can be obtained. Thus,

the reprojected image coordinate Ît+n→t can be acquired by dehomogenization of Dij
t Iij

t .
Then, the self-supervised learning is conducted based on the difference between the

synthetic view Ît+n→t and the original view It:

Le = Lr(It, Ît+n→t). (2)

Here, Lr denotes a consistency measurement loss.

3.2. Network Architecture

As shown in Figure 2a, our network is composed of two main networks for depth
estimation and pose estimation, respectively. Meanwhile, the pose network is split into
two branches for the estimation of rotation and translation. The proposed IAM is used
to address the importance of geometric correlation representation between the depth and
pose tasks, while the proposed STMM is used to exploit the long-range geometric relevance
among continuous frames. The details of IAM and STMM are presented later.

Figure 2. Illustration of our network framework (a) and the architecture of the IAM (b) and the
STMM (c). The network takes three consecutive frames as input to learn the long-range geometric
correlation representation by introducing STMM after the encoder. The pose network is split into
two branches to predict rotation R and translation t separately. The IAM is applied after the second
convolution layer of both R and t branches, learning valuable geometry information to assist R and t
branches in leveraging inter-task correlation representation.

The depth network adopts an encoder–decoder architecture in a U-shape with skip
connections similar to DispNet [28]. The encoder is a Resnet18 [29] network pre-trained
on ImageNet [30]. Our depth decoder is similar to that of [2], using sigmoid activation
functions in multi-scale side outputs and ELU nonlinear functions [31] otherwise. Most
importantly, we take a three-frame snippet as the sequential input and stack the encoded
features as the input of the STMM to learn the temporal and spatial geometric correlations
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among video sequences during training. The outputs are then decoded into a three-frame
depth sequence.

The pose network takes two consecutive frames as input at each time and outputs
the corresponding pose transformation based on an encoder–decoder structure as well.
To generate more accurate estimations, the network is divided into two branches to calculate
R and t, respectively. In the feature encoding phase, the IAM is employed to produce the
attention from depth features as guidance for the R and t branches.

3.2.1. Inter-Task Attention Module

The IAM aims to leverage the latent geometric correlation between depth and pose
estimation tasks during learning. To exploit geometry information, features from the
penultimate layer of the depth decoder are first stacked in the same order as the input
sequence of the IAM. In the IAM, the features are first processed by an average pooling
layer and a max pooling layer along the channel axis and then concatenated together as
a compact representation, as previous studies [32,33] show that pooling layers can help
highlight features. Furthermore, a subsequent convolution layer is used to obtain the
attention maps.

The varying weights regarding different pixels in the learned attention maps guide the
R and t branches in deciding what feature should be the focus and prioritized. Therefore,
we use the attention maps to obtain scaled pose features by element-wise multiplication,
which are then added to the original pose features as a residual item. A schematic diagram
of the IAM is provided in Figure 2b, which can be formulated as

F′
p = Fp(Wc[AVP(Fmn); MAP(Fmn)]) + Fp. (3)

Here, Fmn represents the stacked depth features encoded from continuous frames Im and In
by the depth network, while Fp and F′

p denote the original pose feature and the attended
one, respectively. The average and max pooling layers are represented by AVP and MAP,
respectively, while Wc denotes the learnable weight of the convolution layer.

Intuitively, the geometric patterns of learned attention maps for the two branches
should be different or even opposite, as nearby regions tend to matter more to translation,
while distant pixels may play a more important role in deciding the rotation. The ablation
study and visualization results demonstrate that the IAM does learn different attention
patterns for the R and t branches from geometry information. They are utilized to guide the
pose network to learn more valuable and effective representation, improving estimation
accuracy for both tasks via joint optimization.

3.2.2. Spatial-Temporal Memory Module

Instead of learning representation from each frame individually [1,2,5] in the depth
network, we introduce an STMM to leverage and aggregate long-range geometric correlation
from both a spatial context and a temporal context to obtain a more representative feature
embedding for depth estimation. To this end, various attention structures can be leveraged,
including SE [34], CBAM [32], and Non-local attention [14]. After a comparison study, we
found that Non-local attention is more effective at capturing long-range context. Thereby,
we chose it to embody STMM in this work. First, the encoded depth features from several
consecutive frames are concatenated together and used as the input of the Non-local block.
Then, the attention map for each frame is obtained, which is multiplied and added to the
original depth features after a group convolution layer. The group number is the same as the
number of input frames. As shown in Figure 2c, in STMM, the aggregated depth feature F′

