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Abstract: Transitional waters (TWs) are relevant ecological and economical ecosystems that include
estuaries, deltas, bays, wetlands, marshes, coastal lakes, and coastal lagoons and play a central role
in providing food, protecting coastal environments, and regulating nutrients. However, human
activities such as industrialization, urbanization, tourism, and agriculture are threatening these
ecosystems, which results in contamination and habitat degradation. Therefore, it is essential to
evaluate contamination in TW to develop effective management and protection strategies. This
study analyses the application of geospatial technologies (GTS) for monitoring and predicting
contaminant distribution in TW. Cartography, interpolation, complex spatial methods, and remote
sensing were applied to assess contamination profiles by heavy metals, and persistent organic
compounds, and analyze contamination indices or some physicochemical water parameters. It is
concluded that integrating environmental and demographic data with GTS would help to identify
critical points of contamination and promote ecosystem resilience to ensure long-term health and
human well-being. This review comprehensively analyzes the methods, indicators, and indices
used to assess contamination in transitional waters in conjunction with GTS. It offers a valuable
foundation for planning future research on pollution in these types of waters or other similar water
bodies worldwide.

Keywords: environmental pollution; health risk; water quality parameters; heavy metals;
anthropogenic activities; cartography; remote sensing; interpolation techniques

1. Introduction

Due to their unique and dynamic nature, transitional waters (TWs) are considered one
of the world’s most important ecological and economic ecosystems [1,2]. Historically, they
have been the focus of human settlements, being the sites of major cities and ports [3]. These
water bodies are the interphase between land and sea and comprehend estuaries, deltas,
coastal lagoons, wetlands, marshes, and fjords [4–6]. Their connectivity and interaction
between fresh and saline waters characterize them as complex, highly diverse, and highly
productive environments [7], so a wide range of goods and services are associated with
these water bodies [8]. The goods and services from TW include providing food such as
fish, crustaceans, and mollusks; protecting coastal environments from floods, storms, and
chemical disturbance from pollution; protecting biodiversity; cycling and transforming
elements and nutrients; and wastewater treatment, among others [9].

However, TWs are frequently affected by increased industrialization, urbanization,
tourism, livestock, and agricultural and aquaculture activities [8], by which [9] physical
and chemical transformation, habitat destruction, and changes in the biodiversity, composi-
tion, and ecological structure could be experienced [7,10]. Figure 1 displays some of the
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anthropogenic activities and processes that alter the natural condition of TW. Pollutants
can enter TW through atmospheric deposition, runoff, sewage, drainage, or effluents from
municipal or industrial wastewater [1,9]. After contaminants have entered the water, the
water column promotes their dispersion and distribution to other environmental com-
partments; in some cases, the pollutants are transported to open waters, while others are
accumulated in the sediments, though there is some partial degradation of pollutants
by the native microorganism and other physicochemical processes [1,11]. Depending on
the nature of pollutants, aquatic organisms may experience adverse effects in the short,
medium, or long term. Bioaccumulation and biomagnification can also impact the entire
food chain [12]. In addition, the increasing levels of nutrients can lead to water pollution
through eutrophication, which is one of the most common pollution problems in coastal
lagoons and estuaries worldwide [13]. Additionally, the unsustainable exploitation of
resources (mangrove deforestation, extraction of aquatic organisms), unmanaged tourism,
the introduction of invasive species, and climate change may change transitional waters
into very fragile systems [10].
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Figure 1. Overview of source and dispersion of pollutants in transitional waters (TWs).

Therefore, there is an urgent need to develop and apply tools and methods to assess the
status of pollution in TW to develop effective management strategies for their restoration,
use, and protection. To this end, several parameters and indices have been reported
over time to assess the quality level of water. Some of them are oriented to determine
the concentration of chemical pollutants in different environmental compartments, while
others evaluate the toxicity and environmental or human health risks. However, most of
these indices can only be applied by determining pollutant concentrations through in situ
measurements, which may limit their application due to the high cost and time-consuming
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nature of some analytical techniques, especially when a large area is under study [14];
therefore, a partial spatial and temporal condition of the water quality is obtained.

Geospatial technologies (GTS), such as cartography, global positioning systems (GPSs),
remote sensing (RS), and Geographic Information Systems (GISs), have proven to be
essential tools for studies of water quality, monitoring, and pollution assessment [15–17].
GIS is specially used to predict water quality and map spatial distribution patterns of
pollutants on the water surface and in depths [18,19]. Also, GIS has been used to map the
degrees, toxicity, and risk of pollutant concentrations by integrating chemometric methods
and interpolation techniques [20]. On the other hand, RS provides valuable real-time
spatial information on natural resources, physical terrain parameters, and anthropogenic
processes [21]. This information helps to assess the pressures and impacts, identify potential
pollutant sources, and relate them to environmental parameters [22–24]. In any case, the
most significant benefit of GIS-based techniques and remote sensing is the visualization of
specific and contextualized environmental problems, which, coupled with the integration
of in situ measurements and statistical methods, can result in a comprehensive assessment
of the pollution condition in transitional waters [18,20].

This review aims to provide a general and current overview of the tools and methods
for assessing pollution in transitional waters by combining parameters, indices, and models,
as well as remote sensing, and Geographic Information Systems as the leading geospa-
tial technologies. To this end, studies concerning the topic were searched by evaluating
keywords, titles, and abstracts. Studies that did not assess TW pollution/quality and GIS
or Remote Systems were excluded. We considered articles published in English with full
text available from the past decade (2012–2023). This review highlights the potential for a
more comprehensive and cost-effective assessment of water quality in transitional waters,
serving as a foundation for future studies.

2. Materials and Methods

The search was performed using the following components for the SCOPUS database:

• Search component 1 (SC1) combines one of the following keywords: transitional water
OR coastal lagoon OR coastal lake OR coastal wetland OR marsh OR estuary OR bay
with pollution OR contamination.

• Search component 2 (SC2), including the following key terms: transitional water OR
coastal lagoon OR coastal lake OR coastal wetland OR marsh OR estuary OR bay with
GIS OR Geographic Information System OR remote sensing.

The following data were extracted and captured in an Excel spreadsheet containing the
article title, authors, index description and application, type of TW, type of pollutants, and
type of pollution index. As mentioned, for the inclusion of the studies, titles and abstracts
were independently analyzed by two reviewers; when those were not clear enough to
accomplish inclusion criteria, the full-text articles were read. The exclusion criteria include
at least one of the following criteria: the full text was written in a different language to
English, GIS and/or remote sensing techniques were applied in water studies different
to pollution issues, and abstract-only papers as proceeding papers, conference papers,
editorials, and author response theses and books. Finally, index development or water
applications without GIS or remote sensing were also excluded.

3. Results
3.1. Transitional Waters Worldwide

Broadly speaking, TW are those ecosystems located between riverine ecosystems and
coastal marine ecosystems [7]. However, worldwide, there is no unified term and definition
to refer to these water bodies, probably because there is a wide variety of characteristics
that make them unique and distinct from each other. For example, according to Chapman
et al. [1], TWs are not entirely saline or utterly fresh water, can be both large and small
geographic areas, and can be vertically stratified or homogeneous, shallow, or very deep,
with greater or lesser fluvial dominance or with greater or lesser tidal influence; also, they
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can present seasonal variation. Therefore, transitional waters present heterogeneous and
complex conditions that complicate their characterization.

The term transitional waters was introduced in 2000 by the Water Framework Directive
(WFD) [25], and it was rapidly consolidated as a scientific term [4]. The WFD defined TW
as “surface water bodies in the vicinity of river mouths that have a partially saline character
due to their proximity to coastal waters but are substantially influenced by freshwater
flows” [25], being the most widespread definition. However, this term and its definition
are generally coined for European member countries. On the other side, the U.S. legislation
(Code of Federal Regulations) includes the definition of TW in the term “coastal waters”
as “all U.S. waters subject to the tide, U.S. waters of the Great Lakes, specified ports and
harbors on the inland rivers, waters of the contiguous zone, or other waters of the high seas
subject to discharges in connection with activities [. . .] which may affect natural resources
belonging to, appertaining to, or under the exclusive management authority of the United
States [. . .]”. As can be seen, rather than a definition, the water bodies considered as coastal
waters are those along the coastal line. For its part, the U.S. Environmental Protection
Agency (EPA) refers to coastal waters “As the interface between terrestrial environments
and open oceans”, which include estuaries, coastal wetlands, seagrass meadows, coral
reefs, mangrove forests, kelp forests, and upwelling areas [26].

