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Abstract: The auto-generation of urban roads can greatly improve efficiency and productivity in
urban planning and designing. However, it has also raised concerns amongst researchers over the
past decade. In this paper, we present an image-based urban road network generation framework
using conditional diffusion models. We first trained a diffusion model capable of generating road
images with similar characteristics to the ground truth using four context factors. Then, we used
the trained model as the generator to synthesize road images conditioned in a geospatial context.
Finally, we converted the generated road images into road networks with several post-processes.
The experiments conducted in five cities of the United States showed that our model can generate
reasonable road networks, maintaining the layouts and styles of real examples. Moreover, our model
has the ability to show the obstructive effect of geographic barriers on urban roads. By comparing
models with different context factors as input, we find that the model that considers all four factors
generally performs the best. The most important factor in guiding the shape of road networks is
intersections, implying that the development of urban roads is not only restricted by the natural
environment but is more strongly influenced by human design.

Keywords: road network generation; generative models; diffusion models; geospatial context

1. Introduction

As a fundamental city infrastructure, road networks greatly influence urban traffic
and human movement. The length, density, and hierarchical structure of urban roads
have been investigated in previous empirical studies to show their relations with the
economic development and commuting efficiency of cities [1–4]. Manual modeling for
large-scale road networks is laborious and tedious; a road network is a complex structured
system composed of a large number of road segments and intersections, and the layout
of the road network varies across different regions. An efficient and reasonable road
network generation model can be applied in many fields, including urban planning and
management, traffic simulation, autonomous driving, and video game design. With the
advances in generative techniques in computer sciences, the auto-generation of road
networks has gained attention in the past decade.

Generally, the automatic generation model of road networks should meet two basic
requirements: fidelity and diversity. The former means that the algorithm should be able
to generate plausible road networks that maintain a similar style to the original one. The
latter means there should be several attributes that can be customized to produce more
diversified structures [5,6]. Researchers have presented a series of generative models for
constructing road networks. Those models can be roughly divided into two categories:
procedural modeling and deep generative models. Procedural modeling defines a set of
carefully designed rules and gradually constructs a whole road network through iterations.
It can perform well in specific regions but may not be adaptable to new scenarios because it
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is more specialized and strongly dependent on the rule sets. Deep generative models learn
road information and properties from real cases and generate road segments with similar
patterns. Compared with procedural modeling, they are more reliable and flexible to use.

Deep generative models have advanced significantly in recent years. Techniques
including variational auto encoder (VAE), recurrent neural network (RNN), and genera-
tive adversarial network (GAN) have greatly expanded the capabilities for road network
generation. Recently, diffusion models have been rapidly gaining attention since the re-
lease of Ho’s paper [7]. As a new class of generative models, diffusion models have been
proven to be surprisingly effective not only in image synthesis but also in tasks including
text-to-image and text-to-video [8–10].

This paper introduces diffusion models for the generation of urban road networks.
To evaluate the quality of the generated results, experiments were conducted in five cities
across the United States: Chicago, Los Angeles, New York, Phoenix, and Washington.
Unlike previous studies that solely rely on AI-based technologies, we emphasize the
importance of the geospatial context in generating road networks. According to Goodchild’s
definition, the geospatial context refers to the surroundings or neighborhoods of events
and features [11]. In this study, we specifically consider environmental and artificial factors
related to the construction and expansion of urban roads. Existing studies in the literature
have shown that the underlying terrain and human design play a role in determining street
network structures [12,13]. Therefore, we selected four factors to represent these aspects:
land use, elevation, slope (underlying terrain), and road intersections (human design).

The contributions of this paper are two-fold. First, we present a new generation
framework that combines diffusion models with the geospatial context. By inputting
the geospatial context of a region, our conditional diffusion model can generate road
networks with characteristics and styles similar to the ground truth. Second, we evaluate
the performance of our generation model using five metrics: Fréchet inception distance
(FID), F1 score (F1), intersection over union (IOU), difference of average degree (DAD), and
difference of average road length (DARL). We also analyze the impact of natural obstacles
such as water bodies, mountains, and vegetation on urban roads. Our work provides urban
designers and planners with an efficient method to generate realistic road configurations
that match specific cities.

The remainder of this paper is organized as follows: Section 2 presents a review of
related work. Section 3 describes the details of the methodological framework. Section 4
shows experiments in several cities and the corresponding results. Section 5 provides the
discussion and conclusions for this paper.