D is
calculated as follows:

F′
D = NL(FD)WδFD + WδFD, (4)

where FD is the input depth feature and NL means the operation of Non-local block. Wδ is
the learnable weight of the group convolution layer.
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4. Experiments
4.1. Depth Estimation Result

Although our method is trained with three-frame snippet input, it can infer single
image depth during inference by stacking the same encoded features three times before
being fed into the STMM. Following the common evaluation protocol [1], we report the
single-frame inference results in the following experiments, although better results can be
achieved by leveraging multiple frames. The extensive experimental results on KITTI are
presented in Table 1, from which it is clear that our method outperforms all prior works
trained with monocular and even stereo videos in a self-supervised manner. The visual
results shown in Figure 3 demonstrate our method can generate more accurate and sharper
depth maps, especially for challenging situations, such as moving objects, distant objects,
and fine structures. More experiment results for both depth and pose estimation can be
found in Supplementary Materials.
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Figure 3. Qualitative results on KITTI test set. Our method produces more accurate depth maps with
low-texture regions, moving vehicles, delicate structures, and object boundaries.

Table 1. Quantitative performance of single depth estimation over KITTI test set [35]. For a fair
comparison, all the results are evaluated, taking 80 m as the maximum depth threshold. The “S”
and “M” in the train column mean stereo and monocular inputs for training, while “R18” and “R50”
denote the used Resnet [29] version. “†” means updated result after publication. We train our models
using only KITTI without any post-processing. The best results are illustrated with bold text.

Methods Train
Error Metric ↓ Accuracy Metric ↑

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

[36] † S 0.152 1.226 5.849 0.246 0.784 0.921 0.967
MD (R50) † [37] S 0.133 1.142 5.533 0.230 0.830 0.936 0.970
SuperDepth [38] S 0.112 0.875 4.958 0.207 0.852 0.947 0.977

MD2 [2] S 0.107 0.849 4.764 0.201 0.874 0.953 0.977

[1] † M 0.183 1.595 6.709 0.270 0.734 0.902 0.959
[5] M 0.163 1.240 6.220 0.250 0.762 0.916 0.968

GeoNet † [8] M 0.149 1.060 5.567 0.226 0.796 0.935 0.975
DDVO [39] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974
DF-Net [18] M 0.150 1.124 5.507 0.223 0.806 0.933 0.973
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Table 1. Cont.

Methods Train
Error Metric ↓ Accuracy Metric ↑

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Struct2depth [16] M 0.141 1.026 5.142 0.210 0.845 0.845 0.948
CC [9] M 0.140 1.070 5.326 0.217 0.826 0.941 0.975

SC-SFMLearner [40] M 0.137 1.089 5.439 0.217 0.830 0.942 0.975
HR [41] M 0.121 0.873 4.945 0.197 0.853 0.955 0.982

MD2(R18) [2] M 0.115 0.882 4.701 0.190 0.879 0.961 0.982
DeFeat [42] M 0.126 0.925 5.035 0.200 0.862 0.954 0.980

[43] M 0.113 0.704 4.581 0.184 0.871 0.961 0.984
Ours (R18) M 0.106 0.761 4.545 0.182 0.890 0.965 0.983
Ours (R50) M 0.105 0.731 4.412 0.181 0.891 0.965 0.983

4.2. Evaluation of Generalization Ability

Though our models were only trained on KITTI [44], competitive results can be
achieved on unseen datasets without any fine-tuning. We evaluated our method on
two outdoor datasets: Make3D [45] and Cityscapes [46]. In Table 2, our model outper-
forms other self-supervised methods on the Make3D test protocol, showing good domain
adaptation ability. The qualitative comparison in Figure 4 on Cityscapes provides addi-
tional intuitive evidence on the generalization ability. More test results can be found in
Supplementary Materials.

Table 2. Quantitative results on the Make3D dataset. The best results are illustrated with bold text.

Methods Train Abs Rel Sq Rel RMSE log10

[47] D 0.475 6.562 10.05 0.165
[37] S 0.544 10.94 11.760 0.193
[1] M 0.383 5.321 10.470 0.478

DDVO [39] M 0.387 4.720 8.090 0.204
MD2 [2] M 0.322 3.589 7.417 0.163

Ours M 0.316 3.200 7.095 0.158

M
D
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O

ur
s

In
pu

t

Figure 4. Visual results evaluated on the Cityscapes dataset. The evaluation uses models trained on
KITTI without any refinement. Compared with the methods in [2], our method generates higher-
quality depth maps and captures moving and slim objects better. The difference is highlighted with
the dashed circles.