This difference in terminology can also be observed in Latin America. In Mexico, the
equivalent term for TW is “coastal aquatic ecosystems”, defined as those water bodies
found in the coastal zone, maintaining permanent or temporary communication with the
sea and which may or may not be connected to freshwater aquaculture systems [27]. The
coastal aquatic ecosystems include coastal lagoons, marshes, estuaries, swamps, and bays,
leaving out the reefs as they are considered marine aquatic ecosystems. Meanwhile, Brazil’s
legislation only provides classification and environmental guidelines for surface water
bodies and exoreic basins [28,29]. In Colombia, the term used is coastal marine ecosystems
and englobing coastal lagoons and estuaries, coral reefs, mangroves, seagrass beds, sandy
beaches, and rocky shorelines, among others [30]. Generally, the waters referred to in this
research as TW are classified in most countries as coastal lagoons or estuaries.

This absence of characterizing associated with the geographic diversity, high spatio-
temporal variability, and complexity of this type of ecosystem promotes complications in
their identification and visualization of their importance at a global level, which in turn
causes a delay in the application of adequate directives for their assessment, management,
and conservation. Although transitional waters is accepted as a scientific term [3,4], only
seven studies included it; the rest used one or more equivalent terms. This review identified
55 papers that met the search criteria.

3.2. General Description of Data Collection

Figures 2–4 provide a general overview of the information. Figure 2 focuses explicitly
on the geographical distribution of the studies. It reveals that research on this topic has
been reported in six distinct international regions, with Europe and Central Asia having
the highest number of studies.

The Vos Viewer keyword analysis unveiled a notable network of interactions comprising
58 interconnected keywords, each appearing at least five times, linked by 1344 interactions,
and a cumulative link strength of 5546 (Figure 3). These keywords were classified into four
distinct clusters. The first cluster, labeled “GIS”, consists of 23 keywords, with the term
“GIS” appearing 46 times, accompanied by 55 links and a total link strength of 609. The
second cluster, categorized as “environmental,” comprises 18 items, with “environmental
monitoring” being the predominant term, occurring 33 times and boasting 56 links, re-
sulting in a total link strength of 510. Lastly, the third cluster, “pollutants”, encompasses
16 items, with “heavy metals” emerging as the most prevalent term. It appeared 18 times,
with 53 links, yielding a total link strength of 340. Finally, the fourth cluster, with just one
term, “geographical distribution”, is connected to the other clusters by 25 links.
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Figure 4. Applications of GTS in the study of polluted transitional waters from 2012 to 2023. POC:
Persistent organic compounds (including polycyclic aromatic hydrocarbons, pesticides, and phar-
maceutical compounds) and PC parameters, such as physicochemical parameters. The term “index”
integrates several quantitative values (pollutant concentration and/or PC parameters). The numbers
indicate the number of total papers. Created with flourish.studio.

Figure 4 shows a Sankey diagram to illustrate the categories of GTS used in the
study of polluted TW. Fifty-five papers reported applying four types of GTS, cartography,
interpolation methods, complex spatial methods, and remote sensing, for studying several
polluted tidal waters. Most papers (98%) used cartography combined with one or two
other GTS. The most studied polluted TWs were coastal lagoons and lakes. Pollution
was determined by quantifying different physicochemical parameters (PC parameters:
temperature, salinity, pH, etc.), heavy metals, and persistent organic compounds (POCs:
polycyclic aromatic hydrocarbons, pesticides, and pharmaceutical compounds); in some
cases, the pollution level was calculated by integrating the above parameters into pollution
or water quality indices.

Tables 1 and 2 provide more detailed information about study areas, the type of
TW, monitored pollution parameters (Table 1), and the specific geospatial technologies
(Table 2) for the identified studies. The tables show that most studies combined geospatial
technologies to achieve their goals. This highlights the multifaceted nature of environmental
research and the need for integrating various spatial analysis techniques. Interestingly, the
studies also included the analysis of pollutants of high concern directly relevant to both
environmental and health research, such as polycyclic aromatic hydrocarbons (PAHs) and
pharmaceutical products, here both integrated as persistent organic compounds (POCs).
These findings emphasize the growing focus on understanding the complex interactions
between anthropogenic activities, environmental pollution, and public health.
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Table 1. Studies about Transitional Waters and monitoring of pollution.

Reference Study Area Type of TW Parameter or Pollutant Assessed

Assessment of sediment quality in the Mediterranean
Sea-Boughrara lagoon exchange areas (southeastern Tunisia):

GIS approach-based chemometric methods [32]
Boughrara lagoon, Tunisia Coastal lagoon Cd, Pb, Zn, Cu, Mn, and Fe

in sediments

Assessing a bioremediation strategy in a shallow coastal system
affected by a fish farm culture—Application of GIS and shellfish

dynamic models in the Rio San Pedro, SW Spain [33]
Rio San Pedro, Spain Estuary Water quality parameters

An assessment of landscape characteristics affecting estuarine
nitrogen loading in an urban watershed [34] Pensacola estuarine, USA Estuary Nitrogen loading in water

Evaluation of the anthropogenic influx of metal and metalloid
contaminants into the Moulay Bousselham lagoon, Morocco,

using chemometric methods coupled to geographical
information systems [35]

Moulay Bousselham Lagoon, Morocco Coastal lagoon Al, Fe, Cu, Zn, Pb, Mn, Ni, Cr, As, Hg, and Cd
in sediments

Source characterization and spatio-temporal evolution of the
metal pollution in the sediments of the Basque estuaries (Bay of

Biscay) [36]
Basque Estuaries, Spain Estuaries Cd, Cr, Cu, Hg, Ni, Pb, and Zn in sediments

Spatial distribution and pollution assessment of mercury in
sediments of Lake Taihu, China [37] Lake Taihu, China Coastal lake Total mercury in sediments

Optimization of marine environmental monitoring sites in the
Yangtze River estuary and its adjacent sea, China [38] Yangtze River estuary, China Estuary Dissolved inorganic nitrogen (DIN), oil, PO4-P, COD,

OD, pH, Cu, Hg, Pb, and Cd in water

Assessment and monitoring of nutrient loading in the sediments
of tidal creeks receiving shrimp farm effluent in Quang Ninh,

Vietnam [39]
Quang Ninh, Vietnam Estuary Total nitrogen, total phosphorus, and total organic

carbon in sediments

Spatial distribution of cadmium and lead in the sediments of the
western Anzali wetlands on the coast of the Caspian Sea (Iran) [40] Anzali Wetlands, Iran Coastal wetland Cd, Pb, and total organic matter in sediments

TMDL balance: A model for coastal water pollutant
loadings [41] Copano Bay, USA Coastal basin Fecal coliform loading in water

Spatio-Temporal Variations in Water Quality of Muttukadu
Backwaters, Tamilnadu, India [42] Muttukadu Backwaters, India Estuary Temperature, pH, salinity, DO, total nitrogen, total

PO4, silicate, and chlorophyll-a (Chl-ß) in water
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Table 1. Cont.

Reference Study Area Type of TW Parameter or Pollutant Assessed

An environmental forensic procedure to analyse anthropogenic
pressures of urban origin on surface water of protected coastal
agro-environmental wetlands (L’Albufera de Valencia Natural

Park, Spain) [43]

L’Albufera de Valencia Natural
Park, Spain Coastal wetland

Drugs of abuse and pharmaceuticals in water:
Cocainics, amphetamine, cannabinoids, opiates,

oxytetracycline, tetracycline, ofloxacin, fenofibrate,
ciprofloxacin, norfloxacin, codeine, trimethoprim,

diazepam, metoprolol, propranolol, ibuprofen,
sulfamethoxazole, carbamazepine, acetaminophen,

clofibric acid, and diclofenac

An interactive WebGIS observatory platform for enhanced
support of integrated coastal management [44] Aveiro lagoon, Portugal Coastal lagoon Oil spill

Dispersion pattern of petroleum hydrocarbon in coastal water of
Bay of Bengal along Odisha and West Bengal, India using

geospatial approach [45]
Odisha and West Bengal, India Estuaries, ports, and coastal

area Petroleum hydrocarbons

Heavy metals risk assessment in water and bottom sediments of
the eastern part of Lake Manzala, Egypt, based on remote

sensing and GIS [15]
Lake Manzala, Egypt Coastal lake Zn, Cd, Cu, Mn, and Pb in water and

bottom sediments

Source apportionment of PAHs in surface sediments using
positive matrix factorization combined with GIS for the estuarine

area of the Yangtze River, China [46]
Yangtze River estuary, China Estuary PAHs in sediments: Nap, Ace, Flu, Phe, Ant, Fla, Pyr,

BaA, Chr, BbF, BkF, BaP, DahA, BgP, InP, Acy

Spatial variation, environmental risk and biological hazard
assessment of heavy metals in surface sediments of the Yangtze

River estuary [47]
Yangtze River estuary, China Estuary As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn in sediments

Spatio-temporal distribution of major and trace metals in
estuarine sediments of Dhamra, Bay of Bengal, India—its

environmental significance [48]
Dhamra Estuary, India Estuary Cu, Ni, Co, Pb, Zn, Cr, Cd, Fe, Mn, Ca, Mg, Na, and K

in sediments

A spatial assessment of baseline nutrient and water quality values
in the Ashepoo–Combahee–Edisto (ACE) Basin, South Carolina,

USA [49]

Ashepoo–Combahee–Edisto (ACE)
Basin, USA Estuaries

Temperature, salinity, chlorophyll-a, total nitrogen,
total phosphorus, DO, DOC, TSS,

and VSS

Current anthropogenic pressures on agro-ecological protected
coastal wetlands [23]

L’Albufera de Valencia Natural
Park, Spain Coastal wetland

Pharmaceutical compounds:
Oxytetracycline, tetracycline, ofloxacin, fenofibrate,
ciprofloxacin, norfloxacin, codeine, trimethoprim,

diazepam, metoprolol, propranolol,
sulfamethoxazole, carbamazepine, acetaminophen,

ibuprofen, clofibric acid, and diclofenac
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Table 1. Cont.

