Spatiotemporal Analysis of Ecological Security Based on Landscape Patterns
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Sources
3.2. Selection of Landscape Pattern Index
3.3. Selection and Extraction of Evaluation Factors
3.4. Methods
3.4.1. Decision Tree Model
3.4.2. CRITIC Weighting Method
3.4.3. Exploratory Spatial Data Analysis (ESDA)
3.4.4. Change Slope Method
3.4.5. Hurst Index
4. Results
4.1. Landscape Pattern Analysis
4.1.1. Landscape Patch Type Level
4.1.2. Landscape Level
4.2. Dynamic Evaluation of Ecological Security
4.2.1. Weights of Evaluation Indicators
4.2.2. Determination of Ecological Security Grade
4.3. Spatiotemporal Differentiation Analysis
4.3.1. Global Moran’s I
4.3.2. Anselin Local Moran’s I
4.3.3. Getis–Ord Gi* Analysis
4.3.4. Change Slope
4.3.5. Hurst Index
5. Discussion
5.1. Analysis of the Causes of Landscape Pattern Change
5.2. Analysis of the Causes of Ecological Security Changes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Wang, S.; Zou, Y. Construction of an ecological security pattern based on ecosystem sensitivity and the importance of ecological services: A case study of the Guanzhong Plain urban agglomeration, China. Ecol. Indic. 2022, 136, 108688. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Fu, B.; Ma, R.; Yang, Y.; Lü, Y.; Wu, X. Identifying ecological security patterns based on the supply, demand, and sensitivity of ecosystem service: A case study in the Yellow River Basin. China. J. Environ. Manag. 2022, 315, 115158. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Huang, X.; Wu, D.; Wang, Z.; Yang, H. Optimization of ecological security patterns considering both natural and social disturbances in China’s largest urban agglomeration. Ecol. Eng. 2022, 180, 106647. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Li, Y.; Wang, Y. Spatiotemporal differentiation and geographic detection mechanism of ecological security in Chongqing, China. Glob. Ecol. Conserv. 2022, 35, e02072. [Google Scholar] [CrossRef]
- Ning, X.; Zhu, N.; Liu, Y.; Wang, H. Quantifying impacts of climate and human activities on the grassland in the Three-River Headwater Region after two phases of Ecological Project. Geogr. Sustain. 2022, 3, 164–176. [Google Scholar] [CrossRef]
- Yuan, Y.; Bai, Z.; Zhang, J.; Xu, C. Increasing urban ecological resilience based on ecological security pattern: A case study in a resource-based city. Ecol. Eng. 2022, 175, 106486. [Google Scholar] [CrossRef]
- Troll, C. Aerial Photography and ecological studies of the earth. Z. Ges. Erdkd. Berl. 1939, 241–298. [Google Scholar]
- Ren, J.; Yan, D.; Ma, Y.; Liu, J.; Su, Z.; Ding, Y.; Wang, P.; Dang, Z.; Niu, J. Combining Phylogeography and Landscape Genetics Reveals Genetic Variation and Distribution Patterns of Stipa breviflora Populations. Flora 2022, 293, 152102. [Google Scholar] [CrossRef]
- Wu, Z.; Lei, S.; Yan, Q.; Bian, Z.; Lu, Q. Landscape ecological network construction controlling surface coal mining effect on landscape ecology: A case study of a mining city in semi-arid steppe. Ecol. Indic. 2021, 133, 108403. [Google Scholar] [CrossRef]
- Yu, Z.; Song, D.; Song, Y.; Lau, S.K.; Han, S. Research on a visual thermal landscape model of underground space based on the spatial interpolation method—A case study in Shanghai. Energy Rep. 2022, 8, 406–418. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Fang, X.; Li, G.; Cao, Y. Identification of the trade-offs/synergies between rural landscape services in a spatially explicit way for sustainable rural development. J. Environ. Manag. 2021, 300, 113706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liang, X.; Chen, H.; Shi, Q. Spatio-temporal evolution of the social-ecological landscape resilience and management zoning in the loess hill and gully region of China. Environ. Dev. 2021, 39, 100616. [Google Scholar] [CrossRef]