2. Related Work
2.1. Procedural Modeling

For the first time, Parish and Müller implemented a procedural system called
CityEngine to model streets and buildings based on grammar rules [14]. Aliaga et al.
performed random walks to generate a street layout considering the statistical charac-
teristics of street intersections [5]. Galin et al. applied a weighted anisotropic shortest
path algorithm to create road trajectories by minimizing the cost function [15]. Beneš et al.
generated major and minor roads for cities based on traffic simulation and formed a rich
road structure for multi-city scenes [16]. Lyu et al. presented a pattern-based algorithm,
which contains two pattern types, radial and checker, to generate a road network consisting
of three layers: highway, arterial, and distributor [6]. Teng and Bidarra considered semantic
information when creating complex structured roads and used a parametric method to al-
low the generation of standard structures, e.g., grids and suburban styles [17]. Nishida et al.
proposed an interactive road design system using statistical information obtained from real
examples to create roads at a large scale [18]. Ding et al. proposed a related neighbor graph
(RNG)-based growth model, where two processes—expansion and densification—were
performed in each turn [19]. Their results showed a node degree distribution that was
similar to the observed empirical patterns. Lima et al. presented a shape grammar-based
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street design strategy with the goal of minimizing urban street length and maximizing
facility service accessibility [20]. However, this method can only construct grid-style street
layouts and struggles to generate irregular road networks. In general, procedural modeling
is strongly dependent on pre-defined rules, which require manual modification to adapt to
different regions.

2.2. Deep Generative Models

The recent development of deep learning has powered the application of generative
models in road network synthesis. Deep generative models of road networks can be
categorized into two types according to how input data are processed. The first type
of model generates a road network as a graph consisting of vertices and edges. These
models take geometric data of roads as input, e.g., node coordinates and road length,
then generate new nodes and construct a valid topology gradually during the inference
phase. Previous researchers have proposed several generative models for graph generation,
such as GraphRNN [21], NetGAN [22], and GRAN [23]. Owaki and Machida extended
the generation of graphs to road networks by using a generator to produce not only the
node sequences but also the displacement attributes in their RoadNetGAN model [24].
Chu et al. used an encoder RNN to encode the neighboring information of vertices and a
decoder RNN to predict the coordinates of the next vertices [25]. Mi et al. employed a two-
level hierarchical graph generation model called HDMapGen to produce high-definition
maps [26].

Another type of model is the image-based model, which treats road network gener-
ation as an image synthesis or image inpainting task. Hartmann et al. converted road
network patches into binary images and used a GAN to synthesize street network im-
ages [27]. Then, they extracted the road vectors from the generated images. Fang et al.
employed a GAN-based image inpainting technique to predict the missing road segments
in pre-defined regions [13,28]. By considering local context and topological information,
they produced more realistic results in hilly areas. Birsak et al. leveraged vector-quantized
VAE and auto-regressive transformer to create city-scale road layouts under the input of
condition maps, including land–water maps and road density [29]. There are also meth-
ods utilizing multi-source data for the generation of road networks. For example, Yang
et al. constructed a framework called TR2RM to extract road networks by incorporating
high-resolution remote sensing images and big trajectory data [30].

Our framework belongs to the class of image-based models. We focus on predicting
and reconstructing the road network for the testing regions with layouts in the style of
the provided training regions. Compared with graph-based models, we utilize more
geospatial context factors that affect the generation of road networks. Unlike previous
image-inpainting-based works [13,28], we do not need the surrounding road information
but only include the geospatial context to generate the road networks for new areas.

2.3. Factors Affecting Urban Road Networks

The evolution of urban road layouts is shaped by geographical, social-economic, and
historical factors. For geographical factors, researchers have indicated that land use and
terrain exhibit strong effects on road network structure and pattern [3,31,32]. By taking
100 cities around the world as the study cases, Boeing found that Caracas, Hong Kong, and
Sarajevo had the largest road circuities due to topographical constraints [12]. Strano et al.
found that although the mean and total road length of urban areas were quite different
from those of croplands, the rescaled road length distributions were indistinguishable at the
global scale [3]. Song et al. explored the relationship between street centrality and land-use
intensity (LUI) in the urban area of Jinan, China. Their analysis showed that LUI had a
positive effect on closeness centrality and straightness centrality and a negative impact on
betweenness centrality [33]. Researchers have also conducted empirical analyses of the
interactive relationship between road density and vegetation [34,35].
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Other studies take social–economic factors as the explainable variables, such as popu-
lation and GDP. Researchers have demonstrated that as population grows, the geometric
and structural fractal dimensions of urban streets also increase [36,37]. Cao et al. examined
the scaling law between road length and population based on datasets in Shenzhen [38].
In terms of the effect of historical events, Barthelemy et al. revealed abrupt changes in the
street network pattern of Paris arising from Haussmann transformations [39].