Reference Study Area Type of TW Parameter or Pollutant Assessed

Prioritization of pollution potential zones for conservation
activities of a lake system [50] Akkulam–Veli Lake, India Coastal lake pH, DO, BOD, and fecal coliform in water

Spatial distribution and pollution evaluation of heavy metals in
Yangtze estuary sediment [51] Yangtze River estuary, China Estuary Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, and Zn

in sediments

Risk assessment and uncertainty analysis of PAHs in the
sediments of the Yangtze River Estuary, China [52] Yangtze River estuary, China Estuary PAHs in sediments: Baa, Chr, Bbf, Bkf, Bap, Daa, Bgp,

Nap, Any, Ane, Fle, Phe, Ant, Fla, Pyr, Ilp

Assessment of water pollution induced by human activities in
Burullus Lake using Landsat 8 operational land imager and GIS [53] Lake Burullus, Egypt Coastal lake BOD, total nitrogen, and total PO4

Multivariate statistical and GIS-based approaches for toxic metals
in tropical mangrove ecosystem, southeast coast of India [54] Muthupet mangrove ecosystem, India Coastal lagoon, river

mouth, and wetlands

Temperature, pH, salinity of NO2, NO3, phosphate,
ammonia, and heavy metals: Cd, Cu, and Zn in water

and sediment

A water quality management strategy for regionally protected
water through health risk assessment and spatial distribution of

heavy metal pollution in 3 marine reserves [55]

Tianjin Ancient Coast and Wetlands
National Nature Reserve, China Coastal wetlands and sea Pb, As, Cd, Hg, and Cr in water samples

Spatiotemporal assessment (quarter century) of pulp mill metal
(loid) contaminated sediment to inform remediation decisions [56] Boat Harbour, Canada Coastal lagoon As, Cd, Cr, Cu, Pb, Hg, and Zn in sediments

Oiling accelerates loss of salt marshes, southeastern Louisiana [57] Louisiana, USA Marsh Oil spill

Baseline physio-chemical characteristics of Sydney estuary water
under quiescent conditions [58] Sydney, Australia Estuary Secchi depth transparency, turbidity, salinity, and TSS

Biological risk assessment of heavy metals in sediments and
health risk assessment in bivalve mollusks from Kaozhouyang

Bay, South China [12]
Kaozhouyang Bay, China Bay Cd, Pb, Cr, Ni, Cu, Zn, Hg, and As in surface

sediments and bivalve mollusks

Detection of Isotope Stable Radioactive in Soil and Water
Marshes of Southern Iraq [59] Maysan Governorate Marshes, Iraq Marsh

Isotope Stable Radioactivity in water: Th-138, CS-137,
AG-110M, ZR-97, Fe-59, Pb-138, Pb-212, Pb-214,

AS-76, W-187

The Tale of a Disappearing Lagoon: A Habitat Mapping and
Ecological Assessment of Fosu Lagoon, Ghana [60] Fosu Lagoon, Ghana Coastal lagoon NA
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Table 1. Cont.

Reference Study Area Type of TW Parameter or Pollutant Assessed

Spatial and temporal variations of water quality in Pallikaranai
wetland, Chennai, India [61] Pallikaranai wetland, India Coastal wetland

pH, salinity, dissolved oxygen, NO3, PO4, DOC,
suspended particulate matter, dissolved inorganic
carbon, particulate organic carbon, dissolved CO2,

dissolved CH4, and heavy metals: Fe, Mn, Ni, Co, Cd,
Cr, Zn, Cu, and Pb

Spatial-temporal variation of heavy metals’ sources in the
surface sediments of the Yangtze River Estuary [11] Yangtze River estuary, China Estuary Cd, Cr, Cu, Mn, Ni, Pb, and Zn in surface sediments

Holocene background concentrations and actual enrichment
factors of metals in sediments from Ria Formosa, Portugal [62] Ria Formosa, Portugal Coastal lagoon Granulometric characteristics and heavy metals: Al,

Fe, As, Co, Cr, Cu, Ni, Pb, and Zn in sediment cores

Towards monitoring of nutrient pollution in coastal lake using
remote sensing and regression analysis [63] Dubai Creek, United Arab Emirates Coastal lagoon Chlorophyll-a, NO3, orthophosphates, DO, turbidity,

pH, and salinity in water

Evaluation of water quality parameters in marshes zone southern
of Iraq based on remote sensing and GIS techniques [21] Al-Hawizeh marsh, Iraq Marsh Salinity, silicates, and CaCO3

An investigation into the impacts of climate change on
anthropogenic polluted coastal lagoons in Ghana [64] Coastal Lagoons, Ghana Coastal lagoons

NO2, NO3, PO4, total ammonia, DO, dissolved
nitrogen, FC, temperature, salinity, pH, and turbidity

in water

Prediction of future situation of land use/cover change and
modeling sensitivity to pollution in Edku Lake, Egypt based on

geospatial analyses [65]
Edku Lake, Egypt Coastal lake Pollution sources

GIS-Based Study on the Environmental Sensitivity to Pollution
and Susceptibility to Eutrophication in Burullus Lake, Egypt [13] Lake Burullus, Egypt Coastal lake

Temperature, pH, EC, salinity, TDS, DO, NH4, NO2,
PO4, silicates, chlorophyll-a, and organic matter

in water

Assessment of the pressure level over lentic waterbodies through
the estimation of land uses in the catchment and

hydro-morphological Alterations: The LUPLES method [16]
Mediterranean coastal lagoons Coastal lagoons

Contribution of pressures such as eutrophication,
organic enrichment, acidification, and specific

pollutants associated with each land use

Pharmaceuticals and personal care products in a Mediterranean
coastal wetland: Impact of anthropogenic and spatial factors and

environmental risk assessment [66]

L’Albufera de Valencia Natural
Park, Spain Coastal wetland

Temperature, pH, total soluble salts, DO and redox
potential, and pharmaceuticals and personal care

products in water and sediment

Heavy metals in coral reef sediments of Kavaratti Island, India:
An integrated quality assessment using GIS and pollution

indicators [24]
Kavaratti Island, India Coastal lagoon Al, Pb, Cd, Cu, Cr, Mn, Ni, and Zn in sediments
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Table 1. Cont.

Reference Study Area Type of TW Parameter or Pollutant Assessed

How agriculture, connectivity and water management can affect
water quality of a Mediterranean coastal wetland [67]

L’Albufera de Valencia Natural Park,
Spain Coastal wetland

Turbidity, pH, conductivity, organic matter, dissolved
inorganic nitrogen, phosphorus concentrations, total

inorganic carbon, total organic carbon, and total
nitrogen in water

Elucidation of the Phytoplankton Distribution at an Egyptian
Ramsar Site (Burullus Lake, Egypt) using Alpha Diversity

Indices Supported with RS and GIS Maps [68]
Lake Burullus, Egypt Coastal lake

Temperature, TDS, NH4, NO2, NO3, PO4, silicate DO,
pH, chlorophyll-a, and total count of phytoplankton

species in water

Polluted waters of the reclaimed islands of Indian Sundarban
promote more greenhouse gas emissions from mangrove

ecosystem [69]
Sundarban Mangrove, India Mangrove

In water: pH, DO, BOD, TSS, ammonia, nitrate, total
phosphorous, chlorophyll-a, and fecal coliform

In soil: Litterfall biomass, soil organic carbon, soil pH,
soil salinity, soil temperature, oxygen reduction

potential In gas: Nitrate, CH4, CO2, and NO

Legacy halogenated organic contaminants in urban-influenced
waters using passive polyethylene samplers: Emerging evidence of

anthropogenic land-use-based sources and ecological risks [70]
Narragansett Bay, USA Estuary Organochlorine pesticides and polychlorinated

biphenyls in water samples

Coastal sediment heavy metal (loid) pollution under multifaceted
anthropogenic stress: Insights based on geochemical baselines and

source-related risks [71]
Daya Bay, China Bay Cd, Cu, Cr, Pb, Zn, Hg, As, and total organic carbon

in water and sediment

Impact Assessment of the Land Use Dynamics and Water
Pollution on Ecosystem Service Value of the Nile Delta Coastal

Lakes, Egypt [72]
Nile Delta Coastal Lakes, Egypt Coastal lakes Volatile phenol (V-phenol), DO, and NH4-N in water

GIS-based approach and multivariate statistical analysis for
identifying sources of heavy metals in marine sediments from

the coast of Hong Kong [73]
Hong Kong, China Coastal areas Cd, Hg, Cu, Pb, Ni, Cr, As, Zn, Fe, and V in sediment

A comparative assessment of the lagoons with water quality
indices and based on GIS: A study on the Aegean Sea and

Mediterranean Sea [74]

Gulluk Lagoon and Koycegiz–Dalyan
Lagoon, Turquía Coastal lagoons Temperature, pH, DO, BOD, SSM, total phosphorus,

NO2-N, NO3-N, and ammonium nitrogen in water

Analysis of water quality, heavy metals and nutrient of
Karavasta Lagoon using GIS Assessment of Ecological Risk [75] Karavasta Lagoon, Albany Coastal lagoon

pH, temperature, conductivity, salinity, DO,
chlorophyll-a, total nitrogen, NO3-N, total

phosphorus, and heavy metals: Cd, Cr, Cu, Pb, and
Hg in surface water and bottom sediment
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Table 1. Cont.