- Stupariu, I.P.; Stupariu, M.S.; Stoicescu, I.; Peringer, A.; Buttler, A.; Fürst, C. Integrating geo-biodiversity features in the analysis of landscape patterns. Ecol. Indic. 2017, 80, 363–375. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Shangguan, Z.P. The change of soil water storage in three land use types after 10 years on the Loess Plateau. Catena 2016, 147, 87–95. [Google Scholar] [CrossRef]
- Singh, J.S.; Roy, P.S.; Murthy, M.S.R.; Jha, C.S. Application of landscape ecology and remote sensing for assessment, monitoring and conservation of biodiversity. J. Indian Soc. Remote Sens. 2010, 38, 365–385. [Google Scholar] [CrossRef]
- Zhang, M.; Bao, Y.; Xu, J.; Han, A.; Liu, X.; Zhang, J.; Tong, Z. Ecological security evaluation and ecological regulation approach of East-Liao River basin based on ecological function area. Ecol. Indic. 2021, 132, 108255. [Google Scholar] [CrossRef]
- Cheng, H.; Zhu, L.; Meng, J. Fuzzy evaluation of the ecological security of land resources in mainland China based on the Pressure-State-Response framework. Sci. Total Environ. 2022, 804, 150053. [Google Scholar] [CrossRef] [PubMed]
- Mai, S.; Xu, J.; Xu, S.; Pan, Y. Application of the PSR model to evaluation of wetland ecosystem health. Trop. Geogr. 2005, 25, 317–321. [Google Scholar]
- Tu, J.; Wan, M.; Chen, Y.; Tan, L.; Wang, J. Biodiversity assessment in the near-shore waters of Tianjin city, China based on the Pressure-State-Response (PSR) method. Mar. Pollut. Bull. 2022, 184, 114123. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Yang, X.; Zhang, Z.; Gao, S.; Zhou, Q.; Zhuo, Y.; Wen, X.; Guo, Z. Evaluating urban ecological civilization and its obstacle factors based on integrated model of PSR-EVW-TOPSIS: A case study of 13 cities in Jiangsu Province, China. Ecol. Indic. 2021, 133, 108431. [Google Scholar] [CrossRef]
- Ma, L.B.; Bo, J.; Li, X.Y.; Fang, F.; Cheng, W.J. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Sci. Total Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, J. Lake ecological security assessment based on SSWSSC framework from 2005 to 2013 in an interior lake basin, China. Environ. Earth Sci. 2016, 75, 1–11. [Google Scholar] [CrossRef]
- Chen, A.; Zhao, X.; Yao, L.; Chen, L. Application of a new integrated landscape index to predict potential urban heat islands. Ecol. Ind. 2016, 69, 828–835. [Google Scholar] [CrossRef]
- McGarigal, K.; Compton, B.W.; Plunkett, E.B.; DeLuca, W.V.; Grand, J.; Ene, E.; Jackson, S.D. A landscape index of ecological integrity to inform landscape conservation. Landsc. Ecol. 2018, 33, 1029–1048. [Google Scholar] [CrossRef]
- Wang, X.D.; Zhang, C.B.; Wang, C.; Liu, G.W.; Wang, H.X. GIS-based for prediction and prevention of environmental geological disaster susceptibility: From a perspective of sustainable development. Ecotoxicol. Environ. Saf. 2021, 226, 112881. [Google Scholar] [CrossRef] [PubMed]
- Arabameri, A.; Yamani, M.; Pradhan, B. Novel ensembles of COPRAS multicriteria decision -making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility. Sci. Total Environ. 2019, 688, 903–916. [Google Scholar] [CrossRef]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Wang, J.; Wei, X.; Guo, Q. A three-dimensional evaluation model for regional carrying capacity of ecological environment to social economic development: Model development and a case study in China. Ecol. Indic. 2018, 89, 348–355. [Google Scholar] [CrossRef]
- Qu, Y.; Jin, X. Geological hazards susceptibility evaluation based on multi-year spatial–temporal evolution of assessment factors in Luding area, Sichuan Province, China. Geol. J. 2024, 59, 1520–1538. [Google Scholar] [CrossRef]
- Yang, C.C.; Prasher, S.O.; Enright, P.; Madramootoo, C.; Burgess, M.; Goel, P.K.; Callum, L. Application of decision tree technology for image classification using remote sensing data. Agric. Syst. 2003, 76, 1101–1117. [Google Scholar] [CrossRef]
- Wang, X.A.; Zhou, Z.; Sun, L.C.; Xie, G.H.; Lou, Q.H. Research on the evaluation index system of “new energy cloud”operation mode based on CRITIC weighting method and AHP method. IOP Conf. Ser. Earth Environ. Sci. 2021, 831, 012017. [Google Scholar] [CrossRef]