Although previous studies have presented various road network generation models,
there still lacks an efficient model that can predict high-quality road networks based
solely on geospatial context factors. We only consider land use, elevation, slope, and
road intersections as natural geographical factors in this paper. Elevation and slope data
characterize the topography of the study areas; together with land use data, they have a
significant impact on urban road networks, as mentioned in previous studies. Intersections
represent human planning and design, which is also important in the generation of road
networks. We currently do not consider social–economic factors because geographical
factors are relatively more stable and can provide enough guiding information for this
research. However, we can incorporate them as an extension in our future research.

3. Methodology

The main idea of our method is to use road images as training input and context
factors as extra conditions so that the urban road layouts can be guided to fit real situations.
The overall workflow is illustrated in Figure 1. Our framework contains three parts in
total. We first prepare the geospatial context and road network images and use them as
input to train the conditional diffusion model. After epochs of training, we obtain and
save the model parameters with the best performance. In the sampling phase, we use the
pre-trained model as the generator to synthesize the road images from noises regarding the
local context. Given the generated road images, we conduct post-processes to convert them
to the final road networks.
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3.1. Data Preparation

The input data consist of two parts: road networks and the geospatial context. Re-
searchers have explored the relationships between street configurations and geographical
conditions such as land use [40,41], elevation [13,42], and slope [13,43,44]. In addition, the
effects of human design and interactions were also highlighted [39]. Therefore, we selected
land use, elevation, slope, and road intersections as the four context factors to assist in the
generation of road networks.

The urban road networks were downloaded from OpenStreetMap (OSM), including
six road types: motorway, residential, secondary, primary, tertiary, and trunk. Nodes with a
degree greater than 1 were extracted from the road networks as intersections. The land use
was collected from ESRI Sentinel-2 10-Meter Land Use/Land Cover data, which contain
nine classes: water, trees, flooded vegetation, crops, built area, bare ground, snow/ice,
clouds, and rangeland. The DEM was obtained from the Shuttle Radar Topography Mission
(SRTM), which has a spatial resolution of 30 m. The slope data were calculated based on
the elevations.

Because our model is an image generator, we needed to convert the obtained road
networks and geospatial context data into image patches for training. We randomly
generated 10,000 squares with a size of 1 km × 1 km within each city. To remove areas
where the road density is too low, we only retained the squares with a road length that is
larger than 2 km. Then, we clipped the road networks and geospatial contexts with the
squares to produce the corresponding road images and context images, each of which is a
1 × 128 × 128 image. Under this condition, the spatial resolution of the pixels is 7.81 m,
which is smaller than that of the DEM (30 m) and land use data (10 m). To resolve these
resolution mismatches, bilinear interpolation was conducted for the DEM and land use data
to adjust their resolutions to 7.81 m. Considering that the land use value was categorical
and contained 9 classes in total, we first converted land use to multi-channel images, each
of which has a size of 9 × 128 × 128. Then, we generated 9 independent gray images for
each multi-channel image. We normalized the values of elevation and slope images into a
range of 0 to 255 with the following equation:

Vnorm = 255· V − Vmin
Vmax − Vmin

(1)

where V is the raw elevation or slope, Vnorm is the normalized value, and Vmin and Vmax are
the minimum and maximum values of a city, respectively. A detailed description of the
input images is presented in Table 1.

Table 1. Size and pixel values of the input images.

Data Image Size Pixel Value Note

Road network 1 × 128 × 128 0 or 255 0 represents non-road; 255 represents road

Land use 1 × 128 × 128 for each class 0 or 255 0 represents the other type; 255 represents the
current type

Elevation 1 × 128 × 128 [0, 255] Normalized elevation with the range of 0 to 255
Slope 1 × 128 × 128 [0, 255] Normalized slope with the range of 0 to 255

Intersections 1 × 128 × 128 0 or 255 0 represents non-intersection; 255 represents
intersection pixel

3.2. Conditional Diffusion Model

In this study, the diffusion model was employed as the generator to create road images.
Specifically, we used the denoising diffusion probabilistic model (DDPM) proposed by Ho
et al. [7] to perform conditional image generation. DDPM can be seen as a parameterized
Markov chain with T steps, and it consists of the forward process and the denoising process.
In the following paragraphs, we first introduce the details of the original DDPM and then
explain how we adapt the diffusion model to conditional image generation.
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3.2.1. Forward Process