Reference Study Area Type of TW Parameter or Pollutant Assessed

Water quality assessment of Lake Burullus, Egypt, utilizing
statistical and GIS modeling as environmental hydrology

applications [76]
Lake Burullus, Egypt Coastal lake

DO, temperature, salinity,
Total-Nitrogen-to-Total-Phosphorus ratio,

orthophosphate, nitrate, chlorophyll-a, COD, pH,
turbidity, and electrical conductivity in water

Occurrence and source of PAHs in Miankaleh International
Wetland in Iran [77] Miankaleh wetland, Iran Coastal wetland

pH, temperature, electrical conductivity, redox
potential, DO, and PAHs: Nap Flu, Phe, Ant, Fl, Pyr,
and Chr in water, and Nap Flu, Phe, Ant, Fl, Pyr, BaA,

Chr, BbF, BkF, BaP, InP, and BghiP in sediments

Combining theoretical concepts and Geographic Information
System (GIS) to highlight source, risk, and hotspots of
sedimentary PAHs: A case study of Chabahar Bay [78]

Chabahar Bay, Iran Bay

PAHs in sediment samples: Nap, 1m-Nap, 2m-Nap,
Acy, Ace, Flu, Phe, Ant, 3m-Phe, 2m-Phe, 9m-Phe,
1m-Phe, Fluo, Py, B(a)A, Chr, B(b)F, B(k)F, B(a)P,

I(c,d)P, DB(a,h)A, B(g,h,i)P

Table 2. Specific GTS methods for the identified studies.

Principle/Description General Term Technique or Method References

Geospatial data representation involves the spatial location of sampling
points, information integration at sampling points, spatial delineation,

distance determination, temporal–spatial analysis, and
analytical processes.

Cartography

Geolocation [11–13,15,21,23,24,32–43,45,47–56,58,59,61–63,66–71,73–78]
Punctual distributions [12,23,39,43,67,68,70]

Spatial delineation [16,32–34,50,57,58,60,64,65,72]
Temporal point variability [56]
Spatial analytical process [23,33,43,49,66,78]

Estimation of unknown values at locations within a geographic area
based on known values at nearby locations. Interpolation techniques

Inverse distance weighted (IDW) [12,13,24,35,36,42,54,55,58,61,69,71–74,76,78]
Kriging, ordinary kriging, or kriging

variance analysis [15,33,34,37,38,40,45–48,51,52,75]

Kernel Interpolation with Barrier’s
geoprocessing tool [62]

Development of mathematical or computational representations that
attempt to capture and explain spatial relationships and patterns in

geographic datasets using geostatistics.
Complex spatial models

Prediction/simulation models [34,41,53,64,65,68,69,72,77]
Land use dynamics models [16,65,70]

Sensitivity, contamination risk models [11,13,15,44,46,50,65,71,77,78]

Information from the Earth is acquired by sensors mounted on airborne
or satellite platforms. Remote sensing

Band value extraction and spatial distribution [21,63,68,72]
Land cover, land loss, and land conversion [13,15,16,34–36,53,57,60,65,72]

Oil fraction cover maps [57]
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3.3. Pollutants in Transitional Waters

Due to their shallow depth, direct connection to open seas, and inherent origins,
TWs are highly vulnerable ecosystems prone to contamination by a diverse array of pollu-
tants [24]. Human activities have notably contributed to introducing substantial volumes
of toxic substances into these fragile environments [51].

Water quality assessment encompasses various methods, including evaluating pol-
lutant concentrations, which may consist of chemicals with similar or distinct properties.
Additionally, physicochemical parameters such as temperature, pH, turbidity, and dis-
solved or suspended solids levels are employed for assessment. Global indicators like
chemical or biochemical oxygen demand are also utilized in legislative frameworks to
gauge water quality levels. Among the most alarming contaminants are heavy metals,
pharmaceutical residues, and excessive nutrients like nitrates, phosphates, and silicates,
alongside total suspended solids. Furthermore, persistent organic compounds (POCs) such
as polycyclic aromatic hydrocarbons (PAHs), pesticides, and some pharmaceutical com-
pounds have emerged as significant concerns in contamination issues [24,43,46,52,68,70].
This amalgamation of pollutants substantially threatens TW ecosystems’ ecological integrity
and, consequently, jeopardizes the quality of life for human communities reliant on these
aquatic resources.

3.3.1. Heavy Metals

During the period under analysis, heavy metals emerged as the focal point in studying
pollutants within TW, with 21 papers dedicated to their investigation. These metals find
their way into TW through myriad pathways, originating from both natural phenomena
and human activities. Volcanic eruptions and the gradual weathering of geological forma-
tions release metals into the environment, where they disperse across various ecological
compartments, including seawater aerosols and forest fire residues. However, human
actions significantly exacerbate this natural process. Anthropogenic sources, such as power
plants, biomedical waste disposal, industrial discharge, mining operations, electronic waste
disposal, and agricultural practices, all contribute to the influx of heavy metals into TW [79].
The escalation of heavy metal concentrations can be chiefly attributed to the expansion of
industrial sectors and urban landscapes, which, through runoff mechanisms, introduce
pollutants into water bodies [80].

Heavy metals present in coastal lagoons pose a significant concern due to their high
phytotoxicity, potentially disrupting the primary productivity of these vital coastal ecosys-
tems [32]. Understanding the sediment enrichment factor in TW is crucial for identifying
the origins of heavy metal emissions; for instance, in Jakarta Bay, Indonesia, the prevalence
of elements such as Cu, Cr, and As is primarily influenced by natural factors stemming
from the composition of volcanic rocks. Conversely, elements like Zn, Ni, Pb, and Cu are
predominantly sourced from anthropogenic activities such as metal processing industries,
fertilizer use, and the discharge of untreated animal waste [81].

3.3.2. Persistent Organic Compounds (POCs)

Persistent organic compounds (POCs) are substances characterized by their chemical
and biological degradation resistance, resulting in extended half-lives in the environment,
predominantly comprising xenobiotic compounds. These compounds exhibit key traits
such as persistence, bioaccumulation, toxicity, and mobility [82]. POCs include plastics and
plastic-derived chemicals, pesticides, polychlorinated biphenyls (PCBs), and polycyclic
aromatic hydrocarbons (PAHs). Certain pharmaceutical compounds also share similar
attributes of persistence and bioaccumulation, qualifying them as POCs [83,84]. For this
study, polycyclic aromatic hydrocarbons (PAHs), pesticides, and pharmaceutical com-
pounds were collectively categorized as POC. The investigation identified eight relevant
papers addressing GTS and POC contamination in TW, mainly found in estuaries (Figure 4).

PAHs are a large group of ubiquitous substances primarily introduced into the environ-
ment through industrial and urban waste, petroleum hydrocarbon production, and trans-



ISPRS Int. J. Geo-Inf. 2024, 13, 196 14 of 33

portation activities [85–87]. Nonetheless, it is worth noting that natural occurrences, such as
forest and brush fires, can also contribute to the contamination of TW by PAH [88]. PAH pol-
lution remains severe in coastal regions worldwide, with areas of elevated anthropogenic
activity exhibiting heightened contamination levels, particularly by high-molecular-weight
PAHs [88]. These large molecular-size PAHs have demonstrated significant genotoxic,
mutagenic, and carcinogenic effects [89]. In regions characterized by commercial ports, oil,
and gas exploration, there is a prevalence of low molecular weight (LMW) PAHs such as
fluorene, naphthalene, anthracene, and phenanthrene, which are comparatively less toxic.
This predominance of LMW PAHs is attributed to fuel leakage [88].