- Anselin, L. How (not) to lie with spatial statistics. Am. J. Prev. Med. 2006, 30, S3–S6. [Google Scholar] [CrossRef]
- Mann, A.; Folchn, D.C.; Kauffman, R.J.; Anselin, L. Spatial and temporal trends in information technology outsourcing. Appl. Geogr. 2015, 63, 192–203. [Google Scholar] [CrossRef]
- Renato, M.; Assuncao Edna, A.R. A new proposal to adjust Moran’s I for population density. Stat. Med. 1999, 18, 2147–2162. [Google Scholar]
- Arthur, G.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar]
- Xu, J.H. Mathematical Methods in Contemporary Geography; Higher Education Press: Beijing, China, 2022. [Google Scholar]
- Wang, G.; Wang, C.; Guo, Z.; Dai, L.; Wu, Y.; Liu, H.; Li, Y.; Chen, H.; Zhang, Y.; Zhao, Y.; et al. Integrating Maxent model and landscape ecology theory for studying spatiotemporal dynamics of habitat: Suggestions for conservation of endangered Red-crowned crane. Ecol. Indic. 2020, 116, 106472. [Google Scholar] [CrossRef]
- Turner, B.L.; Skole, D.L.; Sanderson, S.; Fischer, G.; Fresco, L.; Leemans, R. Land Cover Change Science/Research Plan; Global Change Report (Sweden); IIASA: Stockholm, Sweden, 1995. [Google Scholar]
- Soffianian, A.; Mokhtari, Z.; Khajeddin, S.J.; Ziaei, H.R. Gradient R analysis of urban landscape pattern (case study from Isfahan city). Hum. Geogr. Res. Q. 2013, 23, 23–39. [Google Scholar]
- Bürgi, M.; Straub, A.; Gimmi, U.; Salzmann, D. The recent landscape history of Limpach valley, Switzerland: Considering three empirical hypotheses on driving forces of landscape change. Landsc. Ecol. 2010, 25, 287–297. [Google Scholar] [CrossRef]
Data | Year | Format | Access Platform |
---|---|---|---|
Landsat8 OLI | 2015, 2020 | TIF | Geospatial Data Cloud |
Landsat5 TM | 2005, 2010 | TIF | Geospatial Data Cloud |
DEM | 2009 | TIF | Geospatial Data Cloud |
Boundary data | 2020 | SHP | Vectorize |
Landcover data | 2019 | SHP | The third national land resource survey |
Interpolation data | 2005, 2010, 2015, 2020 | TIF | Resource and Environment Science and Data Center |
Geologic map | 2020 | SHP | National Geological Archives |
Index | Indication | |
---|---|---|
Type level | NP | This value is positively correlated with landscape fragmentation. |
ED | It has high sensitivity to landscape type changes. | |
PLAND | Part of the basis for determining the matrix or leading landscape elements in the landscape, and also is an important factor in determining ecosystem indicators such as biological diversity and the prevailing species in the landscape. | |
LPI | This value helps to reflect some ecological characteristics in the landscape, such as the dominant types and the abundance of internal species. In addition, it affects material migration in the ecosystem and the orientation and strength of people’s activities. | |
Landscape pattern | PD | Can be used to make comparisons between different landscapes. |
CONTAG | Represents the extent of aggregation or expansion trend of various patch types in the landscape. | |
LSI | Reflects the complexity and irregularity of the overall landscape shape. | |
IJL | Indicates the overall spread and juxtaposition of patch types at the landscape level, which suggests that the spread characteristics of ecosystems are severely constrained by some natural factors. | |
SHDI | Reflects the heterogeneity of the landscape and is especially flexible to the unbalanced spread of each patch type in the landscape. | |
SHEI | Used to compare changes in diversity across landscapes or in the same landscape over time. |
Criterion Layer | Factor Layer | Unit | Factor Type |
---|---|---|---|
Pressure | Geological disaster susceptibility | / | Negative |
Population density | Persons/km2 | Negative, | |
Landscape fragmentation index | / | Negative | |
State | Biological abundance index | / | Positive |
Water conservation index | / | Positive | |
Vegetation coverage | % | Positive | |
Response | Landscape disturbance index | / | Negative |
Landscape restoration index | / | Positive | |
GDP density | Wanyuan/km2 | Negative |
Criterion Layer | Factor Layer | Indicator Layer | Unit | Data Source |