Given the original image y0 sampled from the distribution q(y), the forward process
gradually adds noise to it for T steps, forming the following trajectory: y0, y1, y2, · · · , yT .
The conditional probability q(yt|yt−1) is a normal distribution as follows:

q(yt|yt−1) = N
(
yt;

√
αtyt−1, (1 − αt)I

)
(2)

where α1:T are hyperparameters and subject to (0, 1). Given y0 as the input, the trajectory
after T iterations is

q(y1:T |y0) = ∏T
t=1 q(yt|yt−1) (3)

Furthermore, we can obtain the distribution of yt conditioned on y0 as follows:

q(yt|y0) = N
(

yt;
√

αty0, (1 − αt)I
)

(4)

where αt = ∏t
s=1 αs. When T is near-infinite, yT represents an isotropic Gaussian noise. For

a noisy image ỹt ∼ q(yt|y0), we can rewrite it with the reparameterization trick as follows:

ỹt =
√

αty0 +
√

1 − αtε, ε ∼ N(0, I) (5)

After some algebraic manipulation, we can derive the distribution of yt−1 conditioned
on yt and y0, which is helpful for the parametrization of the following denoising process.

q(yt−1|yt, y0) = N(yt−1; µq(yt, y0), Σq(t))

µq(yt, y0) =

√
αt(1 − αt−1)

1 − αt
yt +

√
αt−1(1 − αt)

1 − αt
y0

Σq(t) =
(1 − αt)(1 − αt−1)

1 − αt
I

(6)

3.2.2. Denoising Process

If we can reverse the forward process, we will be able to recover the original image
from Gaussian noise. Denoising is the backward process that learns the reverse distribu-
tion q(yt−1|yt), which is estimated using a parameterized model pθ , where θ denotes the
parameters of the neural network. The conditional probability pθ(yt−1|yt) in the reverse
process is given by

pθ(yt−1|yt) = N(yt−1; µθ(yt, t), Σθ(yt, t)) (7)

The joint distribution of the reverse process is

pθ(y0:T) = pθ(yT)
T

∏
t=1

pθ(yt−1|yt) (8)

3.2.3. Model Training

Our training target is to recover the original image given a noisy image generated
by the forward process. Note that the forward processes are modeled as Gaussian distri-
butions with pre-defined parameters; thus, denoising is the only process that we need to
learn. In order to optimize the denoising model, researchers have demonstrated that the
denoising transition should be matched as closely as possible to the ground-truth posterior
distribution [7]. It has also been found that learning a denoised model by predicting the
original image is equivalent to predicting the source noise that determines the noisy image.
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Furthermore, better performance can be achieved through noise prediction [45]. Eventually,
the loss function is expressed as

Ey0,t,ε∥ε − εθ(
√

αty0 +
√

1 − αtε︸ ︷︷ ︸
ỹt

, t )∥2 (9)

3.2.4. Conditional Image Generation

The dataset we used contains road images and corresponding context images and is
denoted as D = {yi, ci}N

i=1, where N is the number of samples. Following Saharia et al. [46],
we adapted the DDPM to conditional image generation.

In the forward process, we add Gaussian noise to an original road image to generate
noisy images, as mentioned above. In the denoising process, the main difference to the
plain DDPM is that we predict the original road image with both noisy road images and
context images. In this circumstance, the formula can be replaced by pθ(yt−1|yt, c). We
start with the Gaussian noise image yT and concatenate it with the corresponding context
images as input to recover yT−1. Then, we predict yT−2 under yT−1 and the context images.
We finally recover the original road image through iterative refinements.

Our DDPM employs a U-net model for the denoising process. It is a symmetric
architecture with an input and output of the same size. A detailed description of the U-net
architecture used in our diffusion model is shown in Figure 2, where the output size of
each layer is shown below that layer.
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3.3. Post-Processing

After obtaining the synthesized road images, we conducted three post-processes. First,
we converted the grayscale images to binary-value images by setting pixels greater than
127 to 255 and those smaller than 127 to 0. Then, we used the thin algorithm proposed by
Zhan [47] to reduce the width of the linear features of the images. Lastly, we performed
vectorization for the thinned images to generate road vector lines. We can reconstruct the
road graphs based on these road vectors.

3.4. Evaluation

In order to comprehensively evaluate the performance of our models, we investigated
the similarity in terms of both the generated images and networks. Two types of metrics
were used, as described below.
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3.4.1. Image-Based Metrics

(1) Fréchet inception distance (FID). The FID is a metric that assesses the quality of
images created by generative models. It is calculated by comparing the distribution
of generated images with that of the ground truth. For more detail, refer to [48]. A
smaller FID means that the two datasets are more similar and the corresponding
model is better.