Pharmaceutical compounds constitute various chemical substances extensively used
in promoting human, animal, and plant health. The presence of these compounds in
environmental settings reflects deficiencies in disposal and treatment measures, stemming
from both the chemical and pharmaceutical industries as well as household waste and
agro-industrial activities. Because they are designed to have specific biological effects,
their presence in environmental settings is likely to negatively affect ecosystem health,
as documented in numerous studies [90–92]. Given the large number of pharmaceutical
compounds in circulation, significant effort is required to properly assess and diagnose
the level of environmental contamination, the fate, and the potential harm caused by
these compounds in various environments, including TW. During the investigation period,
only two studies were published regarding GTS and the contamination of marshes by
pharmaceutical compounds.

Pesticides constitute another category of compounds with diverse chemical compo-
sitions, extensively utilized to enhance crop production. Engineered to be lethal to pests,
their non-selective nature often harms non-target organisms, reinforced by their dispersion
throughout environmental compartments due to application methods and prevailing envi-
ronmental conditions [93,94]. Despite well-documented damage to ecosystems and human
health over the years, global application rates have not diminished [95–97]. Remarkably,
only one paper addressing the contamination of water bodies with pesticides and the
utilization of GTS was identified in this review.

3.3.3. PC Parameters

Pollution in water bodies is typically assessed by measuring various physicochemical
parameters (PC parameters) such as nutrient concentration, pH, temperature, and conduc-
tivity, among others [98]. Water quality is then commonly evaluated by comparing these
parameters to reference values, which vary depending on regional regulations. Nutrient
pollution, for instance, arises from the excessive use of fertilizers in agriculture, wastewater
discharge, and stormwater runoff. Elevated nutrient levels lead to harmful algal blooms
and oxygen depletion. Coastal farms, like shrimp farms, serve as significant sources of
nutrients. In these areas, high nitrogen, phosphorus, and organic carbon levels near produc-
tion sites are attributed to inputs like shrimp feed, feces, and decomposing organisms [39].
Other parameters are affected by anthropogenic activities: temperature is influenced by
the discharge of industrial or cooling wastewater, pH levels are altered by the release of
acidic or alkaline compounds, and turbidity is heightened by the influx of fine sediments
originating from soil erosion caused by deforestation or construction activities. A total of
21 works were identified using GTS and PC parameters in TW for pollution determination.

3.3.4. Indices

In addition, pollution is usually expressed using various indices that combine several
parameters or measurements to reflect the quality or pollution of water bodies more compre-
hensively. These indices consider other biotic and abiotic components with which the water
interacts. Indices are usually described according to the following classification [99–101]:

Water Quality Indices: a comprehensive index integrating multiple water quality
parameters into a single value, providing an overall quality assessment. Parameters con-
sidered often include pH, dissolved oxygen (DO), biochemical oxygen demand (BOD),
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chemical oxygen demand (COD), total suspended solids (TSSs), nutrients (nitrogen and
phosphorus), heavy metals, and fecal coliform bacteria. The calculated index value catego-
rizes water quality into different classes (e.g., excellent, good, fair, poor, and very poor).

Pollution Indices: focus specifically on assessing the pollution level in water bodies.
These indices consider parameters such as levels of various pollutants, including heavy
metals, pesticides, industrial chemicals, and organic compounds.

Eutrophication Indices: evaluate the degree of nutrient enrichment in water bodies,
particularly nitrogen and phosphorus. Parameters such as total nitrogen, total phosphorus,
chlorophyll-a concentration, and algal biomass are often used. Eutrophication indices help
identify water bodies susceptible to excessive algal growth and hypoxia (low oxygen levels)
due to nutrient pollution.

Sediment Quality Indices: consider parameters such as sediment texture, organic
matter content, heavy metal concentrations, and toxicity. These indices help in evaluating
the potential risks associated with contaminated sediments, such as the bioaccumulation of
pollutants and adverse effects on benthic organisms.

Biotic Indices: assess water quality based on the composition and abundance of
aquatic organisms. These indices utilize metrics such as species diversity, the presence of
indicator species (e.g., mayflies, stoneflies, and caddisflies), and organisms’ tolerance levels
to pollution. Biotic indices provide insights into the ecological health of water bodies and
can indicate long-term trends in water quality.

Human Health Indices: assess and quantify various potential impacts on human health
within populations or specific communities when exposed to pollution. These indices
typically incorporate multiple health-related parameters to comprehensively evaluate
health status, healthcare access, and health outcomes. When these indices and parameters
are integrated with GTS, it may offer a more comprehensive insight into water quality and
pollution levels. In this review, 21 studies were identified that utilized indices and GTS for
assessing pollution in water bodies, employing 30 different indices (Table S1).

3.4. Analyses of GTS in TW Studies

Geospatial technologies, with Geographic Information Systems (GISs) at their core, in-
tegrate remote sensing, GPS, mapping, and surveying data to generate valuable geographic
information [17,102,103]. This synergistic approach using a combination of GIS tools has
been demonstrably successful in comprehensively studying transitional waters (TWs).
While the following sections will describe specific techniques employed environmentally
for TW analyses, it is crucial to emphasize that these techniques are used in collaboration
with others. The complexity and heterogeneity of spatial data, the diverse research goals,
and the interplay of multiple variables within TW research necessitate a combined approach
(Table 2).

3.4.1. Cartography

Cartography transforms spatial data into meaningful information using visual rep-
resentations [104]. As a GIS tool, it is highly effective for visualizing and communicating
geospatial data, highlighting the distribution patterns of data points based on location [105].
This facilitates the integration of spatial data from diverse sources, enabling the exploration
of research questions [104].

In most of the articles reviewed, the spatial distribution of contaminants and their
concentrations are presented using the vector data model, which employs points for the
location of sampling points and shows the concentration and number of pollutants. This
constitutes a simple and easy way to elaborate a spatial analysis distribution of data that
helps identify sectors with contaminants and favors the understanding of connectivity
patterns between environments [43].

In three similar studies [23,43,66], environmental analyses were conducted on vari-
ous pharmaceuticals, personal care products, and illicit drugs in an agro-environmental
wetland in L’Albufera Natural Park, Valencia, Spain. They quantified between 13 and 32
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pharmaceutical and personal care products as well as nine illicit drugs to assess their preva-
lence and distribution in the area. Cartographic techniques such as geolocation, punctual
distributions, and spatial analytical processes were employed. The integration of total
numbers and concentrations of pharmaceuticals, personal care products, and illicit drugs in
sampling points, along with the punctual distribution of risk indices and additional layers
of data, including soil sealing, municipal population density, and locations of sewage water
treatment plants (SWTPs), facilitated the identification of connectivity patterns within the
park. Higher pollutant concentrations were observed near ditches linked to SWTP outflows
or in areas with denser populations, highlighting anthropogenic origins. Conversely, areas
without detected compounds were typically located away from urban water sources or
the natural park. The persistent presence of these compounds in the environment poses
significant risks to terrestrial and aquatic organisms, with potential impacts on wildlife and
human health.

Bui et al. [39] assessed and monitored nutrient loading in tidal creek sediments at
two sites in Quang Ninh, northern Vietnam, where intense and semi-intense shrimp farms
are present. The evaluation involved measuring total nitrogen, phosphorus, and organic
carbon and then calculating a sediment nutrient index (SNI) using a factor analysis. Spatial
variation was studied through sampling at three locations: inside effluent channels (IEC),
outside effluent channels (OEC), and away from shrimp farms (ASF). Temporal impacts
were evaluated by collecting samples in three seasons: before shrimp growing (T0), after
the first harvest (T1), and during the second harvest of shrimp (T2). Data obtained from
the sediment analysis were incorporated at the monitoring points to examine the spatial
and temporal punctual distribution of nutrients in sediments. The results indicated that
spatial variation exists in the nutrient load in sediment and SNI values (Figure 5), which
decrease as the distance to the shrimp farms increases. However, temporal variation
showed no patterns across sites. It was concluded that GIS tools helped represent a
punctual distribution of the SNI patterns along the study location to manage the aquatic
ecosystem health around farming areas.

A similar approach with geolocation and punctual distributions was adopted by
Vera et al. [67], who integrated physicochemical data into GIS vector layers to map the
most problematic pollution hotspots, considering the agricultural types associated with
each sampling point (Figure 6). Subsequently, the point spatial distribution maps for
water indices were developed to evaluate environmental pollution and environmental
risk through the Trophic State Index and ecological potential. Their findings revealed
that the wetland exhibited overall eutrophication and had limited ecological potential.
Other studies have applied cartography tools to perform the punctual distribution of
indicators [70], diversity indices [68], or sediment indices to evaluate biological hazards
and toxicity and human health risk assessment [12].

In another study [49], land use at sampling points was analyzed to identify correlations
between water quality parameters and the total percentage of land occupancy. Specifically,
elevated concentrations of total nitrogen, total phosphorus, chlorophyll, and dissolved
organic carbon (DOC) were found to be associated with higher proportions of tidal creek
sites compared to open water sites, indicating that, in addition to land use, the dilution
and flushing capacity of the system have a significant impact on water quality in the
Ashepoo–Combahee–Edisto (ACE) Basin, USA.