---|---|---|---|---|
Geological disaster susceptibility | Static factor | Elevation | m | DEM |
Slope | ° | DEM | ||
Aspect | ° | DEM | ||
Relief of topography | m | DEM | ||
Engineering rock formation | / | Geologic map | ||
Distance from structure | m | Geologic map | ||
Dynamic factor | Landcover | / | Landsat images | |
Normalized vegetation index | % | Landsat images | ||
Normalized water index | % | Landsat images |
Landscape Type | Time | PLAND | NP | LPI | ED |
---|---|---|---|---|---|
Grassland | 2005 | 11.6636 | 1468 | 1.2334 | 21.1442 |
2010 | 9.7509 | 1396 | 1.1609 | 19.2182 | |
2015 | 7.0081 | 1290 | 0.1971 | 15.1222 | |
2020 | 6.0078 | 1145 | 0.1971 | 12.9057 | |
Forest | 2005 | 66.4430 | 862 | 41.3001 | 35.5414 |
2010 | 65.5214 | 879 | 40.7530 | 37.0594 | |
2015 | 64.9011 | 925 | 40.5104 | 37.2659 | |
2020 | 64.6362 | 1030 | 39.7640 | 37.4359 | |
Construction | 2005 | 2.8488 | 836 | 0.2212 | 6.7390 |
2010 | 4.1679 | 1125 | 0.2403 | 9.6562 | |
2015 | 4.9333 | 1375 | 0.2583 | 11.4446 | |
2020 | 5.8623 | 1479 | 0.5262 | 12.9336 | |
Farmland | 2005 | 13.1847 | 1494 | 1.3743 | 21.8278 |
2010 | 15.0074 | 1660 | 1.3815 | 24.9227 | |
2015 | 18.4700 | 1989 | 1.4663 | 31.3832 | |
2020 | 19.4396 | 2476 | 1.4481 | 34.0384 | |
Unused | 2005 | 3.2701 | 901 | 0.0961 | 6.7835 |
2010 | 2.4675 | 871 | 0.0312 | 5.8332 | |
2015 | 1.5196 | 664 | 0.0326 | 3.8909 | |
2020 | 0.9377 | 440 | 0.0198 | 2.4122 | |
Water | 2005 | 2.5885 | 224 | 1.2483 | 4.0238 |
2010 | 3.0856 | 301 | 1.3762 | 5.1470 | |
2015 | 3.1079 | 308 | 1.2445 | 5.5046 | |
2020 | 3.1162 | 312 | 1.2445 | 5.5333 |
TIME | NP | PD | LSI | CONTAG | SHDI | SHEI | IJL |
---|---|---|---|---|---|---|---|
2005 | 5785 | 1.9304 | 67.9349 | 60.126 | 1.0972 | 0.6124 | 76.0032 |
2010 | 6232 | 2.0796 | 71.8903 | 58.9966 | 1.1197 | 0.6249 | 77.9305 |
2015 | 6551 | 2.1861 | 73.7858 | 59.4572 | 1.1 | 0.6139 | 74.75 |
2020 | 6882 | 2.2965 | 74.2289 | 59.8602 | 1.0879 | 0.607 | 71.3802 |
Criterion Layer | Factor Layer | Weight (2005) | Weight (2010) | Weight (2015) | Weight (2020) |
---|---|---|---|---|---|
Pressure | Geological disaster susceptibility | 0.248 | 0.265 | 0.269 | 0.272 |
Population density | 0.007 | 0.047 | 0.033 | 0.034 | |
Landscape fragmentation index | 0.103 | 0.083 | 0.078 | 0.079 | |
State | Biological abundance index | 0.138 | 0.106 | 0.127 | 0.126 |
Water conservation index | 0.144 | 0.117 | 0.129 | 0.128 | |
Vegetation coverage | 0.146 | 0.136 | 0.133 | 0.115 | |
Response | Landscape disturbance index | 0.126 | 0.125 | 0.137 | 0.142 |
Landscape restoration index | 0.081 | 0.091 | 0.069 | 0.080 | |
GDP density | 0.007 | 0.029 | 0.024 | 0.024 |
Ecological Security Level | 2005 | 2010 | 2015 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | |
Unsafe | 318.27 | 0.106 | 328.25 | 0.109 | 374.07 | 0.124 | 538.66 | 0.179 |
Less unsafe | 698.12 | 0.232 | 792.97 | 0.264 | 568.63 | 0.189 | 596.84 | 0.198 |
Moderately safe | 646.71 | 0.215 | 454.40 | 0.151 | 601.41 | 0.200 | 497.84 | 0.165 |
Less safe | 745.91 | 0.248 | 544.66 | 0.181 | 588.08 | 0.195 | 659.68 | 0.219 |
Safe | 599.89 | 0.199 | 888.62 | 0.295 | 876.71 | 0.291 | 715.88 | 0.238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Nie, K.; Wu, X. Spatiotemporal Analysis of Ecological Security Based on Landscape Patterns. ISPRS Int. J. Geo-Inf. 2024, 13, 204. https://doi.org/10.3390/ijgi13060204
Zhang H, Nie K, Wu X. Spatiotemporal Analysis of Ecological Security Based on Landscape Patterns. ISPRS International Journal of Geo-Information. 2024; 13(6):204. https://doi.org/10.3390/ijgi13060204
Chicago/Turabian StyleZhang, Huaidan, Ke Nie, and Xueling Wu. 2024. "Spatiotemporal Analysis of Ecological Security Based on Landscape Patterns" ISPRS International Journal of Geo-Information 13, no. 6: 204. https://doi.org/10.3390/ijgi13060204
APA StyleZhang, H., Nie, K., & Wu, X. (2024). Spatiotemporal Analysis of Ecological Security Based on Landscape Patterns. ISPRS International Journal of Geo-Information, 13(6), 204. https://doi.org/10.3390/ijgi13060204