(2) F1 score. The F1 score is defined based on the precision and recall scores, which are
denoted as follows [49]:

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2· precision·recall
precision + recall

(10)

where TP (true positive) is the number of samples correctly predicted as positive, FP is
the number of samples wrongly predicted as positive, and FN is the number of samples
wrongly predicted as negative. For each generated road image, we consider its pixels as
samples and calculate the F1 score. After obtaining the F1 scores of all images, we compute
the average as the final F1 score metric. A larger F1 score implies better generation results.

(3) Intersection over union (IOU). We first calculated the area of overlapping road pixels
between the generated image and the ground truth, and then the area of union road
pixels. Then, IOU is calculated as follows [50]:

IOU =
Area of Overlap
Area of Union

(11)

Similar to the F1 score, the average IOU of all images is computed as the final IOU. A
larger IOU is better.

3.4.2. Network-Based Metrics

(1) Difference in average degree (DAD). As mentioned earlier, a road network is recon-
structed for each generated road image after the post-processes. We calculate the
average degree for both the generated and real road networks in the testing regions.
The difference between these two average degrees is used as one metric to evaluate
the performance of our models in terms of topology [51]. Obviously, the closer DAD
is to 0, the better the generation model is.

(2) Difference in average road length (DARL). For each generated road network, we first
sum the length (in kilometers) of roads in that network and then calculate the average
value across all road networks. Similarly, the average road length of real networks is
also calculated. The difference between these two average values is taken as the other
evaluation metric from the perspective of geometry [51]. Again, the closer DARL is to
0, the better the generation model is.

4. Experiments and Results
4.1. Experiment Area

We collected road networks and geospatial data from five cities in the United States:
Chicago, Los Angeles, New York, Phoenix, and Washington (Figure 3). The statistics pre-
sented in Tables S1–S3 illustrate the differences in road networks and geospatial context
data among these cities. These five cities were selected for two reasons. First, they repre-
sent diverse road network patterns. New York, Chicago, and Washington have relatively
more regular streets, whereas the streets of Los Angeles and Phoenix show more irregular
patterns. Second, the five cities differ in their geographical conditions. New York and Los
Angeles are coastal cities, Chicago is located near a large lake (Lake Michigan), Washington
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has rivers running through its downtown area, and Phoenix is an inland and mountainous
city. This geographical diversity ensures that the findings from this research can be general-
ized to a broader range of settings, enhancing the relevance and practical applications of
the results.
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As shown in Figure 3, for each city, we randomly split the patches into a training set
(80%) and a testing set (20%). The exact splitting process is as follows:

(1) Randomly select a square s from the set of non-testing squares and mark it as a testing
square.

(2) Mark every neighboring square that intersects with s as testing squares.
(3) Calculate the proportion of the current testing set. If it exceeds 20%, end the process

and collect all image patches corresponding to the testing squares to generate the
testing set. If not, return to (1).

Because the training and testing sets were spatially non-overlapping, our testing could
be performed completely on the untouched spatial area. During the training procedure, we
used the road image patches and context image patches as input to generate road images
with the size of 128 × 128 pixels. The batch size was set to 32, and the steps of the diffusion
process were set to 1000. By minimizing the loss function mentioned in Section 3, we
obtained the best-performance diffusion model. In the testing phase, we used the model to
synthesize road images conditioned on context images. Finally, we evaluated the similarity
between the generated results and real road networks in terms of the three metrics (see
Section 4.3). All the experiments were carried out on a Linux platform with 2 Intel Xeon
Gold6230 processors and 4 NIVIDIA A100 GPUs. Our road network generation model was
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implemented using PyTorch. For each city, the training and testing tasks took around 2 and
3 h, respectively.