Under these scenarios, using cartographic tools has played a crucial role. These tools
have facilitated the identification of environmental risks, connectivity patterns, and spatial
variations in pollutant concentrations.
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spatial distribution limit of the Natural Park of Albufera. (c) Ecological potential point spatial
distribution in Albufera Lake. Adapted from Vera et al. [67]. Copyright © 2022 MDPI, Basel.
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3.4.2. Interpolation Techniques

The use of the interpolation technique has increased in environmental pollution
studies [42]. Interpolation, also known as gridding, involves estimating the values of
unknown points based on known points [105]. Inverse distance weighting (IDW) is a widely
used deterministic interpolation technique known for its simplicity and effectiveness in
spatial analyses [42]. This method relies on the relationship between attribute values of
pairs of points, where similarity decreases as the distance between locations increases [106].
The accuracy of the interpolated surfaces depends on the weighting power used, which in
turn is associated with the samples’ local coefficient of variation (CV) [36].

Some studies have employed this interpolation method to generate spatial map-
ping distributions of PC parameters [13,42,58,69,74], heavy metals [12,24,35,36,73], or
both [24,54,61,71] and to discern spatial patterns and variations in water quality. A signif-
icant finding from these studies is the recognition of variations across seasons on water
quality parameters and pollutants, influenced by natural factors such as high precipitation,
seasonal runoff, and anthropogenic factors like shipping, fishing, tourism activities, and
idol immersion activities. Similarly, PC values and POC concentrations have been jointly
assessed [72,78] to determine the significance of ongoing development in TW areas, aiming
to enhance diagnoses and identify critical hazard points stemming from these compounds.

On the other hand, some studies evaluate indicators and combine the IDW interpola-
tion technique with a multivariate statistical analysis to identify sources of contamination
and assess the ecological and health risks associated with various pollutants. An example
is the study of Wang et al. [12] on Kaozhouyang Bay in Guangdong Province, China, where
the bay receives discharges and runoff from seven rivers. Using the IDW technique, the
distribution patterns of heavy metals in surface sediments were determined. The maps
revealed similar distribution patterns for Cd, Ni, Zn, Hg, and As, suggesting a potential
common source. The elevated Pb, Cr, and Cu concentrations could be attributed to the
downstream movement and deposition of suspended sediments containing heavy metals
compounded by local pollution sources. Two principal components (PCs) were identified,
explaining 81.63% of the total variance. PC1, accounting for 53.50% of the variance, primar-
ily consisted of Cd, Pb, Ni, Zn, Hg, and As, while PC2, explaining 28.13% of the variance,
mainly comprised Cr, Ni, and Cu. Also, the spatial distribution of these components was
analyzed using the IDW technique, revealing that regions impacted by PC1 were near
urban areas, indicating anthropogenic influence. In contrast, PC2 impacts were observed
near farm areas, suggesting contamination from agronomic practices (Figure 7). Concern-
ingly, heavy metals from nearby industrial and agricultural areas can accumulate in bivalve
species, posing risks to human consumers through food contamination. Although the
heavy metal concentrations were lower than the allowable limits for human consumption,
a 21% chance of toxicity incidence was identified by the spatial distribution map of the
indicated mean PEL (probable effect level) quotient, an index to evaluate biological hazard
and toxicity in sediments. Subsequently, the target hazard quotient (THQ) was calculated to
assess non-carcinogenic health risks from exposure to toxic elements, with higher THQ and
total THQ (TTHQ) values observed in residential areas compared to rural areas, indicating
elevated health risks from bivalve consumption among exposed populations due to the
levels exceeding safe thresholds.

In addition to the IDW interpolation method, kriging is another commonly used
method in water quality assessment. The kriging method is used to interpolate the value of
a random field at an unobserved location from observations at nearby locations [107]. Ordi-
nary kriging also uses a semivariogram to quantify the spatial variability of regionalized
variables [40], a measure of the spatial correlation between two points. It also provides
a measure of the error or uncertainty so that the weights vary according to their spatial
extent [45]. If kriging should be used and the data are not normally distributed, they
must be transformed, for example, to a logarithmic scale [40]. Kriging is a moderately fast
interpolator that can be accurate or smooth depending on the measurement model; it also
uses statistical models that generate a wide variety of results, such as predictions, standard
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errors of prediction, and probability [37,45]. In kriging interpolation, the absolute value of
the mean standard error (MSE) should be close to 0; minimize the root mean square error
of prediction (RMSE), which should be close to the thematic standard error (TME); and the
root mean square standard error (RMSS) should be close to 1 [37]. In the kriging analysis of
variance, the semivariogram is a function of distance, and the method puts more emphasis
on the distance of the monitoring sites than on the values of the monitoring sites. This
means that a kriging variance analysis is a good option for improving the selection of the
optimal sites for monitoring and management [38].
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Figure 7. (a) Map of study area indicating location of Kaozhouyang Bay in China (A–C) and sampling
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distance weighting (IDW) technique in GIS. Taken from Wang et al. [12]. © 2018 Elsevier Ltd.

A series of studies [38,46,47,51,52] carried out in the Yangtze River estuary, China,
employed the kriging interpolation method to predict the values of attributes at unsampled
locations and to optimize monitoring networks. In the investigation by Shen et al. [38], PC
parameters and heavy metals were evaluated at predefined control points. These variables
were then used to establish a Seawater Environmental Quality Index (SEQI) and devise
an optimal environmental monitoring network design. This method emphasizes the im-
portance of the distance between monitoring sites, with more minor variances indicating
better monitoring network quality and more abundant information about the marine envi-
ronment. As a result, the authors expanded the number of monitoring locations from 42 to
59, concluding that this expansion enhanced the quality of the marine monitoring network.

In another application of the kriging method, Liu et al. [52] examined the distribution
of polycyclic aromatic hydrocarbons (PAHs) within the same estuary, alongside their
environmental repercussions, using various indices. The TEQBap index is commonly
employed to assess the toxicity of PAHs, while the SQGQ index determines the potential
impact of sediment-associated contaminants on aquatic organisms; both are utilized to
evaluate biological hazards and toxicity. Additionally, a human health risk assessment
was employed to calculate the risk, aiming to assess the potential biological effects of
contaminant exposure. Subsequently, the obtained values for each index were interpolated
using ordinary kriging. The results revealed a gradual decrease in TEQBap values from the
inner estuary towards the adjacent sea, with elevated concentrations noted in the estuary’s
northern region during winter, attributable to heightened coal and gasoline combustion.
The SQGQ method results indicated minimal adverse effects from pollutants, although
the spatial distribution showed elevated values at the bay’s bifurcations, but gradually
diminishing towards the estuary’s mouth. Furthermore, cancer risk (CR) and non-cancer
hazard index (HI) values were interpolated using ordinary kriging in ArcGIS 10.0 software
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to extrapolate values for unsampled locations (Figure 8). The spatial distribution showed
that the highest levels of cancer risk were detected in the area adjacent to the maritime
area, which threatens the inhabitants of the near-shore area. Conversely, the non-cancer
risk index exhibited relatively low levels, suggesting limited or no adverse health risks for
local inhabitants. The spatial analysis of this work made it possible to assess the risks of
PAHs to the environment and human health.
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(c), and TEQBaP index (d) in the Yangtze River estuary, China. Adapted from Liu et al. [52]. © 2016
Elsevier Ltd.

Kriging has played a significant role in various studies focusing on environmental
factors. It has been utilized to estimate sites of heavy metal pollution, highlighting sediment
and water as primary sinks for these pollutants [15]. Moreover, it aided in identifying
suitable areas for aquaculture by interpolating water quality parameters [33]. Yang investi-
gated the relationship between landscape characteristics and estuarine nitrogen loading
and illustrated the impact of urban sprawl on Pensacola Bay, USA [34]. Additionally,
kriging was central in evaluating mercury concentrations in Lake Taihu, revealing their
distribution patterns and indicating elevated concentrations in enclosed and semi-enclosed
water bodies compared to open areas, suggesting anthropogenic influences [37]. Further-
more, it facilitated the assessment of cadmium, lead [40], and petroleum hydrocarbon
spatial concentrations [45] in the analysis of major and trace metal variations in marine
sediments [48]. Kriging enabled the determination of ecological risk by interpolating heavy
metals and PC parameters in the Karavasta Lagoon [75].

Finally, another interpolation method utilized is Kernel Interpolation with Barrier.
This method enables the estimation of values between known points on a map. Using
information from scattered points, the method employs a moving window to calculate
the shortest distance between two points and connects them with straight lines, creating
a smooth surface between known points [108]. In other words, it estimates regression
coefficients to prevent instability in the calculation process. This method is employed in
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areas where the landscape or geographic conditions change abruptly, which may influence
the interpolation [109].