4.3. Ablation Study

The ablation study was conducted on KITTI to highlight the effects of individual com-
ponents of our model. Table 3 shows the detailed results by removing specific component(s)
from our model. The in-depth analysis of each part is given in corresponding sections.
Moreover, we conducted systematic experiments to test the performance under various
training conditions, listed in Table 3, including input resolution (1024 × 320 vs. 640 × 192),
backbone networks (Resnet18 vs. Resnet50), and with/without pretraining.



ISPRS Int. J. Geo-Inf. 2024, 13, 193 8 of 14

Table 3. Ablation results on KITTI with each individual component removed and using backbone
networks (Resnet18 or Resnet50) and different resolutions of input videos during training. The term
“plain” means removing all components, while “pre” means pretraining on ImageNet. The best
results are illustrated with bold text.

Resolution Net IAM STMM Abs
Rel

Sq
Rel RMSE RMSE

Log

Ours (full) 1024 × 320 R50
√ √

0.105 0.731 4.412 0.181

Ours (full) 1024 × 320 R18
√ √

0.106 0.761 4.545 0.182

Ours w/o IAM 1024 × 320 R18
√

0.112 0.844 4.815 0.190

Ours w/o STMM 1024 × 320 R18
√

0.111 0.829 4.799 0.190

Ours w/o STMM 1024 × 320 R18
√

CBAM 0.109 0.778 4.591 0.186

Ours w/o STMM 1024 × 320 R18
√

SE 0.111 0.799 4.704 0.187

Ours (plain) 1024 × 320 R18 0.120 0.915 4.972 0.196

Ours (full) smaller 640 × 192 R18
√ √

0.110 0.809 4.616 0.185

Ours (full) w/o pre 640 × 192 R18
√ √

0.124 0.847 4.713 0.196

Effect of Inter-Task Attention Module

As mentioned before, when predicting the pose from two consecutive frames, we
believe that different geometry information has a different impact on the estimation of
rotation and translation. Thus, we introduce valuable attention guidance learned by the
IAM into the prediction of R and t. The attention maps learned for the two branches
during training are visualized in Figure 5, with color variation denoting different weight
values. The attention maps indicate that the two branches did learn different geometric
priorities from the depth information to help with their own estimation and conversely
improve the depth estimation result, as shown in Table 3. The learned geometric patterns
demonstrate that the estimation of R attaches more importance to farther regions and
corner places, while the t branch values closer areas more. Our IAM adopts an attention
mechanism and works in a generalized representation learning manner to utilize the
geometric correlation between depth and pose, which can also be useful in other similar
tasks to improve estimation quality.

R branch t branch
Figure 5. The visualization of learned attention maps in the IAM. It indicates the IAM places distinct
emphasis on different regions for two branches to improve their estimation.

Effects of STMM on distant objects. The motivation of the STMM is to leverage the
rich temporal and spatial geometric dependency among continuous frames. By exploiting
the temporal information of depth features from three consecutive frames as input, The
STMM is helpful for utilizing historical knowledge within the time window and enhancing
the estimation of distant objects. During inference, the input of networks is a single
image, and our STMM can exploit only spatial correlations from the pixels within the
single image. The ablation study results shown in Table 3 demonstrate the benefit of STMM
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compared with the models replacing STMM with other attention structures (CBAM and SE).
To better evaluate our model’s performance on estimating distant objects, we segmented
each scene into two groups of pixels according to a distance of 20 m, following [41] to
ensure fairness. We conducted an ablation test for the estimation of distant objects, and the
results are listed in Table 4. The results show that removing the STMM severely decreases
the performance of our model for distant objects, which demonstrates the effectiveness of
STMM in distant scenes.

Table 4. Ablation study and comparison for distant objects.

Methods Dist Abs Rel Sq Rel RMSE RMSE Log

HR [41] ≤20 0.102 0.391 1.959 0.146
Ours ≤20 0.076 0.189 1.410 0.123
HR [41] >20 0.187 2.430 9.695 0.305
Ours >20 0.152 2.556 9.226 0.211

Ours w/o STMM >20 0.179 2.803 9.667 0.291
Ours w/o IAM >20 0.158 2.643 9.346 0.234

4.4. Evaluation with Improved Ground Truth

The main evaluation method proposed by Eigen [35] uses the reprojected raw LI-
DAR points as ground truth, which brings severe effects on the estimation of tricky cases,
such as occlusion, object motion, and so on. To conduct a fair comparison with [2], we
also adopted the annotated depth map from the official KITTI website as ground truth
to evaluate methods. These annotated depth maps introduced by [48] tackle the above-
mentioned tough cases to improve ground truth using stereo pair. We compared our
models with other self-supervised methods, as shown in Table 5. The results demonstrate
that our method outperforms all previous methods, including both monocular and stereo
training approaches.