4.2. Generation Results

For each city, we trained diffusion models and chose the one that achieved the lowest
loss as the final road network generator. The probability distributions of the pixels in the
generated road images for the different cities are displayed in Figure 4. The bar height
represents the probability, while the bar width is fixed to 5 pixels. It is noteworthy that
most of the pixel values are concentrated at two ends, where 0 represents non-road pixels
and 255 signifies road pixels. However, there is an exception for Washington, where the
left peak of the distribution is located between 10 and 15. Given that all the distributions
exhibit a bimodal pattern, it is reasonable to use a threshold of 127 for binarization to obtain
the final road images.
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Following previous research [52,53], we roughly classified the road networks into
three patterns: regular, irregular, and suburban. The regular pattern is mainly composed of
grid-like streets. The irregular pattern includes both main and side roads and has a more
complex road network layout. The suburban pattern is located in the suburban regions
of cities; it is characterized by a relatively small road density and the presence of curved
road lines. Figure 5 shows several examples of generated road networks of each pattern
in the testing set. The generated results of regular patterns were the most similar to the
real road networks. Our model successfully recovered the road layouts and the majority
of road segments in the four cases, except for some minor roads in cases 1 and 4. For the
irregular pattern, our model can capture the overall shape of road networks, but the result
is less accurate for short and side roads. The discrepancy between our generated results
and the ground truth was the largest in suburban regions. A possible reason for this is that
there are fewer road intersections in suburban regions, giving our model more freedom
to generate road images. Another reason is that curved road courses are harder to predict
compared with straight lines, as our training datasets in the five cities contain more straight
roads than curved roads.
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Figure 5. Generated results and the corresponding ground truth in different cities. (a) Regular pattern.
Cases 1 and 2 are from Chicago, cases 3 and 4 are from New York. (b) Irregular pattern. The four
cases are from Washington, New York, Los Angeles and Phoenix, respectively. (c) Suburban pattern.
Cases 1 to 3 are from Los Angeles, case 4 is from Phoenix.

4.3. Obstructive Effect

The forms and topologies of road networks are constrained by natural obstacles,
including water, mountains, and vegetation [54–56]. Herein, vegetation refers specifically
to tall dense trees, which are represented with a pixel value of 2 in the land use data. We first
present several samples in Figure 6 to examine the obstructive effects of the three types of
obstacles on road network generation. In Figure 6a, land and water are painted yellow and
blue, respectively. It can be found that water significantly restricts the expansion of roads.
Compared with cases 3 and 4, cases 1 and 2 show better results in recovering the spatial
distribution of roads, which should be due to their regular street forms and larger number
of intersections. It is worth noting that our model does not seem to be effective at predicting
the bridge in case 4. The existence of water in the middle prevents the bridge line from
expanding across the two sides. Figure 6b shows the cases near mountains. In all four cases,
the roads generated by our model were mainly located in gently sloping areas, consistent
with the real situation. This suggests that mountains are also an obvious obstacle to road
expansion in our model. Figure 6c illustrates the cases containing vegetation. Similar to the
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above two obstacles, the existence of vegetation patches presents obvious obstruction to
urban roads.

Next, we focused on individual road network patches within the testing regions
that contain water, mountains, or vegetation. We considered each of these patches as an
observation and built linear regression models for four different scenarios based on these
observations (Figure 7). In these models, the dependent variable is the sum of road length in
a given patch, and the explanatory variables are the areas of water, mountains, or vegetation
in that patch. To calculate the water area, we utilized land use data to extract water pixels
and then summed their individual areas. The vegetation area was also calculated using this
method. For the sake of simplicity, the extraction of mountains was performed on DEMs
using the mathematical morphological algorithm described in [57].
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Figure 6. The impact of water, mountains, and vegetation on road network generation. (a) Cases
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mountains. Cases are all from Phoenix. (c) Cases containing vegetation. Case 1 is from Los Angeles,
cases 2 and 3 are from New York, case 4 is from Washington.
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Figure 7. Correlations between water/mountain/vegetation areas and road length for the road
networks in the testing regions. (a) Water area vs. road length for generated results. (b) Water area vs.
road length for ground truth. (c) Mountain area vs. road length for generated results. (d) Mountain
area vs. road length for ground truth. (e) Vegetation area vs. road length for generated results.
(f) Vegetation area vs. road length for ground truth.

The regression results for the water scenario are shown in Tables S4 and S5. The
coefficients of the water area were −6.8124 and −6.4778 for the generated results (Table
S4) and ground truth (Table S5), respectively, with p-values less than 0.01. This suggests
that water has a significant negative impact on the length of the road network. However,
the R2 values for both scenarios were relatively low, indicating that other factors besides
water also influence the development and growth of urban roads. When compared to
the real cases, the regression model using generated results decreased the coefficient and
improved the R2, indicating that our model enhanced the obstructive effect of water on
road network generation.

Tables S6 and S7 present the statistics for mountain area and road length for two
datasets. The R2 values were 0.0648 and 0.0796, respectively, which were much smaller
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than those obtained in previous models. This suggests that the impact of mountains
on road networks is less pronounced than that of water. The regression model using
generated results improved the coefficient from −2.8406 to −2.5283 and achieved a lower
R2, indicating that the obstructive effect of mountains is slightly weaker in our generation
model compared to that of water.