This method was employed to determine the pollution history in Ria Formosa, Portu-
gal [62], by analyzing heavy metals in sediments, interpolating their concentration, and
estimating the enrichment factor (EF). The analysis showed that while the system appears
largely undisturbed, surface sediments exhibit significant contamination, with high EF
observed for As, Cu, Pb, and Zn. Moreover, the interpolation of the enrichment index also
pointed to diffuse contamination, primarily originating from stormwater drains near major
urban areas, as the most significant contributor of metals to the system.

Expanding on investigations utilizing indices, numerous studies have interpolated a
wide range of indices related to pollution, potential ecological risk, ecosystem health, and
health risk to assess, monitor, and detect sources of contamination [13,24,35,55,69,72–74,76].
Among the identified pollution sources for TW are aquaculture and agricultural prac-
tices, disposal of municipal waste, discharge of untreated agricultural sewage, industry,
and urbanization.

As can be seen, interpolation techniques have played a role in the study of TW pollu-
tion by providing valuable insights into spatial patterns and variations in key parameters
such as water quality indicators, heavy metal concentrations, and ecological risk assess-
ments. Such interpolation techniques serve as essential tools for environmental status
determination, as a starting point for future management processes to protect these ecosys-
tems and safeguard human health.

3.4.3. Complex Spatial Models

Complex models and GIS are complementary tools that, when working in tandem,
offer a comprehensive and robust approach to ecosystem management. Additionally, the
integration of complex models and GIS data provides the ability to assess the impact
of environmental changes on human health. The analyzed studies primarily employed
models that utilize indices. These indices calculate a single value for each spatial unit (e.g.,
pixel, grid cell) and subsequently generate a classified map based on the calculated values.

In the realm of prediction/simulation models, Yang’s study [34] utilized a multivariate
statistical analysis and regression modeling to simulate nitrogen loading based on land-
scape characteristics. The results showed that landscape features predominantly explained
nitrogen variability, although the impact of urban expansion also contributes to this vari-
ability. In a similar work, Johnson et al. [41] developed a Total Maximum Daily Load
(TMDL) model to simulate the loads and concentrations of coliform bacteria in coastal sys-
tems. Employing equations from continuously stirred tank reactors and plug-flow reactors,
this model routes loads from spatially distributed point and nonpoint sources through a
watershed, degrading via first-order kinetics. They simulated bacterial loads in the Copano
Bay watershed in Southeast Texas by incorporating bacterial load data and hydrological
characteristics. The study revealed spatial variations in decay values, suggesting potential
regrowth and resuspension in specific areas.

El-Zeiny and El-Kafrawy [53] utilized empirical models for PC parameters (BOD,
TN, and TP) in conjunction with a GIS model to pinpoint areas with high pollution levels
categorized into three classes: high (class 1), moderate (class 2), and low (class 3) (Figure 9).
Their results revealed that Lake Burullus faces contamination from diverse sources, pre-
dominantly domestic and agricultural runoff. Furthermore, shallow waters influenced by
human activities exhibited heightened levels of the analyzed contaminants.

Boateng et al. [64] described a study on eight coastal lagoons in Tema and Winneba
along the Ghanaian coast to evaluate the potential impact of climate change-induced
inundation on various land uses in the region. They analyzed 2100 scenarios to predict
sea-level rise and determined vulnerability assessments. Maps illustrating sea-level rise
(SLR) and rainfall inundation scenarios were created to identify flood-prone areas. High-
resolution georeferenced panchromatic bands from the Shuttle Radar Topographic Mission
(SRTM) for Ghana were used to assess flood extent and associated uncertainty. These
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data, obtained from the Global Land Cover Facility, were integrated into ERDAS Imagine
and overlaid on the 2002 topographic map of Ghana at a 1:50,000 scale. Coordinates and
point heights were validated using data from the topographic map. Subsequently, using
ERDAS Virtual GIS, three inundation layers were superimposed on the image to represent
sea level rises of 1 m (mean projection for 2100), 2 m (upper limit projection), and 5 m
(long-term scenario involving the West Antarctic Ice Sheet melting). The study highlighted
the significant impact of a 2 m sea level rise on lagoons and surrounding land, with levels
below 2 m causing minimal flooding. Storm surges could exacerbate the erosion of barriers,
potentially leading to breaches and coastal flooding. Moreover, the study emphasized the
greater risk of inland flooding from rainfall compared to seafront flooding, with increased
rainfall runoff posing a threat of carrying pollutants into the lagoons. These findings
highlight the importance of measures to address future climate change scenarios and
inform the development of adaptation strategies and implementation recommendations.
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Figure 9. (a) Spatial distribution of eighteen sampling points, Lake Burullus, Egypt. (b) Prediction of
water pollution level in Lake Burullus, applying empirical complex models. Adapted from El-Zeiny
and El-Kafrawy [53], with permission from authors.

Land use dynamics models are useful for understanding and predicting how changes
in land occupation affect natural resources, the environment, and society, providing in-
formation for land management planning. In the study by Abd El-Hamid et al. [65], a
simulation model combining cellular automata and Markov chains was developed to an-
alyze land use changes in three wetlands of Egypt. The aim was to explore how these
changes in land use and land cover (LULC) affect the water quality of the lakes. After
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assessing land use patterns from 2011 and 2021, the model was capable of predicting land
use for 2031 (Figure 10). This result, along with data on PC parameter concentrations for
2011 and 2021 and an assessment of ecosystem services, allowed the identification of urgent
intervention regarding changes in land use and vegetation classes.
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Another example is the one of Zhao et al. [70], where the influence of land use patterns
on the spatial distribution of dissolved PCBs and organochlorine pesticides (OCPs) was
examined using Land Use Regression (LUR) in the Narragansett watershed–coastal area.
This model established relationships between concentrations of the pollutants of concern
and key descriptive variables such as population density, building density, road networks,
sewer areas, impervious surface coverage, and land use classes. The findings indicated
that contaminant levels in urban and built-up regions were higher than in other areas, with
changes in land use being the primary drivers of this distribution pattern. Furthermore,
it was suggested that historical levels of PCBs in surface water could be linked to PCBs
present in construction materials and equipment, such as sealants, paints, and adhesives,
which may continue to be released as buildings age. A similar approach was adopted by
Morant et al. [16], who developed a land use model to quantify the primary pressures on
water bodies, predicting the potential impacts of these pressures on their ecological status
in Mediterranean lentic ecosystems.

Sensitivity and contamination risk models offer crucial frameworks for assessing envi-
ronmental vulnerability and predicting the likelihood of contamination events, facilitating
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proactive risk management and mitigation strategies. An example is the study by El-Alfy
et al. [13], who developed a model to investigate the susceptibility to contamination and
the probability of eutrophication in Lake Burullus. Multivariate statistical analyses and
proximity analyses were employed for this purpose. The study considered water qual-
ity parameters that could influence the likelihood of eutrophication in the former case.
Meanwhile, in the latter case, proximity factors of anthropogenic activities, such as drains;
industrial, agricultural, and urban areas; and fish farms, were considered by assigning
weights based on their distance to Lake Burullus. As expected, the results identified that the
most susceptible regions to contamination are those where industrial activities are located
and drain outlets are concentrated.

Several other research studies have been carried out using complex spatial models
to improve the understanding of pollution risks in coastal areas. The aforementioned
studies include the development of a novel WebGIS observatory platform dedicated to risk
assessment, emergency preparedness, and response [44]. Additionally, efforts have been
made to pinpoint hotspots of PAH pollution using Voronoi maps and Fuzzy Membership
Functions [78], conduct source–ecological risk assessments by establishing geochemical
baseline values for metalloids [71], and assess heavy metal contamination in water and
sediment through a cluster analysis, correlation coefficients, and a factor analysis [15].
Furthermore, a multi-thematic overlay analysis has identified priority pollution zones for
protection [50]. A notable approach involved the integration of positive matrix factorization
(PMF) and GIS, enabling the identification of PAH occurrence and their contamination
sources [46,77].

3.4.4. Remote Sensing

Remote sensing is a powerful tool for acquiring and analyzing information about
specific characteristics of phenomena, objects, or materials without direct contact. Typ-
ically, this involves measuring the electromagnetic properties of objects using sensors
mounted on aircraft or satellites orbiting the Earth. Integrated within the GIS framework,
remote sensing facilitates the collection and management of both field and remotely sensed
data [110]. It also offers an alternative approach to increase spatial and temporal coverage,
complementing traditional techniques for water quality monitoring [111]. This capability
is particularly advantageous in inland and near-coastal transitional waters, where remote
sensing can accurately measure water quality parameters such as chlorophyll-a, suspended
sediments, and other pollutants [112].