Table 5. Quantitative performance of a single depth estimation using an annotated depth map [48] as
ground truth. For a fair comparison, all the results are evaluated, taking 80 m as the maximum depth
threshold. The resolution column indicates the size of input images during training. We trained our
network using only KITTI without any post-processing. The best results are illustrated with bold
text. “†” means updated result after publication.

Methods Train Resolution
Error Metric ↓ Accuracy Metric ↑

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

MD R50 † [37] S 512 × 256 0.109 0.811 4.568 0.166 0.877 0.967 0.988
3Net (VGG) [49] S 512 × 256 0.119 0.920 4.824 0.182 0.856 0.957 0.985
3Net (R50) [49] S 512 × 256 0.102 0.675 4.293 0.159 0.881 0.969 0.991

SuperDepth [38] S 1024 × 382 0.090 0.542 3.967 0.144 0.901 0.976 0.993
MD2 [2] S 1024 × 320 0.085 0.537 3.868 0.139 0.912 0.979 0.993

Zhou et al. † [1] M 416 × 128 0.176 1.532 6.129 0.244 0.758 0.921 0.971
Mahjourian et al. [5] M 416 × 128 0.134 0.983 5.501 0.203 0.827 0.944 0.981

GeoNet [8] M 416 × 128 0.132 0.994 5.240 0.193 0.833 0.953 0.985
DDVO [39] M 416 × 128 0.126 0.866 4.932 0.185 0.851 0.958 0.986

CC [9] M 832 × 256 0.123 0.881 4.834 0.181 0.860 0.959 0.985
MD2 (R18) [2] M 1024 × 320 0.090 0.545 3.942 0.137 0.914 0.983 0.995

Ours (R18) M 1024 × 320 0.083 0.447 3.667 0.126 0.924 0.986 0.997

4.5. Single-Scale Evaluation

Monocular training methods usually need a scaling step during evaluation because
monocular solutions do not have a certain metric scale during training. For evaluation,
ref. [1] calculated the median of each predicted depth map and the ground truth as the
scaling factor. However, using a distinct scaling factor for every frame may cause an unfair
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advantage in contrast to stereo methods, which use a certain scale for all images, according
to [2].

In [2], the authors changed this evaluation protocol by taking the median of all the
scaling ratios of the depth maps on the test set as a constant scale for all test images.
To conduct a fair comparison, we adopted this modified protocol to validate our methods.
The quantitative comparison can be found in Table 6, in which our method still outperforms
all previous approaches. The standard deviation σscale of our method is also lower than other
methods, which indicates our approach can generate more consistent depth map scales.

Table 6. Quantitative performance using single scale on KITTI Eigen test set [35]. “†” means updated
result after publication.

Methods σscale
Error Metric ↓ Accuracy Metric ↑

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al. † [1] 0.210 0.258 2.338 7.040 0.309 0.601 0.853 0.940
Mahjourian et al. [5] 0.189 0.221 1.663 6.220 0.265 0.665 0.892 0.962

GeoNet [8] 0.172 0.202 1.521 5.829 0.244 0.707 0.913 0.970
DDVO [39] 0.108 0.147 1.014 5.183 0.204 0.808 0.946 0.983

CC [9] 0.162 0.188 1.298 5.467 0.232 0.724 0.927 0.974
MD2 (R18) [2] 0.093 0.109 0.623 4.136 0.154 0.873 0.977 0.994

Ours (R18) 0.082 0.096 0.507 3.828 0.139 0.898 0.983 0.996

4.6. Results with Post-Processing

To finish the comprehensive comparison with the previous state-of-the-art work [2],
we also evaluated our method with post-processing. This technique was proposed by [37] to
improve stereo-based methods, but it has proved effective for monocular training methods
as well. As shown in Table 7, this post-processing step did improve the result of our
methods. In addition, the performance of our models exceeds the post-processed results
of [2] even without post-processing.

Table 7. Evaluation results with post-processing compared with MD2 [2].