Tables S8 and S9 present the regression results for the cases containing vegetation. The
coefficient of vegetation for the generated results (−2.6512) was larger than that for the
ground truth (−4.1866). The R2 values for the two cases were 0.0773 and 0.2147, respectively.
This indicates that the obstructive effects on road length in our model were slighter than in
the real cases.

Overall, the p-values in all six cases were below the significance level (0.01), and the
generated cases exhibited similar negative coefficients to the real-world cases. Therefore, it
can be concluded that there exist obstructive effects in watery, mountainous, and vegetated
regions, and our model can faithfully reproduce such effects.

4.4. Model Comparison

We built five models with distinct combinations of context factors to further investigate
the effects of context factors on road generation. Table 2 shows that Models 1–4 include
three context factors with only one factor being excluded each time, while Model 5 is
comprehensive and incorporates all the factors. In contrast, the baseline model is a simple
diffusion model that does not utilize any context factors as inputs.

To assess the visual and geometric similarity between the generated results and ground
truths, we evaluated both the generated images and road networks in the testing set. The
evaluation results are summarized in Table 3. We assigned scores to each model based
on their rankings in each row of Table 3. The scoring rule awards points from 6 to 1 to
models ranked 1 to 6. By summing the scores across all 25 rows, we obtained the final score
for each model. As Figure 8 demonstrates, Model 5 achieved the highest score among all
models, indicating its superior performance in predicting road networks for the five cities.
Furthermore, all our five models outperformed the baseline, confirming that geospatial
factors contribute to the formation of realistic street layouts, which aligns with previous
research findings [12,13].

In terms of the three image-based metrics (FID, F1, and IOU), it is interesting that
Model 1, the only model that did not take land use as context, outperformed the other
models in both F1 and IOU for Los Angeles. This may be attributed to the fact that the
built area accounts for a significant proportion (89%) of all land use in the study area of Los
Angeles, indicating that land use data may play a relatively minor role in generating road
networks in this city. Moreover, the two models (Model 3 and Model 4) that did not utilize
terrain factors (elevation and slope) achieved superior image quality compared to Model
5 for regions of Washington. This suggests that terrain has less impact on road networks
in Washington. For the two network-based metrics (DAD and DARL), Model 5 achieved
the smallest absolute values in three cities: Los Angeles, Phoenix, and Washington. This
demonstrates the model’s superiority in generating road networks with similar geometric
and structural characteristics in these cities.

In general, the conditional diffusion model could learn more hidden patterns and
laws by taking into consideration more geospatial context factors; thus, it could perform
better in yielding reasonable road networks. Model 4 is the worst-performing model except
for the baseline, implying that intersections are the most important guide for the road
generation task. Due to the lack of this key artificial information, Model 4 purely learned
with natural factors (land use, elevation, and slope) and generated more free-style results,
suggesting that the development of urban road networks is not only restricted by the
natural environment but is more strongly influenced by human design and planning.
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Table 2. Different models for road network generation.

Model 1 Model 2 Model 3 Model 4 Model 5 Baseline

Land use ✓ ✓ ✓ ✓
Elevation ✓ ✓ ✓ ✓

Slope ✓ ✓ ✓ ✓
Intersections ✓ ✓ ✓ ✓

Table 3. Comparison of six models in terms of five metrics.