In the reviewed articles, authors employed remote sensing techniques utilizing digital
image processing algorithms and various methods for image visualization, enhancement,
and interpretation. Through these approaches, it has been possible to identify the dis-
tribution of water quality parameters [21,65], as well as levels of chlorophyll-a [63] and
phytoplankton distribution [68]. Specifically, Landsat-8 data were employed to predict and
assess the spatial variation and distribution of salinity, SO4, and CaCO3 in the Al-Hawizeh
marsh in southern Iraq during winter and autumn in 2017 [21]. In the process, band
value extraction and spatial distribution techniques were employed to derive quantitative
information from specific bands of the Landsat-8 imagery. Surface water samples from
the marsh underwent a chemical analysis to determine the levels of these parameters,
and subsequently, water quality equations were developed to evaluate, monitor, and map
their distribution. For salinity assessment, the salinity index based on Bands 6 (Shortwave
Infrared—SWIR, 1.57–1.65 µm) and 11 (Thermal Infrared—TIRS2, 11.5–12.51 µm) from
Landsat-8 was employed. An equation derived from Landsat-8 salinity output data and
field measurements of SO4 and CaCO3 was used to estimate mineral values. Results
indicated lower salinity, SO4, and CaCO3 levels during winter, with higher concentra-
tions observed in autumn, particularly notable in the eastern and southeastern regions
of the marsh. The images’ spectral, spatial, and temporal resolution facilitated a precise
assessment of spatial and temporal variations in these parameters.
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In the study by Mortula et al. [63], they employed a WorldView-2 satellite image to
investigate chlorophyll-a levels in Dubai Creek, USA. A band ratio model derived from
satellite imagery to estimate chlorophyll-a concentration was applied. Additionally, a
regression model incorporating eutrophication parameters, such as the total nitrogen–
orthophosphate (TN/P) ratio, was developed. The regression analysis revealed a strong
correlation between TN/P and chlorophyll-a, highlighting the significant impact of nutri-
ents on eutrophication. The study emphasizes the importance of considering the spectral
characteristics of the water column for accurate chlorophyll-a estimation and its association
with nutrient content. Moreover, the model was validated using in situ data and correlated
with eutrophication indicators. The analysis identified chlorophyll-a concentrations ex-
ceeding local limits, particularly in the lagoon area (Figure 11), attributed to anthropogenic
activities and sewage discharge.
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Various studies have employed diverse techniques and satellite imagery types to
identify land cover, land loss, and landscape changes to assess pollution in coastal wa-
ter bodies [13,15,16,34–36,53,57,60,65,72]. These analyses have utilized Google Earth Pro
images [16], high-resolution aerial photos [60], SPOT-5 satellite images [35], Landsat im-
ages [13,15,34,53,65,72], and Airborne Visible/Infrared (AVIRIS) imagery [57]. For instance,
a land use/land cover change analysis has been described by comparing satellite images
from different periods to identify alterations in land cover [15,36,72]. Moreover, specific
studies have been undertaken to analyze land loss, such as segmenting marsh shorelines
into oil-affected and non-affected areas and calculating land loss rates [57]. These remote
sensing approaches have been essential for understanding land dynamics and their effects
on coastal water bodies.

Specifically, Essel et al. [60] published a study to map and evaluate the habitat of Fosu
Lagoon, located in Cape Coast, southeastern Ghana, using GIS and remote sensing. One
high-resolution aerial photograph for each study year (2009 and 2017) was acquired from
the Ghana Town and Country Planning Department, with a ground sampling distance (GSD
or pixel size) of 0.39 m, to map the study area. An object-based classification technique was
then applied using eCognition software version 9.5, identifying classes such as standing
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water, mangrove vegetation, semi-natural mangrove, coastal marsh, semi-natural marsh,
scrub, and induced shrub. To ensure classification accuracy, field verification was conducted
at 20 randomly selected points, and the ArcGIS confusion matrix calculation tool was
utilized to determine overall accuracy and the Kappa coefficient, providing an assessment
of classification accuracy. The accuracy for the 2009 map was 92% with a Kappa coefficient
of 0.8599, and for the 2017 map, the accuracy was 90% with a Kappa coefficient of 0.8251,
both considered satisfactory. The 2009 and 2017 habitat maps of the lagoon identified
a significant decline in habitat size, a considerable fragmentation of ecosystems, and
significant changes in land use and land cover, significantly impacting local populations.

Advanced remote sensing techniques were utilized to assess the impact of marsh
contamination on landscape degradation and land loss in three time periods resulting
from the 2010 BP oil spill on the Deepwater Horizon (DWH) platform in Barataria Bay,
USA [57]. This included the production of oil maps through Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) imagery and the development of a Multiple Endmember
Spectral Mixture Analysis (MESMA) model to identify various vegetation and soil types,
including areas covered by oil in marshlands. Additionally, changes in coastlines were
mapped using QuickBird-2 and WorldView images. The marsh coastlines were divided
into segments with and without oil, and land loss rates were computed to determine
significant differences between affected and unaffected regions. Moreover, land loss rates
attributed to oil were estimated by adjusting background rates before and after the spill.
To validate these findings, binary classification maps of marsh and open water coverage
were generated for each image using the Normalized Difference Vegetation Index (NDVI).
Results indicated that the oil spill led to a land loss increase of over 50%, but land loss rates
reverted to background levels within 3 to 6 years post-spill (Figure 12).
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Remote sensing has been employed for a diverse range of analyses, including identify-
ing pollutant distribution and changes in land cover, which are often linked to pollution
in transitional or coastal waters. Compared to conventional in situ measurements, re-
mote sensing provides a comprehensive view of the water body, allowing for a more
cost-effective and reliable monitoring of quantitative parameters. When combined with in
situ measurements for validation purposes, remote sensing and GIS techniques effectively
monitor water quality across various water bodies [14].

4. Perspective

As can be seen, the diversity of geospatial technologies and their combination fa-
cilitates spatial monitoring of water quality parameters, pollutant concentrations, and
ecological indicators, enabling real-time assessment of the environmental status of TWs,
which are susceptible to pollution from various anthropogenic sources, including industrial
discharge, agricultural runoff, and urban sewage. The contamination of these ecosystems
poses substantial risks to human health through direct exposure to polluted water and
consuming contaminated seafood. Exposure to polluted TW can adversely affect human
health, ranging from acute illnesses to chronic diseases. Contaminants such as heavy metals
and persistent organic pollutants (POPs) have been associated with neurological disorders,
developmental abnormalities, reproductive impairments, and carcinogenic effects. Fur-
thermore, microbial pollution from sewage discharge and agricultural runoff can lead to
waterborne diseases such as gastroenteritis, hepatitis, and cholera, posing significant public
health concerns, particularly in communities reliant on these waters for drinking, bathing,
and recreational activities. Vulnerable populations, such as children, pregnant women,
and indigenous communities, are disproportionately affected by pollution-related health
disparities. Subsistence fishermen and indigenous communities relying on traditional
fishing practices are at heightened risk of exposure to contaminated seafood, exacerbating
health disparities among vulnerable populations.

Although it was not detected in the studies analyzed, GIS-based exposure modeling
may allow quantifying human exposure to these contaminants, identifying vulnerable
populations and assessing health risks associated with different pollution levels. Integrating
environmental data, population demographics, and health outcomes with GIS tools and
other geospatial technologies facilitates the identification of pollution “hotspots” where
interventions are most urgently needed to prevent adverse health effects. In addition,
incorporating GTS into pollution management strategies would allow decision-makers to
promote equity, justice, and public health for all communities affected by pollution in TW.

Future research in these areas should increase remote sensing studies to gain insights
into environmental factors that influence disease outbreaks, distribution, and risk. This
information is vital for disease surveillance, risk mapping, and informing public health
interventions [113,114]. As sensor technology advances and integrates with other geospa-
tial information, remote sensing would support the development of more comprehensive
and predictive public health strategies for TW. Additionally, studies monitoring the pollu-
tants such as micropollutants, emerging pollutants, or antibiotic-resistant microorganisms
are needed.

5. Conclusions

Transitional waters are relevant ecosystems due to the different roles and services
they provide, playing a central role in environmental sustainability and human well-being.
However, they are facing increasing threats, particularly from anthropogenic pollution.
To diagnose the environmental state of TW, GTS have become increasingly valuable for
mapping pollution in TW. These technologies effectively characterize the spatial distribu-
tion of pollutants, mainly from anthropogenic point sources. Integrating the diversity of
geospatial technologies would help to better understand pollution patterns within these
dynamic ecosystems. Future research should advance our understanding of TW’s interac-
tions between pollutants, ecosystems, and human health. Long-term monitoring programs,
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epidemiological studies, and risk assessments are essential for identifying emerging con-
taminants, assessing their health impacts, and informing evidence-based management
strategies. Additionally, community-based approaches, citizen science initiatives, and envi-
ronmental education efforts can promote community participation in pollution monitoring
and mitigation efforts.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijgi13060196/s1, Table S1: Pollution indices applied in the Transitional
Waters studies. References [115–143] are cited in the Supplementary Materials.
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