Methods Resolution
Error Metric ↓ Accuracy Metric ↑

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

MD2 [2] 1024 × 320 0.115 0.882 4.701 0.190 0.879 0.961 0.982
MD2 (pp) [2] 1024 × 320 0.112 0.838 4.607 0.187 0.883 0.962 0.982
Ours (R18) 1024 × 320 0.106 0.761 4.545 0.182 0.890 0.965 0.983

Ours (R18 + pp) 1024 × 320 0.104 0.726 4.457 0.180 0.893 0.965 0.984
Ours (R50) 1024 × 320 0.105 0.731 4.412 0.181 0.891 0.965 0.983

Ours (R50 + pp) 1024 × 320 0.104 0.709 4.352 0.179 0.894 0.966 0.984

4.7. Inference Speed

The depth inference task usually plays an important role in autonomous driving and
robotic vision. In these fields, there generally are strict requirements for calculation speed.
To test the practicability of models, we calculated the inference speed of our models under
the condition with a GPU or CPU device. In Table 8, we list the average time cost for testing
697 frames of Eigen’s test set [35].

Table 8. Inference speed on Eigen’s test set [35]. “Time” means the total time required for the inference
for 697 frames.

Device Time (s) Speed (f/s)

GPU 60.9 11.5

CPU 8721.1 0.08
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The inference speeds of our model on the GPU and CPU devices are significantly
different. Frames of the KITTI [44] dataset were collected at 10 Hz, and our inference speed
on the GPU device is over 10 fps, which indicates the practicability of our method on the
GPU device. However, the speed on the CPU device is much lower, which will be improved
in our future work.

5. Visual Odometry

Trajectory estimation is also very important for environment perception [1,50]. Since
the accuracies of the pose and depth estimations are correlated, our proposed method
not only produces a high-quality depth estimation but also improves the accuracy of the
pose estimation. We used the 00-08 sequences of the KITTI odometry split for training
and the 09-10 sequences for the evaluation, as in [1]. We compared the absolute trajectory
errors calculated in overlapping five-frame and three-frame snippets with various methods.
In Table 9, our results are clearly superior to the latest self-supervised monocular training
methods and also close to the traditional ORB-SLAM method with the loop closure step.
The estimated trajectories by our models and other methods are shown in Figure 6 for
comparison purposes.

Table 9. Results of the visual odometry on the KITTI Odometry dataset. “Frame” means the number
of frames used when calculating absolute trajectory error. “†” means updated result after publication.
The best results are illustrated with bold text.

Methods Sequence09 Sequence10 Frame

ORB-SLAM 0.014 ± 0.008 0.012 ± 0.011
ORB-SLAM (short) 0.064 ± 0.141 0.064 ± 0.130

[1] 0.021 ± 0.017 0.020 ± 0.015 5
Zhou et al. † 0.016 ± 0.009 0.013 ± 0.009 5
DDVO [39] 0.045 ± 0.108 0.033 ± 0.074 5
DF-Net [18] 0.017 ± 0.007 0.015 ± 0.009 5
[2] 0.017 ± 0.008 0.015 ± 0.010 5
Ours 0.015 ± 0.007 0.015 ± 0.009 5

[5] (no ICP) 0.014 ± 0.010 0.013 ± 0.011 3
[5] (with ICP ) 0.013 ± 0.010 0.012 ± 0.011 3
[5] 0.013 ± 0.010 0.012 ± 0.011 3
[2] 0.013 ± 0.007 0.011 ± 0.008 3
Ours 0.009 ± 0.005 0.010 ± 0.007 3

Figure 6. Visual comparison of the visual odometry trajectories. Full trajectories are plotted using the
Evo visualization tool [51].
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6. Conclusions

Our work is dedicated to the self-supervised monocular depth estimation problem
with a focus on learning more effective task-specific representation during learning. In our
method, the IAM can actively explore the geometric correlation between depth- and
pose-estimation tasks by learning attentive representation from depth to guide the pose
network to highlight and leverage more valuable geometry information, which improves
the estimation quality of depth and pose. We also introduce an STMM to learn the spatial
and temporal geometric dependencies among sequential frames, which are helpful for
utilizing long-range historical knowledge within the time window to perceive distant
objects. Experimental results demonstrated that our method is superior to existing state-
of-the-art approaches and can generate higher-quality depth maps. In our future work,
we will explore more powerful network architectures, such as Transformers and their
corresponding attention mechanisms.
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