Model 1 Model 2 Model 3 Model 4 Model 5 Baseline

Chicago

FID 44.11 44.60 51.24 146.67 34.79 * 199.82
F1 72.28% 72.81% 70.98% 16.73% 74.62% * 18.00%

IOU 58.96% 59.27% 57.15% 9.22% 61.53% * 9.98%
DAD −0.172 −0.153 −0.087 −0.039 * −0.129 0.173

DARL −1.32 −1.715 −0.402 * 1.632 −1.089 4.649

Los Angeles

FID 80.48 74.41 * 75.61 284.36 78.11 314.86
F1 56.00% * 54.78% 53.45% 17.32% 54.85% 8.28%

IOU 41.07% * 39.79% 38.64% 9.56% 40.00% 4.36%
DAD −0.087 −0.126 −0.120 0.071 0.066 * −0.473

DARL −1.166 −1.412 −0.709 1.083 0.430 * −4.901

New York

FID 143.97 108.80 68.03 * 299.29 76.65 361.57
F1 60.63% 62.63% 65.62% 15.68% 66.90% * 25.98%

IOU 45.98% 48.04% 51.57% 8.60% 52.75% * 15.22%
DAD −0.086 0.027 * −0.108 −0.485 −0.028 0.337

DARL −0.585 * −0.615 −1.648 −4.570 −1.078 8.712

Phoenix

FID 132.27 114.80 225.14 258.79 102.54 * 320.00
F1 44.23% 48.94% 38.37% 17.78% 49.98% * 3.70%

IOU 29.44% 33.71% 24.46% 9.89% 34.56% * 1.91%
DAD −0.160 −0.178 −0.574 0.303 −0.097 * −0.969

DARL 0.257 −0.672 −3.421 5.530 −0.107 * −5.908

Washington

FID 109.78 80.65 * 82.19 171.90 85.77 174.46
F1 50.47% 51.49% 52.48% * 20.51% 50.52% 9.84%

IOU 35.13% 35.94% 36.95% * 11.54% 35.31% 5.22%
DAD −0.224 −0.185 −0.105 0.256 0.009 * −0.579

DARL −2.729 −2.171 −1.756 4.098 −0.262 * −4.231

*: the best-performing model.
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5. Discussion

Currently, deep generative models are rapidly growing and attracting interest in
fields such as urban planning and street design [58]. This paper proposes a road network
generation framework based on conditional diffusion models. We first generated road
images using diffusion models and then converted them into network formats through
several post-processing steps. To evaluate the performance of our model, we conducted
experiments on five US cities (Chicago, Los Angeles, New York, Phoenix, and Washington)
with diverse geographical conditions.

The original DDPM was adapted for conditional image generation, enabling the
utilization of the geospatial context to control the denoising process. After a comprehensive
analysis of previous studies, four context factors were chosen: land use, elevation, slope
(as representatives of the underlying terrain), and intersections (reflecting human design).
The comparative experiments demonstrate that the model incorporating all four context
factors generally outperforms the other four models across the five evaluation metrics. This
indicates that all four context factors play a significant role in road network generation.
By considering more factors, the model produces more reasonable and realistic results.
Notably, the model that does not utilize road intersections as a condition performs the worst
in all five cities, emphasizing the critical impact of manual planning in the development of
road networks.

The obstructive effects of water, mountains, and vegetation were analyzed for both
synthetic and real patches. The negative coefficients of the explanatory variables in the
six regression models, specifically the water, mountain, and vegetation areas, serve as
confirmation that all three types of obstacles constrain road expansion. Our model accu-
rately captures and reproduces these obstructive effects. When comparing the impact of
water and the other two factors (mountain and vegetation), it is observed that water has a
smaller coefficient but a larger R2 value. This indicates that water has a more pronounced
obstructive effect than mountains and vegetation. This difference can be attributed to the
fact that the obstacles posed by long rivers or large seas often require the construction of
bridges to be overcome, whereas mountainous or vegetation-covered regions with gentle
slopes may still be amenable to road construction. While the obstructive effect is evident
in both synthetic and real scenes, there are notable differences in the coefficients between
these two settings. In the synthetic scene, water has a smaller coefficient (−6.8124), whereas
mountains and vegetation have larger coefficients (−2.5283 and −2.6512). This suggests
that during the generation process, our model tends to amplify the influence of water and
diminish the influence of mountains and vegetation.

By combining image-based generative techniques with geospatial context data, our
model demonstrates the ability to reconstruct street layouts with high visual and structural
qualities. Furthermore, our model offers the advantage of producing road networks that
resemble ground truths without having prior knowledge of surrounding road information.
By inputting only context data, we can predict the road network distribution of a testing
region. When comparing different road patterns, our model performs best in regular
patterns, followed by irregular patterns. However, in suburban areas characterized by low
road segment density and curved lines, our model’s performance is relatively poor.

There are two limitations in our research at present. The first is that we generate a local
road network within a grid with the size of 1 km × 1 km each time. The second is that the
resolution of the generated image is limited to 128 × 128 pixels. This is because our U-net
architecture has a number of self-attention layers and is computationally heavy. Therefore,
we should generate road images at small resolution. Our future studies will be focused on
enlarging the generation range of road networks and improving road image resolution by
introducing techniques for the images including outpainting and super-resolution.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijgi13060203/s1, Table S1: Statistics of road networks in the five
cities; Table S2: Rates of land use classes in the five cities; Table S3: Statistics of elevation and slope in
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the five cities; Table S4: Regression result for generated road networks (water area vs. road length);
Table S5: Regression result for real road networks (water area vs. road length); Table S6: Regression
result for generated road networks (mountain area vs. road length); Table S7: Regression result
for real road networks (mountain area vs. road length); Table S8: Regression result for generated
road networks (vegetation area vs. road length); Table S9: Regression result for real road networks
(vegetation area vs. road length).
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